This study investigates the feasibility of using a composite material comprising slate reinforced with cork sheets for architectural purposes like facades and wall coverings. The research involves the comprehensive characterisation of both slate and cork materials along with the evaluation of the silicone adhesive used in their bonding process, specifically Sikasil® HT from SIKA®. It was found that both slate and cork exhibited low wettability, which was enhanced through cold plasma treatment. Subsequently, a composite sandwich structure was fabricated and subjected to impact testing in a drop tower, along with fire resistance evaluations. The fire tests revealed that when subjected to a flame of 900 °C for 15 min, the slate alone heated rapidly, reaching 500 °C within 3 min on the side opposite to the flame. However, the sandwich structure reached 260 °C on the cork side (opposite to the flame) at 7.5 min, maintaining this temperature until the deterioration or detachment of the cork between 11 and 12 min. This provided insulation and delayed ignition. The sandwich structure maintained its fire resistance due to the insulating properties of cork and the superior thermal resistance of silicone compared to other adhesives up to 260 °C. Overall, the results suggest the potential suitability of this sandwich structure for architectural applications. Its favourable adhesion properties and acceptable fire resistance indicate that it could serve as a viable alternative for construction materials in architectural contexts.
{"title":"Slate–Cork Laminate Enhanced with Silicone for Habitat Industry Application","authors":"J. Abenojar, Sara Lopez de Armentia, M. Martínez","doi":"10.3390/fire7050166","DOIUrl":"https://doi.org/10.3390/fire7050166","url":null,"abstract":"This study investigates the feasibility of using a composite material comprising slate reinforced with cork sheets for architectural purposes like facades and wall coverings. The research involves the comprehensive characterisation of both slate and cork materials along with the evaluation of the silicone adhesive used in their bonding process, specifically Sikasil® HT from SIKA®. It was found that both slate and cork exhibited low wettability, which was enhanced through cold plasma treatment. Subsequently, a composite sandwich structure was fabricated and subjected to impact testing in a drop tower, along with fire resistance evaluations. The fire tests revealed that when subjected to a flame of 900 °C for 15 min, the slate alone heated rapidly, reaching 500 °C within 3 min on the side opposite to the flame. However, the sandwich structure reached 260 °C on the cork side (opposite to the flame) at 7.5 min, maintaining this temperature until the deterioration or detachment of the cork between 11 and 12 min. This provided insulation and delayed ignition. The sandwich structure maintained its fire resistance due to the insulating properties of cork and the superior thermal resistance of silicone compared to other adhesives up to 260 °C. Overall, the results suggest the potential suitability of this sandwich structure for architectural applications. Its favourable adhesion properties and acceptable fire resistance indicate that it could serve as a viable alternative for construction materials in architectural contexts.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"122 48","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140986502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bojan Janković, Vladimir Dodevski, Filip Veljković, Marija Janković, N. Manić
This work examined the possibilities and limitations of model-free and model-based methods related to decrypting the kinetic complexity of multi-step thermo-oxidative degradation processes (as a testing system, a [4-(hydroxymethyl)phenoxymethyl] polystyrene resin was used), monitored by thermal analysis (TGA-DTG-DTA) techniques. It was found that isoconversional methods could successfully determine the correct number of process stages and presence of multiple reactions based on derived Ea(α) profiles and identify the negative dependence of the rate constant on the temperature. These methods could not overcome the problem that arose due to mass transfer limitations. The model-based method overcame more successfully the problem associated with mass transfer because its calculation machinery had capabilities for the correct solution of the total mass balance equation. However, a perfect fit with the experimental data was not achieved due to the dependence on the thermal history of the contribution (ctb.) of a given reaction step inside a fitting procedure cycle. On the other hand, through this approach, it was possible to estimate the rate-controlling steps of the process regarding the influence of the heating rate. It was found that for consecutive reaction mechanisms, the production of benzaldehyde and gases in high yields was controlled by the heating rate, where low heating rates were strongly recommended (≤10 K/min). Also, it was shown that the transport phenomenon may be also the rate-determining step (within the set of “intrinsic” kinetic parameters). It was also established that external heat transfer controls the overall rate, where the “pure” kinetic control regime had not been reached but was approached when lowering the temperature and size of the resin particles.
