首页 > 最新文献

Extremophiles最新文献

英文 中文
Genomic signatures of cold adaptation in the family Colwelliaceae. 高良姜科植物适应寒冷的基因组特征。
IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-23 DOI: 10.1007/s00792-024-01356-0
Anais Gentilhomme, Charles Sweet, Gwenn M M Hennon, R Eric Collins

Psychrophily is a phenotype describing microbial growth at low temperatures; elucidating the biomolecular and genomic adaptations necessary for survival in the cold is important for understanding life in extreme environments on Earth and in outer space. We used comparative genomics and temperature growth experiments of bacteria from the family Colwelliaceae to identify genomic factors correlated with optimal growth temperature (OGT). A phylogenomic analysis of 67 public and 39 newly sequenced strains revealed three main clades of Colwelliaceae. Temperature growth experiments revealed significant differences in mean OGT by clade, wherein strains of Colwelliaceae had similar growth rates at -1 °C but varied in their ability to tolerate 17 °C. Using amino acid compositional indices, a multiple linear regression model was constructed to predict the OGT of these organisms (RMSE 5.2 °C). Investigation of Colwelliaceae functional genes revealed a putative cold-adaptive gene cassette that was present in psychrophilic strains but absent in a closely related strain with a significantly higher OGT. This study also presents genomic evidence suggesting that the clade of Colwelliaceae containing Colwellia hornerae should be investigated as a new genus. These contributions offer key insights into the psychrophily phenotype and its underlying genomic foundation in the family Colwelliaceae.

心理营养是一种描述微生物在低温下生长的表型;阐明在低温下生存所需的生物分子和基因组适应性对于了解地球和外太空极端环境中的生命非常重要。我们利用比较基因组学和高良姜科细菌的温度生长实验来确定与最适生长温度(OGT)相关的基因组因素。对 67 个公开菌株和 39 个新测序菌株进行的系统进化分析表明,高良姜科细菌有三个主要支系。温度生长实验显示,各支系的平均最适生长温度(OGT)存在显著差异。利用氨基酸组成指数,构建了一个多线性回归模型来预测这些生物的 OGT(RMSE 5.2 °C)。对高韦氏菌功能基因的研究发现了一个假定的冷适应基因盒,该基因盒存在于精神嗜性菌株中,但不存在于OGT显著较高的近缘菌株中。本研究还提供了基因组证据,表明包含角柱香(Colwellia hornerae)的高良姜科(Colwelliaceae)支系应作为一个新属进行研究。这些贡献为研究精神嗜性表型及其在高良姜科中的潜在基因组基础提供了重要见解。
{"title":"Genomic signatures of cold adaptation in the family Colwelliaceae.","authors":"Anais Gentilhomme, Charles Sweet, Gwenn M M Hennon, R Eric Collins","doi":"10.1007/s00792-024-01356-0","DOIUrl":"10.1007/s00792-024-01356-0","url":null,"abstract":"<p><p>Psychrophily is a phenotype describing microbial growth at low temperatures; elucidating the biomolecular and genomic adaptations necessary for survival in the cold is important for understanding life in extreme environments on Earth and in outer space. We used comparative genomics and temperature growth experiments of bacteria from the family Colwelliaceae to identify genomic factors correlated with optimal growth temperature (OGT). A phylogenomic analysis of 67 public and 39 newly sequenced strains revealed three main clades of Colwelliaceae. Temperature growth experiments revealed significant differences in mean OGT by clade, wherein strains of Colwelliaceae had similar growth rates at -1 °C but varied in their ability to tolerate 17 °C. Using amino acid compositional indices, a multiple linear regression model was constructed to predict the OGT of these organisms (RMSE 5.2 °C). Investigation of Colwelliaceae functional genes revealed a putative cold-adaptive gene cassette that was present in psychrophilic strains but absent in a closely related strain with a significantly higher OGT. This study also presents genomic evidence suggesting that the clade of Colwelliaceae containing Colwellia hornerae should be investigated as a new genus. These contributions offer key insights into the psychrophily phenotype and its underlying genomic foundation in the family Colwelliaceae.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Tet-on system for controllable gene expression in the rock-inhabiting black fungus Knufia petricola. 岩石栖息黑真菌 Knufia petricola 中可控基因表达的 Tet-on 系统。
IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-06 DOI: 10.1007/s00792-024-01354-2
Eileen A Erdmann, Antonia K M Brandhorst, Anna A Gorbushina, Julia Schumacher

Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis (melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes.

