We have accidentally found that a thermophilic Geobacillus kaustophilus HTA426 is capable of degrading alkanes although it has no alkane oxygenating enzyme genes. Our experimental results revealed that a putative ribonucleotide reductase small subunit GkR2loxI (GK2771) gene encodes a novel heterodinuclear Mn-Fe alkane monooxygenase/hydroxylase. GkR2loxI protein can perform two-electron oxidations similar to homonuclear diiron bacterial multicomponent soluble methane monooxygenases. This finding not only answers a long-standing question about the substrate of the R2lox protein clade, but also expands our understanding of the vast diversity and new evolutionary lineage of the bacterial alkane monooxygenase/hydroxylase family.
{"title":"A novel alkane monooxygenase evolved from a broken piece of ribonucleotide reductase in Geobacillus kaustophilus HTA426 isolated from Mariana Trench.","authors":"Tanasap Nithimethachoke, Chanita Boonmak, Masaaki Morikawa","doi":"10.1007/s00792-024-01332-8","DOIUrl":"10.1007/s00792-024-01332-8","url":null,"abstract":"<p><p>We have accidentally found that a thermophilic Geobacillus kaustophilus HTA426 is capable of degrading alkanes although it has no alkane oxygenating enzyme genes. Our experimental results revealed that a putative ribonucleotide reductase small subunit GkR2loxI (GK2771) gene encodes a novel heterodinuclear Mn-Fe alkane monooxygenase/hydroxylase. GkR2loxI protein can perform two-electron oxidations similar to homonuclear diiron bacterial multicomponent soluble methane monooxygenases. This finding not only answers a long-standing question about the substrate of the R2lox protein clade, but also expands our understanding of the vast diversity and new evolutionary lineage of the bacterial alkane monooxygenase/hydroxylase family.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867098/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-11DOI: 10.1007/s00792-024-01334-6
Rubí A Duo Saito, Martín Moliné, Virginia de Garcia
Yeasts from cold environments have a wide range of strategies to prevent the negative effects of extreme conditions, including the production of metabolites of biotechnological interest. We investigated the growth profile and production of metabolites in yeast species isolated from cold environments. Thirty-eight strains were tested for their ability to grow at different temperatures (5-30 °C) and solute concentrations (3-12.5% NaCl and 50% glucose). All strains tested were able to grow at 5 °C, and 77% were able to grow with 5% NaCl at 18 °C. We were able to group strains based on different physicochemical/lifestyle profiles such as polyextremotolerant, osmotolerant, psychrotolerant, or psychrophilic. Five strains were selected to study biomass and metabolite production (glycerol, trehalose, ergosterol, and mycosporines). These analyses revealed that the accumulation pattern of trehalose and ergosterol was related to each lifestyle profile. Also, our findings would suggest that mycosporines does not have a role as an osmolyte. Non-conventional fermentative yeasts such as Phaffia tasmanica and Saccharomyces eubayanus may be of interest for trehalose production. This work contributes to the knowledge of non-conventional yeasts with biotechnological application from cold environments, including their growth profile, metabolites, and biomass production under different conditions.
{"title":"Physiological characterization of polyextremotolerant yeasts from cold environments of Patagonia.","authors":"Rubí A Duo Saito, Martín Moliné, Virginia de Garcia","doi":"10.1007/s00792-024-01334-6","DOIUrl":"10.1007/s00792-024-01334-6","url":null,"abstract":"<p><p>Yeasts from cold environments have a wide range of strategies to prevent the negative effects of extreme conditions, including the production of metabolites of biotechnological interest. We investigated the growth profile and production of metabolites in yeast species isolated from cold environments. Thirty-eight strains were tested for their ability to grow at different temperatures (5-30 °C) and solute concentrations (3-12.5% NaCl and 50% glucose). All strains tested were able to grow at 5 °C, and 77% were able to grow with 5% NaCl at 18 °C. We were able to group strains based on different physicochemical/lifestyle profiles such as polyextremotolerant, osmotolerant, psychrotolerant, or psychrophilic. Five strains were selected to study biomass and metabolite production (glycerol, trehalose, ergosterol, and mycosporines). These analyses revealed that the accumulation pattern of trehalose and ergosterol was related to each lifestyle profile. Also, our findings would suggest that mycosporines does not have a role as an osmolyte. Non-conventional fermentative yeasts such as Phaffia tasmanica and Saccharomyces eubayanus may be of interest for trehalose production. This work contributes to the knowledge of non-conventional yeasts with biotechnological application from cold environments, including their growth profile, metabolites, and biomass production under different conditions.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.1007/s00792-023-01331-1
Marco Moracci, Beatrice Cobucci-Ponzano, Giuseppe Perugino, Garabed Antranikian
On August 26, 2023, we bid farewell to Professor Mosè Rossi, a distinguished figure in the field of enzymology and a beloved member of the International Society for Extremophiles since 1993. Born in Castellabate (Salerno) in 1938, Professor Rossi embarked on a remarkable journey in the world of science.