{"title":"Application of Model-Free and Model-Based Kinetic Methods in Evaluation of Reactions Complexity during Thermo-Oxidative Degradation Process: Case Study of [4-(Hydroxymethyl)phenoxymethyl] Polystyrene Resin","authors":"Bojan Janković, Vladimir Dodevski, Filip Veljković, Marija Janković, N. Manić","doi":"10.3390/fire7050165","DOIUrl":"https://doi.org/10.3390/fire7050165","url":null,"abstract":"This work examined the possibilities and limitations of model-free and model-based methods related to decrypting the kinetic complexity of multi-step thermo-oxidative degradation processes (as a testing system, a [4-(hydroxymethyl)phenoxymethyl] polystyrene resin was used), monitored by thermal analysis (TGA-DTG-DTA) techniques. It was found that isoconversional methods could successfully determine the correct number of process stages and presence of multiple reactions based on derived Ea(α) profiles and identify the negative dependence of the rate constant on the temperature. These methods could not overcome the problem that arose due to mass transfer limitations. The model-based method overcame more successfully the problem associated with mass transfer because its calculation machinery had capabilities for the correct solution of the total mass balance equation. However, a perfect fit with the experimental data was not achieved due to the dependence on the thermal history of the contribution (ctb.) of a given reaction step inside a fitting procedure cycle. On the other hand, through this approach, it was possible to estimate the rate-controlling steps of the process regarding the influence of the heating rate. It was found that for consecutive reaction mechanisms, the production of benzaldehyde and gases in high yields was controlled by the heating rate, where low heating rates were strongly recommended (≤10 K/min). Also, it was shown that the transport phenomenon may be also the rate-determining step (within the set of “intrinsic” kinetic parameters). It was also established that external heat transfer controls the overall rate, where the “pure” kinetic control regime had not been reached but was approached when lowering the temperature and size of the resin particles.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"7 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140988471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the characteristics of coal spontaneous combustion (CSC) in goaf under different porosities is crucial for comprehending the mechanism of CSC and its prevention and control. In this paper, a multi-field coupled model of CSC in the goaf, considering porosity variation, is developed to investigate the effect of porosity on the CSC characteristics in the goaf. The results indicate that, as the goaf depth increases, both porosity and permeability decrease. When the highest goaf porosity is 25%, the average airflow velocity is between 0.00134 and 0.00139 m/s. In contrast, the average airflow velocity in the goaf with a porosity of 40% is approximately six times greater than that of the goaf with a porosity of 25%. As the goaf porosity increases, the overall oxygen concentration, temperature, and oxidized zone area also rise. Moreover, the oxidation zone area can be quantified and visualized, thereby enabling more effective prediction of the CSC risk in the goaf. The findings of the study have a positive significance in guiding the prevention and control of coal fires.