黑木耳(Knufia petricola)是一种黑色真菌,在极端和低营养环境中的暴露在阳光下的表面上生长。作为生态学上重要的异养生物和人造表面的生物膜形成者,黑木耳是生物退化生物中抵抗力最强的一类。由于 K. petricola 在轴向培养中的生长速度适中,且有转化和 CRISPR/Cas9 介导的基因组编辑方案,因此可用于研究嗜极黑真菌和耐极黑真菌共同的形态生理适应性。在这项研究中,我们采用了源自细菌的四环素(TET)依赖性启动子(Tet-on)系统,以实现 K. petricola 的可控基因表达。通过使用 GFP 荧光、色素合成(黑色素和类胡萝卜素)和恢复的尿嘧啶原营养作为报告物,研究了 TET 调控构建体的功能性,即剂量依赖性诱导性。新生成的克隆载体含有Tet-on构建体,K. petricola基因组中用于颜色选择或中性插入表达构建体的验证位点完善了反向遗传学工具箱。通过使用 2A 自裂解肽,可按需从不同基因组位点或从单一构建体中表达一个或多个基因,例如,用于定位 K. petricola 细胞中的蛋白质和蛋白质复合物,或将 K. petricola 作为表达异源基因的宿主。
{"title":"The Tet-on system for controllable gene expression in the rock-inhabiting black fungus Knufia petricola.","authors":"Eileen A Erdmann, Antonia K M Brandhorst, Anna A Gorbushina, Julia Schumacher","doi":"10.1007/s00792-024-01354-2","DOIUrl":"10.1007/s00792-024-01354-2","url":null,"abstract":"<p><p>Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis (melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303440/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of cyanobacterial communities in gypsum outcrops: insights from sites in Israel and Poland. 石膏露头蓝藻群落的比较分析:以色列和波兰遗址的启示。
IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-30 DOI: 10.1007/s00792-024-01352-4
Kateřina Němečková, Jan Mareš, Filip Košek, Adam Culka, Jan Dudák, Veronika Tymlová, Jan Žemlička, Jan Jehlička

Today, the biodiversity of endolithic microbial colonisations are only partly understood. In this study, we used a combination of molecular community metabarcoding using the 16S rRNA gene, light microscopy, CT-scan analysis, and Raman spectroscopy to describe gypsum endolithic communities in 2 sites-southern Poland and northern Israel. The obtained results have shown that despite different geographical areas, climatic conditions, and also physical features of colonized gypsum outcrops, both of these sites have remarkably similar microbial and pigment compositions. Cyanobacteria dominate both of the gypsum habitats, followed by Chloroflexi and Pseudomonadota. Among cyanobacteria, Thermosynechococcaceae were more abundant in Israel while Chroococcidiopsidaceae in Poland. Interestingly, no Gloeobacteraceae sequences have been found in Poland, only in Israel. Some of the obtained 16S rRNA gene sequences of cyanobacteria matched previously detected sequences from endolithic communities in various substrates and geographical regions, supporting the hypothesis of global metacommunity, but more data are still needed. Using Raman spectroscopy, cyanobacterial UV-screening pigments-scytonemin and gloeocapsin have been detected alongside carotenoids, chlorophyll a and melanin. These pigments can serve as potential biomarkers for basic taxonomic identification of cyanobacteria. Overall, this study provides more insight into the diversity of cyanobacterial endolithic colonisations in gypsum across different areas.