{"title":"In Memoriam: Mosè Rossi (1938–2023)","authors":"Marco Moracci, Beatrice Cobucci-Ponzano, Giuseppe Perugino, Garabed Antranikian","doi":"10.1007/s00792-023-01331-1","DOIUrl":"https://doi.org/10.1007/s00792-023-01331-1","url":null,"abstract":"<p>On August 26, 2023, we bid farewell to Professor Mosè Rossi, a distinguished figure in the field of enzymology and a beloved member of the International Society for Extremophiles since 1993. Born in Castellabate (Salerno) in 1938, Professor Rossi embarked on a remarkable journey in the world of science.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139679742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1007/s00792-024-01333-7
Nik Yusnoraini Yusof, Doris Huai Xia Quay, Shazilah Kamaruddin, Mohd Anuar Jonet, Rosli Md Illias, Nor Muhammad Mahadi, Mohd Firdaus-Raih, Farah Diba Abu Bakar, Abdul Munir Abdul Murad
Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.
{"title":"Biochemical and in silico structural characterization of a cold-active arginase from the psychrophilic yeast, Glaciozyma antarctica PI12.","authors":"Nik Yusnoraini Yusof, Doris Huai Xia Quay, Shazilah Kamaruddin, Mohd Anuar Jonet, Rosli Md Illias, Nor Muhammad Mahadi, Mohd Firdaus-Raih, Farah Diba Abu Bakar, Abdul Munir Abdul Murad","doi":"10.1007/s00792-024-01333-7","DOIUrl":"10.1007/s00792-024-01333-7","url":null,"abstract":"<p><p>Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn<sup>2+</sup>, Ni<sup>2+</sup>, Co<sup>2+</sup> and K<sup>+</sup> were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-27DOI: 10.1007/s00792-023-01330-2
Alka Rao, Arnold J M Driessen
The enzymology of the key steps in the archaeal phospholipid biosynthetic pathway has been elucidated in recent years. In contrast, the complete biosynthetic pathways for proposed membrane regulators consisting of polyterpenes, such as carotenoids, respiratory quinones, and polyprenols remain unknown. Notably, the multiplicity of geranylgeranyl reductases (GGRs) in archaeal genomes has been correlated with the saturation of polyterpenes. Although GGRs, which are responsible for saturation of the isoprene chains of phospholipids, have been identified and studied in detail, there is little information regarding the structure and function of the paralogs. Here, we discuss the diversity of archaeal membrane-associated polyterpenes which is correlated with the genomic loci, structural and sequence-based analyses of GGR paralogs.
{"title":"Unraveling the multiplicity of geranylgeranyl reductases in Archaea: potential roles in saturation of terpenoids.","authors":"Alka Rao, Arnold J M Driessen","doi":"10.1007/s00792-023-01330-2","DOIUrl":"10.1007/s00792-023-01330-2","url":null,"abstract":"<p><p>The enzymology of the key steps in the archaeal phospholipid biosynthetic pathway has been elucidated in recent years. In contrast, the complete biosynthetic pathways for proposed membrane regulators consisting of polyterpenes, such as carotenoids, respiratory quinones, and polyprenols remain unknown. Notably, the multiplicity of geranylgeranyl reductases (GGRs) in archaeal genomes has been correlated with the saturation of polyterpenes. Although GGRs, which are responsible for saturation of the isoprene chains of phospholipids, have been identified and studied in detail, there is little information regarding the structure and function of the paralogs. Here, we discuss the diversity of archaeal membrane-associated polyterpenes which is correlated with the genomic loci, structural and sequence-based analyses of GGR paralogs.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821996/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1007/s00792-023-01325-z
Xiaoben Jiang, David J Van Horn, Jordan G Okie, Heather N Buelow, Egbert Schwartz, Daniel R Colman, Kelli L Feeser, Cristina D Takacs-Vesbach
{"title":"Correction: Limits to the three domains of life: lessons from community assembly along an Antarctic salinity gradient.","authors":"Xiaoben Jiang, David J Van Horn, Jordan G Okie, Heather N Buelow, Egbert Schwartz, Daniel R Colman, Kelli L Feeser, Cristina D Takacs-Vesbach","doi":"10.1007/s00792-023-01325-z","DOIUrl":"10.1007/s00792-023-01325-z","url":null,"abstract":"","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1007/s00792-023-01326-y
Yu Sato, Kenji Okano, Kohsuke Honda
Small heat shock proteins (HSPs), such as HSP20, represent cellular thermal resistance mechanisms, to avoid protein aggregation at elevated temperatures. Recombinantly expressed HSP20s serve as a molecular tool for improving the tolerance of living cells to various physical and chemical stressors. Here, we aimed to heterologously express 18 HSP20s from 12 thermotolerant bacteria in Escherichia coli and evaluate their effects on various physical and chemical cellular stresses. Seventeen HSP20s were successfully expressed as soluble proteins. Recombinant E. coli cells were subjected to heat, cold, acidic, alkaline, and hyperosmolar stress to evaluate the effects of HSP20 proteins on stress resistance. Notably, the overexpression of 15 HSP20s enhanced the stress resistance of E. coli compared to that of the control strain. In particular, HSPs from Tepidimonas sediminis and Oceanithermus profundus improved the stress tolerance of E. coli under all tested conditions. In addition, E. coli harboring HSP20 from T. sediminis retained cell viability even after heat treatment at 52 °C for 5 days. To our knowledge, this is the first report of E. coli tolerance to prolonged (> 100 h) high-temperature stress. These findings indicate the potential of thermotolerant HSPs as molecular tools for improving stress tolerance in E. coli.