{"title":"Study on the Effect of Pore Evolution on the Coal Spontaneous Combustion Characteristics in Goaf","authors":"Jinglei Li, Hao Xu, Genshui Wu","doi":"10.3390/fire7050164","DOIUrl":"https://doi.org/10.3390/fire7050164","url":null,"abstract":"Understanding the characteristics of coal spontaneous combustion (CSC) in goaf under different porosities is crucial for comprehending the mechanism of CSC and its prevention and control. In this paper, a multi-field coupled model of CSC in the goaf, considering porosity variation, is developed to investigate the effect of porosity on the CSC characteristics in the goaf. The results indicate that, as the goaf depth increases, both porosity and permeability decrease. When the highest goaf porosity is 25%, the average airflow velocity is between 0.00134 and 0.00139 m/s. In contrast, the average airflow velocity in the goaf with a porosity of 40% is approximately six times greater than that of the goaf with a porosity of 25%. As the goaf porosity increases, the overall oxygen concentration, temperature, and oxidized zone area also rise. Moreover, the oxidation zone area can be quantified and visualized, thereby enabling more effective prediction of the CSC risk in the goaf. The findings of the study have a positive significance in guiding the prevention and control of coal fires.","PeriodicalId":12279,"journal":{"name":"Fire","volume":" 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141000252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhichao Cheng, Song Wu, Dan Wei, Hong Pan, Xiaoyu Fu, Xinming Lu, Libin Yang
Ecosystems are frequently disturbed by fires that have an important impact on the soil environment and the composition of soil organisms. In order to provide a baseline for the current research and identify trends on the effects of wildland fire on soil environment and biological changes, the available literature was identified from the Web of Science database, covering the period from 1998/1998/1999 (the year of the earliest publication in this field) to 2023. A bibliometric analysis was performed and the data were visually displayed for the number of publications, countries, authors, research institutions, and keywords representing research hotspots. Specifically, the effects of wildland fire on the soil environment, on soil microorganisms and on soil fauna were analyzed. The results show that the annual number of publications describing effects of wildland fire on the soil environment and on soil microorganisms are increasing over time, while those describing effects on soil fauna are fewer and their number remains constant. The largest number of papers originate from the United States, with the United States Department of Agriculture as the research institution with the largest output. The three authors with the largest number of publications are Stefan H. Doerr, Manuel Esteban Lucas-Borja and Jan Jacob Keizer. The research hotspots, as identified by keywords, are highly concentrated on wildfire, fire, organic matter, and biodiversity, amongst others. This study comprehensively analyzes the current situation of the research on the effects of wildland fire on changes in the soil environment and organisms, and provides reference for relevant scientific researchers in this trend and future research hotspots.
生态系统经常受到火灾的干扰,而火灾对土壤环境和土壤生物组成有着重要影响。为了给目前的研究提供一个基线,并确定野外火灾对土壤环境和生物变化的影响趋势,我们从 Web of Science 数据库中找到了从 1998/1998/1999 年(该领域最早发表论文的年份)到 2023 年期间的现有文献。我们进行了文献计量分析,并直观地显示了代表研究热点的出版物数量、国家、作者、研究机构和关键词等数据。具体而言,分析了野地火灾对土壤环境、土壤微生物和土壤动物的影响。结果表明,每年描述野地火灾对土壤环境和土壤微生物影响的论文数量随着时间的推移不断增加,而描述对土壤动物影响的论文数量较少且保持不变。来自美国的论文数量最多,产出最多的研究机构是美国农业部。发表论文数量最多的三位作者是 Stefan H. Doerr、Manuel Esteban Lucas-Borja 和 Jan Jacob Keizer。根据关键词确定的研究热点高度集中在野火、火灾、有机物和生物多样性等方面。本研究全面分析了野外火灾对土壤环境和生物体变化影响的研究现状,为相关科研人员把握这一趋势和未来研究热点提供了参考。
{"title":"Current Status of Research on Wildland Fire Impacts on Soil Environment and Soil Organisms and Hotspots Visualization Analysis","authors":"Zhichao Cheng, Song Wu, Dan Wei, Hong Pan, Xiaoyu Fu, Xinming Lu, Libin Yang","doi":"10.3390/fire7050163","DOIUrl":"https://doi.org/10.3390/fire7050163","url":null,"abstract":"Ecosystems are frequently disturbed by fires that have an important impact on the soil environment and the composition of soil organisms. In order to provide a baseline for the current research and identify trends on the effects of wildland fire on soil environment and biological changes, the available literature was identified from the Web of Science database, covering the period from 1998/1998/1999 (the year of the earliest publication in this field) to 2023. A bibliometric analysis was performed and the data were visually displayed for the number of publications, countries, authors, research institutions, and keywords representing research hotspots. Specifically, the effects of wildland fire on the soil environment, on soil microorganisms and on soil fauna were analyzed. The results show that the annual number of publications describing effects of wildland fire on the soil environment and on soil microorganisms are increasing over time, while those describing effects on soil fauna are fewer and their number remains constant. The largest number of papers originate from the United States, with the United States Department of Agriculture as the research institution with the largest output. The three authors with the largest number of publications are Stefan H. Doerr, Manuel Esteban Lucas-Borja and Jan Jacob Keizer. The research hotspots, as identified by keywords, are highly concentrated on wildfire, fire, organic matter, and biodiversity, amongst others. This study comprehensively analyzes the current situation of the research on the effects of wildland fire on changes in the soil environment and organisms, and provides reference for relevant scientific researchers in this trend and future research hotspots.