如今,人们对内层岩石微生物定殖的生物多样性仅有部分了解。在这项研究中,我们结合使用 16S rRNA 基因的分子群落代谢编码、光学显微镜、CT 扫描分析和拉曼光谱来描述两个地点--波兰南部和以色列北部--的石膏内岩群落。研究结果表明,尽管地理区域、气候条件以及石膏露头的物理特征不同,但这两个地点的微生物和色素组成非常相似。蓝藻在这两种石膏生境中都占主导地位,其次是绿藻和假单胞菌。在蓝细菌中,以色列的蓝细菌中热链球菌科(Thermosynechococcaceae)较多,而波兰的蓝细菌中则主要是链球菌科(Chroococcidiopsidaceae)。有趣的是,波兰没有发现 Gloeobacteraceae 的序列,只有以色列有。所获得的一些蓝藻 16S rRNA 基因序列与之前从不同基质和地理区域的内生石器群落中检测到的序列相吻合,支持了全球元群落的假说,但仍需要更多的数据。利用拉曼光谱,除了类胡萝卜素、叶绿素 a 和黑色素之外,还检测到了蓝藻的紫外线筛选色素--细胞色素和球囊色素。这些色素可作为潜在的生物标记,用于蓝藻的基本分类鉴定。总之,这项研究为了解不同地区石膏中蓝藻内生菌落的多样性提供了更多的信息。
{"title":"Comparative analysis of cyanobacterial communities in gypsum outcrops: insights from sites in Israel and Poland.","authors":"Kateřina Němečková, Jan Mareš, Filip Košek, Adam Culka, Jan Dudák, Veronika Tymlová, Jan Žemlička, Jan Jehlička","doi":"10.1007/s00792-024-01352-4","DOIUrl":"10.1007/s00792-024-01352-4","url":null,"abstract":"<p><p>Today, the biodiversity of endolithic microbial colonisations are only partly understood. In this study, we used a combination of molecular community metabarcoding using the 16S rRNA gene, light microscopy, CT-scan analysis, and Raman spectroscopy to describe gypsum endolithic communities in 2 sites-southern Poland and northern Israel. The obtained results have shown that despite different geographical areas, climatic conditions, and also physical features of colonized gypsum outcrops, both of these sites have remarkably similar microbial and pigment compositions. Cyanobacteria dominate both of the gypsum habitats, followed by Chloroflexi and Pseudomonadota. Among cyanobacteria, Thermosynechococcaceae were more abundant in Israel while Chroococcidiopsidaceae in Poland. Interestingly, no Gloeobacteraceae sequences have been found in Poland, only in Israel. Some of the obtained 16S rRNA gene sequences of cyanobacteria matched previously detected sequences from endolithic communities in various substrates and geographical regions, supporting the hypothesis of global metacommunity, but more data are still needed. Using Raman spectroscopy, cyanobacterial UV-screening pigments-scytonemin and gloeocapsin have been detected alongside carotenoids, chlorophyll a and melanin. These pigments can serve as potential biomarkers for basic taxonomic identification of cyanobacteria. Overall, this study provides more insight into the diversity of cyanobacterial endolithic colonisations in gypsum across different areas.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a defined medium for the heterotrophic cultivation of Metallosphaera sedula. 为沉积金属藻的异养培养开发限定培养基。
IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-26 DOI: 10.1007/s00792-024-01348-0
Viktor Laurin Sedlmayr, Maximilian Luger, Ernst Pittenauer, Martina Marchetti-Deschmann, Laura Kronlachner, Andreas Limbeck, Philipp Raunjak, Julian Quehenberger, Oliver Spadiut

The heterotrophic cultivation of extremophilic archaea still heavily relies on complex media. However, complex media are associated with unknown composition, high batch-to-batch variability, potential inhibiting and interfering components, as well as regulatory challenges, hampering advancements of extremophilic archaea in genetic engineering and bioprocessing. For Metallosphaera sedula, a widely studied organism for biomining and bioremediation and a potential production host for archaeal ether lipids, efforts to find defined cultivation conditions have still been unsuccessful. This study describes the development of a novel chemically defined growth medium for M. sedula. Initial experiments with commonly used complex casein-derived media sources deciphered Casamino Acids as the most suitable foundation for further development. The imitation of the amino acid composition of Casamino Acids in basal Brock medium delivered the first chemically defined medium. We could further simplify the medium to 5 amino acids based on the respective specific substrate uptake rates. This first defined cultivation medium for M. sedula allows advanced genetic engineering and more controlled bioprocess development approaches for this highly interesting archaeon.

嗜极古菌的异养培养仍然严重依赖复杂培养基。然而,复杂培养基存在成分未知、批次间差异大、潜在的抑制和干扰成分以及监管难题等问题,阻碍了嗜极古细菌在基因工程和生物加工领域的发展。Metallosphaera sedula 是一种在生物采矿和生物修复方面被广泛研究的生物,也是嗜极古细菌醚脂的潜在生产宿主。本研究介绍了一种新型化学定义的沉降藻生长培养基的开发情况。通过对常用的复杂酪蛋白衍生培养基进行初步实验,发现卡萨氨基酸是最适合进一步开发的基础。在基础 Brock 培养基中模仿 Casamino Acids 的氨基酸组成后,我们得到了第一种化学定义培养基。我们根据各自的特定底物吸收率,将培养基进一步简化为 5 种氨基酸。这种首次定义的 M. sedula 培养基允许对这种非常有趣的古生物进行先进的基因工程和更可控的生物工艺开发。
{"title":"Development of a defined medium for the heterotrophic cultivation of Metallosphaera sedula.","authors":"Viktor Laurin Sedlmayr, Maximilian Luger, Ernst Pittenauer, Martina Marchetti-Deschmann, Laura Kronlachner, Andreas Limbeck, Philipp Raunjak, Julian Quehenberger, Oliver Spadiut","doi":"10.1007/s00792-024-01348-0","DOIUrl":"10.1007/s00792-024-01348-0","url":null,"abstract":"<p><p>The heterotrophic cultivation of extremophilic archaea still heavily relies on complex media. However, complex media are associated with unknown composition, high batch-to-batch variability, potential inhibiting and interfering components, as well as regulatory challenges, hampering advancements of extremophilic archaea in genetic engineering and bioprocessing. For Metallosphaera sedula, a widely studied organism for biomining and bioremediation and a potential production host for archaeal ether lipids, efforts to find defined cultivation conditions have still been unsuccessful. This study describes the development of a novel chemically defined growth medium for M. sedula. Initial experiments with commonly used complex casein-derived media sources deciphered Casamino Acids as the most suitable foundation for further development. The imitation of the amino acid composition of Casamino Acids in basal Brock medium delivered the first chemically defined medium. We could further simplify the medium to 5 amino acids based on the respective specific substrate uptake rates. This first defined cultivation medium for M. sedula allows advanced genetic engineering and more controlled bioprocess development approaches for this highly interesting archaeon.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282131/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNase R vs. PNPase: selecting the best-suited exoribonuclease for environmental adaptation. RNase R 与 PNPase:选择最适合环境适应的外切核酸酶。
IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-25 DOI: 10.1007/s00792-024-01350-6
Theetha L Pavankumar