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"35 S145","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141003620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the potential effects of climate change on forest fire behavior and the resulting release of combustion products is critical for effective mitigation strategies in Greece. This study utilizes data from the MAGICC 2.4 (Model for the Assessment of Greenhouse Gas-Induced Climate Change) climate model and the SCENGEN 2.4 (SCENarioGENerator) database to assess these impacts. By manipulating various model parameters such as climate sensitivity, scenario, time period, and global climate models (GCMs) within the SCENGEN 2.4 database, we analyzed climatic trends affecting forest fire generation and evolution. The results reveal complex and nuanced findings, indicating a need for further investigation. Case studies are conducted using the FARSITE 4 (Fire Area Simulator) model, incorporating meteorological changes derived from climate trends. Simulations of two fires in East Attica, accounting for different fuel and meteorological conditions, demonstrate an increase in the rate of combustion product release. This underscores the influence of changing meteorological parameters on forest fire dynamics and highlights the importance of proactive measures to mitigate future risks. Our findings emphasize the urgency of addressing climate change impacts on wildfire behavior to safeguard environmental and public health in Greece.
{"title":"Effect of Climate Evolution on the Dynamics of the Wildfires in Greece","authors":"Nikolaos Iliopoulos, Iason Aliferis, Michail Chalaris","doi":"10.3390/fire7050162","DOIUrl":"https://doi.org/10.3390/fire7050162","url":null,"abstract":"Understanding the potential effects of climate change on forest fire behavior and the resulting release of combustion products is critical for effective mitigation strategies in Greece. This study utilizes data from the MAGICC 2.4 (Model for the Assessment of Greenhouse Gas-Induced Climate Change) climate model and the SCENGEN 2.4 (SCENarioGENerator) database to assess these impacts. By manipulating various model parameters such as climate sensitivity, scenario, time period, and global climate models (GCMs) within the SCENGEN 2.4 database, we analyzed climatic trends affecting forest fire generation and evolution. The results reveal complex and nuanced findings, indicating a need for further investigation. Case studies are conducted using the FARSITE 4 (Fire Area Simulator) model, incorporating meteorological changes derived from climate trends. Simulations of two fires in East Attica, accounting for different fuel and meteorological conditions, demonstrate an increase in the rate of combustion product release. This underscores the influence of changing meteorological parameters on forest fire dynamics and highlights the importance of proactive measures to mitigate future risks. Our findings emphasize the urgency of addressing climate change impacts on wildfire behavior to safeguard environmental and public health in Greece.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"360 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141006681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review paper investigates the landscape of wildfire-related studies with a focus on infrastructure and evacuations across Canadian provinces, revealing a predominant focus on Alberta, particularly after the 2016 Fort McMurray wildfire. The aftermath of this event has heightened attention to the unique challenges faced during evacuations, emphasizing the urgent need for heightened awareness and preparedness, especially in the vulnerable northern communities of Alberta. Studies beyond Alberta contribute to understanding Canadian wildfire dynamics. However, a noticeable research gap in British Columbia raises concerns about research prioritization and resource allocation despite heightened wildfire activity. The fact that some provinces are contributing less than 4.2%, such as Quebec, Saskatchewan, Ontario, Northwest Territories, Yukon, and the Prairies, might be attributed to regional variations influenced by historical wildfire frequency and population density. Thematic analysis categorizing studies into “community support/resilience”, “evacuation efficiency”, and “infrastructure protection/raising awareness” provides nuanced insights. The dominance of the “community support/resilience” category, comprising over 40% of studies, signifies a societal shift towards proactive community engagement. Balanced representation in the “evacuation efficiency” and “infrastructure protection/raising awareness” categories, each contributing over 29%, reflects a collective effort to glean lessons from past evacuations and enhance community preparedness. Temporal trends and thematic analyses spotlight a commitment to continuous improvement, adaptability to emerging challenges, and a growing recognition of the multifaceted aspects of wildfire management. The evolving emphasis on community involvement, responsiveness to changing evacuation dynamics, and heightened awareness of infrastructure protection underscores the proactive stance of the research community, providing insights for shaping future research priorities, policy frameworks, and community resilience strategies in the face of evolving wildfire threats in Canada.
{"title":"A Focused Review on Wildfire Evacuation and Infrastructure Resilience in Canada: Trends and Insights (2013–2023)","authors":"Nima Karimi","doi":"10.3390/fire7050161","DOIUrl":"https://doi.org/10.3390/fire7050161","url":null,"abstract":"This review paper investigates the landscape of wildfire-related studies with a focus on infrastructure and evacuations across Canadian provinces, revealing a predominant focus on Alberta, particularly after the 2016 Fort McMurray wildfire. The aftermath of this event has heightened attention to the unique challenges faced during evacuations, emphasizing the urgent need for heightened awareness and preparedness, especially in the vulnerable northern communities of Alberta. Studies beyond Alberta contribute to understanding Canadian wildfire dynamics. However, a noticeable research gap in British Columbia raises concerns about research prioritization and resource allocation despite heightened wildfire activity. The fact that some provinces are contributing less than 4.2%, such as Quebec, Saskatchewan, Ontario, Northwest Territories, Yukon, and the Prairies, might be attributed to regional variations influenced by historical wildfire frequency and population density. Thematic analysis categorizing studies into “community support/resilience”, “evacuation efficiency”, and “infrastructure protection/raising awareness” provides nuanced insights. The dominance of the “community support/resilience” category, comprising over 40% of studies, signifies a societal shift towards proactive community engagement. Balanced representation in the “evacuation efficiency” and “infrastructure protection/raising awareness” categories, each contributing over 29%, reflects a collective effort to glean lessons from past evacuations and enhance community preparedness. Temporal trends and thematic analyses spotlight a commitment to continuous improvement, adaptability to emerging challenges, and a growing recognition of the multifaceted aspects of wildfire management. The evolving emphasis on community involvement, responsiveness to changing evacuation dynamics, and heightened awareness of infrastructure protection underscores the proactive stance of the research community, providing insights for shaping future research priorities, policy frameworks, and community resilience strategies in the face of evolving wildfire threats in Canada.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"25 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141008274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rosa M. Cadenas, Fernando Castedo‐Dorado, Luz Valbuena
Parts of the Cantabrian Mountains (N Spain) have been colonized by woody species in the past six or seven decades as a result of a decline in livestock activity and changes in the fire regime. Various management strategies have been used to prevent the expansion of shrubs and recover grassland ecosystems for grazing activities. However, it is not clear how different vegetation treatments affect soils, which are crucial in supporting life and providing nutrients in these ecosystems. The aim of the present study was to compare the dynamics of the physicochemical and biological soil properties after two vegetation treatments: prescribed burning and shredding. Samples were obtained from plots representing alkaline and acidic soils dominated by gorse shrub (Genista hispanica subsp. occidentalis) and heath (Calluna vulgaris) plant communities, respectively. The soil samples were collected immediately before and after the treatments and one and two years later. The level of available P varied depending on the soil pH, and it only increased after the treatments in the acidic soils in the heathland community. The total N and available P concentrations were higher after the prescribed burning, and the enzymatic activity tended to be higher after the shredding treatment. Despite the significant effects on some soil variables, prescribed burning and shredding did not have important short- and medium-term effects on the chemical and soil enzymatic properties. These treatments can therefore be considered sustainable vegetation management tools, at least in the medium term.