3' → 5' exoribonucleases play a critical role in many aspects of RNA metabolism. RNase R, PNPase, and RNase II are the major contributors to RNA processing, maturation, and quality control in bacteria. Bacteria don't seem to have dedicated RNA degradation machineries to process different classes of RNAs. Under different environmental and physiological conditions, their roles can be redundant and sometimes overlapping. Here, I discuss why PNPase and RNase R may have switched their physiological roles in some bacterial species to adapt to environmental conditions, despite being biochemically distinct exoribonucleases.

3' → 5' 外切核酸酶在 RNA 代谢的许多方面都发挥着关键作用。RNase R、PNPase 和 RNase II 是细菌中 RNA 处理、成熟和质量控制的主要贡献者。细菌似乎没有专门的 RNA 降解机制来处理不同类别的 RNA。在不同的环境和生理条件下,它们的作用可能是多余的,有时甚至是重叠的。在这里,我将讨论为什么尽管PNPase和RNase R是生化上不同的外切核酸酶,但在某些细菌物种中,它们的生理作用可能会发生转换,以适应环境条件。
{"title":"RNase R vs. PNPase: selecting the best-suited exoribonuclease for environmental adaptation.","authors":"Theetha L Pavankumar","doi":"10.1007/s00792-024-01350-6","DOIUrl":"10.1007/s00792-024-01350-6","url":null,"abstract":"<p><p>3' → 5' exoribonucleases play a critical role in many aspects of RNA metabolism. RNase R, PNPase, and RNase II are the major contributors to RNA processing, maturation, and quality control in bacteria. Bacteria don't seem to have dedicated RNA degradation machineries to process different classes of RNAs. Under different environmental and physiological conditions, their roles can be redundant and sometimes overlapping. Here, I discuss why PNPase and RNase R may have switched their physiological roles in some bacterial species to adapt to environmental conditions, despite being biochemically distinct exoribonucleases.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of temperature, chloride and perchlorate salt concentration on the metabolic activity of Deinococcus radiodurans. 温度、氯化物和高氯酸盐浓度对放射球菌代谢活动的影响。
IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-24 DOI: 10.1007/s00792-024-01351-5
Eftychia Symeonidou, Uffe Gråe Jørgensen, Morten Bo Madsen, Anders Priemé

The extremophile bacterium Deinococcus radiodurans is characterized by its ability to survive and sustain its activity at high levels of radiation and is considered an organism that might survive in extraterrestrial environments. In the present work, we studied the combined effects of temperature and chlorine-containing salts, with focus on perchlorate salts which have been detected at high concentrations in Martian regolith, on D. radiodurans activity (CO2 production rates) and viability after incubation in liquid cultures for up to 30 days. Reduced CO2 production capacity and viability was observed at high perchlorate concentrations (up to 10% w/v) during incubation at 0 or 25 °C. Both the metabolic activity and viability were reduced as the perchlorate and chloride salt concentration increased and temperature decreased, and an interactive effect of temperature and salt concentration on the metabolic activity was found. These results indicate the ability of D. radiodurans to remain metabolically active and survive in low temperature environments rich in perchlorate.

嗜极细菌辐射球菌(Deinococcus radiodurans)的特点是能够在高辐射水平下存活并维持其活性,因此被认为是一种可能在地外环境中存活的生物。在本研究中,我们研究了温度和含氯盐类(重点是在火星沉积岩中检测到的高浓度高氯酸盐)对放射球菌活性(二氧化碳产生率)和在液体培养物中培养长达 30 天后的存活率的综合影响。在 0 ℃ 或 25 ℃ 条件下培养期间,当高氯酸盐浓度(高达 10% w/v)较高时,可观察到 Diodurans 产生二氧化碳的能力和存活率降低。随着高氯酸盐和氯盐浓度的增加以及温度的降低,代谢活性和存活率都降低了,而且发现温度和盐浓度对代谢活性有交互影响。这些结果表明,D. radiodurans 能够在富含高氯酸盐的低温环境中保持代谢活性并存活下来。
{"title":"Effects of temperature, chloride and perchlorate salt concentration on the metabolic activity of Deinococcus radiodurans.","authors":"Eftychia Symeonidou, Uffe Gråe Jørgensen, Morten Bo Madsen, Anders Priemé","doi":"10.1007/s00792-024-01351-5","DOIUrl":"10.1007/s00792-024-01351-5","url":null,"abstract":"<p><p>The extremophile bacterium Deinococcus radiodurans is characterized by its ability to survive and sustain its activity at high levels of radiation and is considered an organism that might survive in extraterrestrial environments. In the present work, we studied the combined effects of temperature and chlorine-containing salts, with focus on perchlorate salts which have been detected at high concentrations in Martian regolith, on D. radiodurans activity (CO<sub>2</sub> production rates) and viability after incubation in liquid cultures for up to 30 days. Reduced CO<sub>2</sub> production capacity and viability was observed at high perchlorate concentrations (up to 10% w/v) during incubation at 0 or 25 °C. Both the metabolic activity and viability were reduced as the perchlorate and chloride salt concentration increased and temperature decreased, and an interactive effect of temperature and salt concentration on the metabolic activity was found. These results indicate the ability of D. radiodurans to remain metabolically active and survive in low temperature environments rich in perchlorate.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of carotenoids extracted from Haloferax larsenii NCIM 5678 isolated from Pachpadra salt lake, Rajasthan. 从拉贾斯坦邦 Pachpadra 盐湖分离的 Haloferax larsenii NCIM 5678 中提取的类胡萝卜素的特征。
IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-22 DOI: 10.1007/s00792-024-01353-3
Pardeep Sheokand, Santosh Kumar Tiwari

Carotenoids are a diverse group of pigments known for their broad range of biological functions and applications. This study delves into multifaceted potential of carotenoids extracted from Haloferax larsenii NCIM 5678 previously isolated from Pachpadra Salt Lake in Rajasthan, India. H. larsenii NCIM 5678 was able to grow up to OD600 1.77 ± 0.03 with carotenoid concentration, 3.3 ± 0.03 µg/ml. The spectrophotometric analysis of carotenoid extract indicated the presence of three-fingered peak (460, 490 and 520 nm) which is a characteristic feature of bacterioruberin and its derivatives. The bacterioruberin was purified using silica gel column chromatography and thin layer chromatography. The carotenoid extract showed 12.3 ± 0.09 mm zone of growth inhibition with a minimum inhibitory concentration 546 ng/ml against indicator strain, H. larsenii HA4. The percentage antioxidant activity of carotenoid was found to be 84% which was higher as compared to commercially available ascorbic acid (56.74%). Thus, carotenoid extract from H. larsenii NCIM 5678 possesses unique attributes with compelling evidence of antimicrobial and antioxidant potential for the development of novel pharmaceuticals and nutraceuticals.

类胡萝卜素是一类种类繁多的色素,以其广泛的生物功能和应用而闻名。本研究深入探讨了类胡萝卜素的多方面潜力,类胡萝卜素是从之前从印度拉贾斯坦邦 Pachpadra 盐湖分离出的 Haloferax larsenii NCIM 5678 中提取的。在类胡萝卜素浓度为 3.3 ± 0.03 µg/ml 时,H. larsenii NCIM 5678 能够生长到 OD600 1.77 ± 0.03。类胡萝卜素提取物的分光光度分析表明,存在三指峰(460、490 和 520 纳米),这是细菌奥曲肽及其衍生物的特征。使用硅胶柱色谱法和薄层色谱法纯化了细菌黄酮素。类胡萝卜素提取物对指示菌株 H. larsenii HA4 的生长抑制区为 12.3 ± 0.09 mm,最低抑制浓度为 546 ng/ml。类胡萝卜素的抗氧化活性为 84%,高于市售抗坏血酸(56.74%)。因此,从 H. larsenii NCIM 5678 中提取的类胡萝卜素具有独特的属性,其抗菌和抗氧化潜力令人信服,可用于新型药品和营养保健品的开发。
{"title":"Characterization of carotenoids extracted from Haloferax larsenii NCIM 5678 isolated from Pachpadra salt lake, Rajasthan.","authors":"Pardeep Sheokand, Santosh Kumar Tiwari","doi":"10.1007/s00792-024-01353-3","DOIUrl":"10.1007/s00792-024-01353-3","url":null,"abstract":"<p><p>Carotenoids are a diverse group of pigments known for their broad range of biological functions and applications. This study delves into multifaceted potential of carotenoids extracted from Haloferax larsenii NCIM 5678 previously isolated from Pachpadra Salt Lake in Rajasthan, India. H. larsenii NCIM 5678 was able to grow up to OD<sub>600</sub> 1.77 ± 0.03 with carotenoid concentration, 3.3 ± 0.03 µg/ml. The spectrophotometric analysis of carotenoid extract indicated the presence of three-fingered peak (460, 490 and 520 nm) which is a characteristic feature of bacterioruberin and its derivatives. The bacterioruberin was purified using silica gel column chromatography and thin layer chromatography. The carotenoid extract showed 12.3 ± 0.09 mm zone of growth inhibition with a minimum inhibitory concentration 546 ng/ml against indicator strain, H. larsenii HA4. The percentage antioxidant activity of carotenoid was found to be 84% which was higher as compared to commercially available ascorbic acid (56.74%). Thus, carotenoid extract from H. larsenii NCIM 5678 possesses unique attributes with compelling evidence of antimicrobial and antioxidant potential for the development of novel pharmaceuticals and nutraceuticals.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioenergetic characterization of hyperthermophilic archaean Methanocaldococcus sp. FS406-22. 超嗜热古菌 Methanocaldococcus sp. FS406-22 的生物能特征。
IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1007/s00792-024-01349-z
Addien C Wray, Autum R Downey, Andrea A Nodal, Katherine K Park, Drew Gorman-Lewis