在过去六七十年间,由于牲畜活动减少和火灾机制的变化,坎塔布里亚山脉(西班牙北部)的部分地区已经被木本物种所占据。为了防止灌木蔓延,恢复草地生态系统以适应放牧活动,人们采取了各种管理策略。然而,目前还不清楚不同的植被处理方法对土壤有什么影响,而土壤对这些生态系统中的生命维持和养分提供至关重要。本研究的目的是比较两种植被处理方法(焚烧和粉碎)后土壤理化和生物特性的动态变化。样本取自分别以戈尔斯灌木(Genista hispanica subsp. occidentalis)和石楠(Calluna vulgaris)植物群落为主的碱性土壤和酸性土壤地块。土壤样本是在处理前后以及一年和两年后采集的。土壤 pH 值不同,可利用钾的含量也不同,只有在对石楠群落的酸性土壤进行处理后,可利用钾的含量才会增加。规定焚烧后,总氮和可利用钾的浓度较高,切碎处理后酶活性往往较高。尽管规定燃烧和切碎处理对某些土壤变量有重大影响,但对化学和土壤酶特性并没有重要的短期和中期影响。因此,至少在中期内,这些处理方法可被视为可持续的植被管理工具。
{"title":"Medium-Term Comparative Effects of Prescribed Burning and Mechanical Shredding on Soil Characteristics in Heathland and Shrubland Habitats: Insights from a Protected Natural Area","authors":"Rosa M. Cadenas, Fernando Castedo‐Dorado, Luz Valbuena","doi":"10.3390/fire7050160","DOIUrl":"https://doi.org/10.3390/fire7050160","url":null,"abstract":"Parts of the Cantabrian Mountains (N Spain) have been colonized by woody species in the past six or seven decades as a result of a decline in livestock activity and changes in the fire regime. Various management strategies have been used to prevent the expansion of shrubs and recover grassland ecosystems for grazing activities. However, it is not clear how different vegetation treatments affect soils, which are crucial in supporting life and providing nutrients in these ecosystems. The aim of the present study was to compare the dynamics of the physicochemical and biological soil properties after two vegetation treatments: prescribed burning and shredding. Samples were obtained from plots representing alkaline and acidic soils dominated by gorse shrub (Genista hispanica subsp. occidentalis) and heath (Calluna vulgaris) plant communities, respectively. The soil samples were collected immediately before and after the treatments and one and two years later. The level of available P varied depending on the soil pH, and it only increased after the treatments in the acidic soils in the heathland community. The total N and available P concentrations were higher after the prescribed burning, and the enzymatic activity tended to be higher after the shredding treatment. Despite the significant effects on some soil variables, prescribed burning and shredding did not have important short- and medium-term effects on the chemical and soil enzymatic properties. These treatments can therefore be considered sustainable vegetation management tools, at least in the medium term.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"325 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141012015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The erosion of igneous rocks affects the structural and spontaneous combustion characteristics of coal. A series of tests were conducted, including programmed heating, thermogravimetric analysis, FT-IR spectroscopy, low-temperature nitrogen adsorption, and pressed mercury experiments on samples from primary coal and coal eroded by igneous rocks from the Tashan Mine and Xiaonan Mine within the same coal seam. Based on these experiments, we analyzed various properties of coal, such as the oxidation characteristics, spontaneous combustion limit, active functional group content, chemical structure, and pore structure, from both macroscopic and microscopic perspectives. The results indicated significant trends after the erosion of igneous rocks: (1) there were increases in the oxygen consumption rate, as well as the CO and CO2 release rates; (2) the upper limit of air leakage intensity increased, the minimum thickness of floating coal decreased, and the lower limit of oxygen volume fraction decreased; (3) there was a decrease in the activation energy required for coal ignition; (4) there was a decrease in the active functional group content while improving the structural stability; and (5) there were the alterations in the pore structure of coal. These promoted the oxidation reactions between oxygen and the active groups within the coal matrix, increasing the propensity for spontaneous combustion, particularly in the igneous rocks with low oxidation activity.