Hyperthermophilic archaean Methanocaldococcus sp. FS406-22 (hereafter FS406) is a hydrogenotrophic methanogen isolated from a deep-sea hydrothermal vent. To better understand the energetic requirements of hydrogen oxidation under extreme conditions, the thermodynamic characterization of FS406 incubations is necessary and notably underexplored. In this work, we quantified the bioenergetics of FS406 incubations at a range of temperatures (65, 76, and 85 ℃) and hydrogen concentrations (1.1, 1.4, and 2.1 mm). The biomass yields (C-mol of biomass per mol of H2 consumed) ranged from 0.02 to 0.19. Growth rates ranged from 0.4 to 1.5 h-1. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from - 198 kJ/C-mol to - 1840 kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from - 4150 kJ/C-mol to - 36333 kJ/C-mol. FS406 growth rates were most comparable to hyperthermophilic methanogen Methanocaldococcus jannaschii. Maintenance energy calculations from the thermodynamic parameters of FS406 and previously determined heterotrophic methanogen data revealed that temperature is a primary determinant rather than an electron donor. This work provides new insights into the thermodynamic underpinnings of a hyperthermophilic hydrothermal vent methanogen and helps to better constrain the energetic requirements of life in extreme environments.

嗜热古菌 Methanocaldococcus sp.FS406-22(以下简称 FS406)是从深海热液喷口中分离出来的一种亲氢甲烷菌。为了更好地了解极端条件下氢氧化的能量需求,有必要对 FS406 培养过程进行热力学表征,但这方面的研究明显不足。在这项工作中,我们对一系列温度(65、76 和 85 ℃)和氢浓度(1.1、1.4 和 2.1 毫米)下 FS406 培养的生物能进行了量化。生物量产量(每摩尔氢消耗的 C 摩尔生物量)从 0.02 到 0.19 不等。生长速率从 0.4 到 1.5 h-1 不等。根据细胞生长的宏观化学方程式得出的培养吉布斯能介于 - 198 kJ/C-mol 到 - 1840 kJ/C-mol 之间。通过热量测量确定的培养焓介于 - 4150 kJ/C-mol 到 - 36333 kJ/C-mol 之间。FS406 的生长率与超嗜热甲烷菌 Methanocaldococcus jannaschii 的生长率最为接近。根据 FS406 的热力学参数和先前确定的异养甲烷菌数据进行的维持能计算显示,温度是主要的决定因素,而不是电子供体。这项工作为了解热液喷口超嗜热甲烷菌的热力学基础提供了新的视角,有助于更好地限制极端环境中生命的能量需求。
{"title":"Bioenergetic characterization of hyperthermophilic archaean Methanocaldococcus sp. FS406-22.","authors":"Addien C Wray, Autum R Downey, Andrea A Nodal, Katherine K Park, Drew Gorman-Lewis","doi":"10.1007/s00792-024-01349-z","DOIUrl":"10.1007/s00792-024-01349-z","url":null,"abstract":"<p><p>Hyperthermophilic archaean Methanocaldococcus sp. FS406-22 (hereafter FS406) is a hydrogenotrophic methanogen isolated from a deep-sea hydrothermal vent. To better understand the energetic requirements of hydrogen oxidation under extreme conditions, the thermodynamic characterization of FS406 incubations is necessary and notably underexplored. In this work, we quantified the bioenergetics of FS406 incubations at a range of temperatures (65, 76, and 85 ℃) and hydrogen concentrations (1.1, 1.4, and 2.1 mm). The biomass yields (C-mol of biomass per mol of H<sub>2</sub> consumed) ranged from 0.02 to 0.19. Growth rates ranged from 0.4 to 1.5 h<sup>-1</sup>. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from <math><mrow><mo>-</mo> <mn>198</mn></mrow> </math> kJ/C-mol to <math><mrow><mo>-</mo> <mn>1840</mn></mrow> </math> kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from <math><mrow><mo>-</mo> <mn>4150</mn></mrow> </math> kJ/C-mol to <math><mrow><mo>-</mo> <mn>36333</mn></mrow> </math> kJ/C-mol. FS406 growth rates were most comparable to hyperthermophilic methanogen Methanocaldococcus jannaschii. Maintenance energy calculations from the thermodynamic parameters of FS406 and previously determined heterotrophic methanogen data revealed that temperature is a primary determinant rather than an electron donor. This work provides new insights into the thermodynamic underpinnings of a hyperthermophilic hydrothermal vent methanogen and helps to better constrain the energetic requirements of life in extreme environments.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Untangling the adaptive strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1 under low temperature. 解开嗜热细菌 Anoxybacillus rupiensis TPH1 在低温下的适应策略。
IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-17 DOI: 10.1007/s00792-024-01346-2
Aditi Mishra, Sindhunath Chakraborty, Tameshwar Prasad Jaiswal, Samujjal Bhattacharjee, Shreya Kesarwani, Arun Kumar Mishra, Satya Shila Singh