火成岩的侵蚀会影响煤的结构和自燃特性。对同一煤层内的塔山煤矿和小南煤矿的原生煤和火成岩侵蚀煤样品进行了一系列试验,包括程序加热、热重分析、傅立叶变换红外光谱、低温氮吸附和压汞实验。在这些实验的基础上,我们从宏观和微观角度分析了煤的各种特性,如氧化特性、自燃极限、活性官能团含量、化学结构和孔隙结构等。结果表明,火成岩侵蚀后煤的氧化特性呈明显变化趋势:(1) 耗氧率、CO 和 CO2 释放率增加;(2) 漏气强度上限增加,浮煤最小厚度减小,氧体积分数下限减小;(3) 煤着火所需的活化能减小;(4) 活性官能团含量减小,结构稳定性提高;(5) 煤的孔隙结构发生变化。这些都促进了煤基质中氧和活性基团之间的氧化反应,增加了自燃倾向,特别是在氧化活性较低的火成岩中。
{"title":"Exploring Spontaneous Combustion Characteristics and Structural Disparities of Coal Induced by Igneous Rock Erosion","authors":"Mingqian Zhang, Zongxiang Li, Zhifeng Chen, Lun Gao, Yun Qi, Haifeng Hu","doi":"10.3390/fire7050159","DOIUrl":"https://doi.org/10.3390/fire7050159","url":null,"abstract":"The erosion of igneous rocks affects the structural and spontaneous combustion characteristics of coal. A series of tests were conducted, including programmed heating, thermogravimetric analysis, FT-IR spectroscopy, low-temperature nitrogen adsorption, and pressed mercury experiments on samples from primary coal and coal eroded by igneous rocks from the Tashan Mine and Xiaonan Mine within the same coal seam. Based on these experiments, we analyzed various properties of coal, such as the oxidation characteristics, spontaneous combustion limit, active functional group content, chemical structure, and pore structure, from both macroscopic and microscopic perspectives. The results indicated significant trends after the erosion of igneous rocks: (1) there were increases in the oxygen consumption rate, as well as the CO and CO2 release rates; (2) the upper limit of air leakage intensity increased, the minimum thickness of floating coal decreased, and the lower limit of oxygen volume fraction decreased; (3) there was a decrease in the activation energy required for coal ignition; (4) there was a decrease in the active functional group content while improving the structural stability; and (5) there were the alterations in the pore structure of coal. These promoted the oxidation reactions between oxygen and the active groups within the coal matrix, increasing the propensity for spontaneous combustion, particularly in the igneous rocks with low oxidation activity.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"115 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141013477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiwei Dong, Yanfeng Li, Jun-mei Li, Fei Xie, Desheng Xu, Z. Su
In this research, the influence of confined space size on the temperature distribution characteristics of internal window plumes from well-ventilated compartment fires was studied. Theoretical analysis was firstly used to establish a mathematical model for the smoke after ejecting from the window in the space. The study considered fire heat release rate and vertical height as dependent variables. Numerical simulations and experimental methods were carried out to study the temperature variations. A critical distance L2 was obtained. Results show that when the space D between the vertical retaining wall and the building façade is greater than L2, the variation of D has little influence on radial temperature. Once D is less than L2, the radial temperature distribution inside the confined space will tend to be consistent, and the temperature in the confined space sharply increases as D decreases. In addition, a dimensionless model was derived to quantify the relationship between temperature rise and vertical height. The experimental and numerical simulation results were processed, which are in good agreement with the model. The study can provide a framework for managing building safety.