The present study investigates the low temperature tolerance strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1, which grows optimally at 55 °C , by subjecting it to a temperature down-shift of 10 °C (45 °C) for 4 and 6 h followed by studying its growth, morphophysiological, molecular and proteomic responses. Results suggested that although TPH1 experienced increased growth inhibition, ROS production, protein oxidation and membrane disruption after 4 h of incubation at 45 °C yet maintained its DNA integrity and cellular structure through the increased expression of DNA damage repair and cell envelop synthesizing proteins and also progressively alleviated growth inhibition by 20% within two hours i.e., 6 h, by inducing the expression of antioxidative enzymes, production of unsaturated fatty acids, capsular and released exopolysaccharides and forming biofilm along with chemotaxis proteins. Conclusively, the adaptation of Anoxybacillus rupiensis TPH1 to lower temperature is mainly mediated by the synthesis of large numbers of defense proteins and exopolysaccharide rich biofilm formation.

本研究调查了嗜热细菌 Anoxybacillus rupiensis TPH1 的低温耐受策略,该细菌的最佳生长温度为 55 °C,研究方法是将其置于 10 °C(45 °C)的低温环境中 4 小时和 6 小时,然后研究其生长、形态生理学、分子和蛋白质组反应。结果表明,虽然 TPH1 在 45 ℃ 温育 4 小时后,生长抑制、ROS 生成、蛋白质氧化和膜破坏的情况增加,但通过增加 DNA 损伤修复和细胞包膜合成蛋白的表达,保持了其 DNA 的完整性和细胞结构,并通过诱导抗氧化酶的表达、不饱和脂肪酸的生成、胶囊和外多糖的释放、生物膜的形成以及趋化蛋白的表达,在两小时内(即 6 小时)将生长抑制逐步缓解了 20%。综上所述,Anoxybacillus rupiensis TPH1 对低温的适应主要是通过合成大量防御蛋白和形成富含外多糖的生物膜来实现的。
{"title":"Untangling the adaptive strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1 under low temperature.","authors":"Aditi Mishra, Sindhunath Chakraborty, Tameshwar Prasad Jaiswal, Samujjal Bhattacharjee, Shreya Kesarwani, Arun Kumar Mishra, Satya Shila Singh","doi":"10.1007/s00792-024-01346-2","DOIUrl":"10.1007/s00792-024-01346-2","url":null,"abstract":"<p><p>The present study investigates the low temperature tolerance strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1, which grows optimally at 55 °C , by subjecting it to a temperature down-shift of 10 °C (45 °C) for 4 and 6 h followed by studying its growth, morphophysiological, molecular and proteomic responses. Results suggested that although TPH1 experienced increased growth inhibition, ROS production, protein oxidation and membrane disruption after 4 h of incubation at 45 °C yet maintained its DNA integrity and cellular structure through the increased expression of DNA damage repair and cell envelop synthesizing proteins and also progressively alleviated growth inhibition by 20% within two hours i.e., 6 h, by inducing the expression of antioxidative enzymes, production of unsaturated fatty acids, capsular and released exopolysaccharides and forming biofilm along with chemotaxis proteins. Conclusively, the adaptation of Anoxybacillus rupiensis TPH1 to lower temperature is mainly mediated by the synthesis of large numbers of defense proteins and exopolysaccharide rich biofilm formation.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzymes and biosurfactants of industrial interest produced by culturable fungi present in sediments of Boeckella Lake, Hope Bay, north-east Antarctic Peninsula. 南极半岛东北部希望湾 Boeckella 湖沉积物中可培养真菌产生的具有工业价值的酶和生物表面活性剂。
IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-22 DOI: 10.1007/s00792-024-01345-3
Elisa Amorim Amâncio Teixeira, Láuren Machado Drumond de Souza, Rosemary Vieira, Juan Manuel Lirio, Silvia Herminda Coria, Peter Convey, Carlos Augusto Rosa, Luiz Henrique Rosa