在这项研究中,研究了密闭空间大小对通风良好的车厢火灾中内窗烟雾温度分布特征的影响。首先利用理论分析建立了烟雾从窗口喷出后在空间中的数学模型。研究将火灾热释放率和垂直高度作为因变量。通过数值模拟和实验方法研究了温度变化。得出了临界距离 L2。结果表明,当垂直挡土墙与建筑物外墙之间的空间 D 大于 L2 时,D 的变化对径向温度的影响很小。一旦 D 小于 L2,密闭空间内的径向温度分布将趋于一致,密闭空间内的温度随着 D 的减小而急剧上升。此外,还推导出一个无量纲模型来量化温升与垂直高度之间的关系。实验和数值模拟结果均与模型吻合。该研究可为建筑安全管理提供一个框架。
{"title":"The Influence of Confined Space Size on the Temperature Distribution Characteristics of Internal Window Plume from Well-Ventilated Compartment Fires","authors":"Qiwei Dong, Yanfeng Li, Jun-mei Li, Fei Xie, Desheng Xu, Z. Su","doi":"10.3390/fire7050158","DOIUrl":"https://doi.org/10.3390/fire7050158","url":null,"abstract":"In this research, the influence of confined space size on the temperature distribution characteristics of internal window plumes from well-ventilated compartment fires was studied. Theoretical analysis was firstly used to establish a mathematical model for the smoke after ejecting from the window in the space. The study considered fire heat release rate and vertical height as dependent variables. Numerical simulations and experimental methods were carried out to study the temperature variations. A critical distance L2 was obtained. Results show that when the space D between the vertical retaining wall and the building façade is greater than L2, the variation of D has little influence on radial temperature. Once D is less than L2, the radial temperature distribution inside the confined space will tend to be consistent, and the temperature in the confined space sharply increases as D decreases. In addition, a dimensionless model was derived to quantify the relationship between temperature rise and vertical height. The experimental and numerical simulation results were processed, which are in good agreement with the model. The study can provide a framework for managing building safety.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"121 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141050486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Verble, R. Granberg, Seth Pearson, Charlene Rogers, Roman Watson
Wildland fire dispatchers play a key role in wildland fire management and response organization; however, to date, wildland fire studies have largely focused on the physical hazards and, to a lesser extent, mental health hazards of wildland firefighting operational personnel, and dispatcher studies have primarily focused on 911 and police dispatchers. Studies of other dispatchers have provided some limited insight into potential strains impacting this workforce, including work-related fatigue, burnout, and traumatic exposure. However, the specific job hazards that are faced by wildland fire dispatchers are poorly understood. In 2023, we conducted a cross-sectional survey of 510 wildland fire dispatchers with questions about their occupational health, general health, and well-being. We used validated screening instruments to measure the rates of anxiety, depression, PTSD, and suicidal thoughts and ideation. Here, we also present the results of mental health and trauma exposure questions that were asked as part of a larger survey. We found that demographic factors were significant indicators of anxiety, depression, and binge/restrictive eating. Our data indicate that rates of anxiety, depression, PTSD, and suicidal thoughts and ideation are significantly higher for both the wildland fire dispatching workforce and other emergency responder populations than those of the general United States population.
{"title":"Mental Health and Traumatic Occupational Exposure in Wildland Fire Dispatchers","authors":"R. Verble, R. Granberg, Seth Pearson, Charlene Rogers, Roman Watson","doi":"10.3390/fire7050157","DOIUrl":"https://doi.org/10.3390/fire7050157","url":null,"abstract":"Wildland fire dispatchers play a key role in wildland fire management and response organization; however, to date, wildland fire studies have largely focused on the physical hazards and, to a lesser extent, mental health hazards of wildland firefighting operational personnel, and dispatcher studies have primarily focused on 911 and police dispatchers. Studies of other dispatchers have provided some limited insight into potential strains impacting this workforce, including work-related fatigue, burnout, and traumatic exposure. However, the specific job hazards that are faced by wildland fire dispatchers are poorly understood. In 2023, we conducted a cross-sectional survey of 510 wildland fire dispatchers with questions about their occupational health, general health, and well-being. We used validated screening instruments to measure the rates of anxiety, depression, PTSD, and suicidal thoughts and ideation. Here, we also present the results of mental health and trauma exposure questions that were asked as part of a larger survey. We found that demographic factors were significant indicators of anxiety, depression, and binge/restrictive eating. Our data indicate that rates of anxiety, depression, PTSD, and suicidal thoughts and ideation are significantly higher for both the wildland fire dispatching workforce and other emergency responder populations than those of the general United States population.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"10 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141023528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}