This study characterized cultivable fungi present in sediments obtained from Boeckella Lake, Hope Bay, in the north-east of the Antarctic Peninsula, and evaluated their production of enzymes and biosurfactants of potential industrial interest. A total of 116 fungal isolates were obtained, which were classified into 16 genera within the phyla Ascomycota, Basidiomycota and Mortierellomycota, in rank. The most abundant genera of filamentous fungi included Pseudogymnoascus, Pseudeurotium and Antarctomyces; for yeasts, Thelebolales and Naganishia taxa were dominant. Overall, the lake sediments exhibited high fungal diversity and moderate richness and dominance. The enzymes esterase, cellulase and protease were the most abundantly produced by these fungi. Ramgea cf. ozimecii, Holtermanniella wattica, Leucosporidium creatinivorum, Leucosporidium sp., Mrakia blollopis, Naganishia sp. and Phenoliferia sp. displayed enzymatic index > 2. Fourteen isolates of filamentous fungi demonstrated an Emulsification Index 24% (EI24%) ≥ 50%; among them, three isolates of A. psychrotrophicus showed an EI24% > 80%. Boeckella Lake itself is in the process of drying out due to the impact of regional climate change, and may be lost completely in approaching decades, therefore hosts a threatened community of cultivable fungi that produce important biomolecules with potential application in biotechnological processes.

本研究对南极半岛东北部希望湾博克拉湖沉积物中的可培养真菌进行了特征描述,并评估了它们生产的酶和生物表面活性剂的潜在工业价值。共获得 116 个真菌分离物,按等级分为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和毛霉菌门(Mortierellomycota)中的 16 个属。丝状真菌中最多的属包括假丝酵母属(Pseudogymnoascus)、假丝酵母属(Pseudurotium)和南极酵母属(Antarctomyces);酵母菌中则以Thelebolales和Naganishia类群为主。总体而言,湖泊沉积物的真菌多样性较高,丰富度和优势度适中。这些真菌产生最多的酶是酯酶、纤维素酶和蛋白酶。Ramgea cf. ozimecii、Holtermanniella wattica、Leucosporidium creatinivorum、Leucosporidium sp.、Mrakia blollopis、Naganishia sp.和 Phenoliferia sp.的酶指数大于 2。14 个丝状真菌分离物的乳化指数为 24%(EI24%)≥50%;其中 3 个 A. psychrotrophicus 分离物的乳化指数大于 80%。由于区域气候变化的影响,博盖拉湖本身正处于干涸过程中,在未来几十年内可能会完全消失,因此,这里的可栽培真菌群落受到了威胁,这些真菌产生的重要生物大分子有可能应用于生物技术过程中。
{"title":"Enzymes and biosurfactants of industrial interest produced by culturable fungi present in sediments of Boeckella Lake, Hope Bay, north-east Antarctic Peninsula.","authors":"Elisa Amorim Amâncio Teixeira, Láuren Machado Drumond de Souza, Rosemary Vieira, Juan Manuel Lirio, Silvia Herminda Coria, Peter Convey, Carlos Augusto Rosa, Luiz Henrique Rosa","doi":"10.1007/s00792-024-01345-3","DOIUrl":"10.1007/s00792-024-01345-3","url":null,"abstract":"<p><p>This study characterized cultivable fungi present in sediments obtained from Boeckella Lake, Hope Bay, in the north-east of the Antarctic Peninsula, and evaluated their production of enzymes and biosurfactants of potential industrial interest. A total of 116 fungal isolates were obtained, which were classified into 16 genera within the phyla Ascomycota, Basidiomycota and Mortierellomycota, in rank. The most abundant genera of filamentous fungi included Pseudogymnoascus, Pseudeurotium and Antarctomyces; for yeasts, Thelebolales and Naganishia taxa were dominant. Overall, the lake sediments exhibited high fungal diversity and moderate richness and dominance. The enzymes esterase, cellulase and protease were the most abundantly produced by these fungi. Ramgea cf. ozimecii, Holtermanniella wattica, Leucosporidium creatinivorum, Leucosporidium sp., Mrakia blollopis, Naganishia sp. and Phenoliferia sp. displayed enzymatic index > 2. Fourteen isolates of filamentous fungi demonstrated an Emulsification Index 24% (EI<sub>24%</sub>) ≥ 50%; among them, three isolates of A. psychrotrophicus showed an EI<sub>24%</sub> > 80%. Boeckella Lake itself is in the process of drying out due to the impact of regional climate change, and may be lost completely in approaching decades, therefore hosts a threatened community of cultivable fungi that produce important biomolecules with potential application in biotechnological processes.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Extremophiles
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1