{"title":"Effects of small heat shock proteins from thermotolerant bacteria on the stress resistance of Escherichia coli to temperature, pH, and hyperosmolarity.","authors":"Yu Sato, Kenji Okano, Kohsuke Honda","doi":"10.1007/s00792-023-01326-y","DOIUrl":"10.1007/s00792-023-01326-y","url":null,"abstract":"<p><p>Small heat shock proteins (HSPs), such as HSP20, represent cellular thermal resistance mechanisms, to avoid protein aggregation at elevated temperatures. Recombinantly expressed HSP20s serve as a molecular tool for improving the tolerance of living cells to various physical and chemical stressors. Here, we aimed to heterologously express 18 HSP20s from 12 thermotolerant bacteria in Escherichia coli and evaluate their effects on various physical and chemical cellular stresses. Seventeen HSP20s were successfully expressed as soluble proteins. Recombinant E. coli cells were subjected to heat, cold, acidic, alkaline, and hyperosmolar stress to evaluate the effects of HSP20 proteins on stress resistance. Notably, the overexpression of 15 HSP20s enhanced the stress resistance of E. coli compared to that of the control strain. In particular, HSPs from Tepidimonas sediminis and Oceanithermus profundus improved the stress tolerance of E. coli under all tested conditions. In addition, E. coli harboring HSP20 from T. sediminis retained cell viability even after heat treatment at 52 °C for 5 days. To our knowledge, this is the first report of E. coli tolerance to prolonged (> 100 h) high-temperature stress. These findings indicate the potential of thermotolerant HSPs as molecular tools for improving stress tolerance in E. coli.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1007/s00792-023-01328-w
Xin Sun, Gangsheng Zhang, Yamin Shi, Daling Zhu, Lin Cheng
The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.
{"title":"Efficient flocculation pretreatment of coal gasification wastewater by halophilic bacterium Halovibrio variabilis TG-5.","authors":"Xin Sun, Gangsheng Zhang, Yamin Shi, Daling Zhu, Lin Cheng","doi":"10.1007/s00792-023-01328-w","DOIUrl":"10.1007/s00792-023-01328-w","url":null,"abstract":"<p><p>The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1007/s00792-023-01329-9
Xue Ma, Yao Hu, Xin-Xin Li, Shun Tan, Mu Cheng, Jing Hou, Heng-Lin Cui
The genera Haloarcula and Halomicroarcula are the most closely related genera within the family Haloarculaceae (class Halobacteria). The respective 16S rRNA genes of type strains from the genus Haloarcula showed 94.7-96.5% similarities to their homologous genes of type strains from the genus Halomicroarcula. The Haloarcula species showed 89.3-92.8% rpoB' gene similarities to Halomicroarcula species. These similarities were higher than the proposed genus boundary. Phylogenomic analysis revealed that these two genera formed a tight cluster separated from Halomicrobium with high bootstrap confidence. The average amino acid identity (AAI) values among Haloarcula and Halomicroarcula were 70.1-74.5%, higher than the cutoff value (67.0%) to differentiate the genera Haloarcula and Halomicroarcula from Halomicrobium. These results indicated that the genus Halomicroarcula should be merged with Haloarcula. Then, six novel species are described based on strains DFY41T, GDY20T, SHR3T, XH51T, YJ-61-ST, and ZS-22-S1T isolated from coarse sea salt, marine solar saltern, and salt lake (China). These six strains formed separate clades (90.1-99.3% 16S rRNA and 89.0-94.9% rpoB' gene similarities) and then clustered with current Haloarcula and Halomicroarcula species (89.4-99.1% 16S rRNA and 87.6-95.0% rpoB' gene similarities), as revealed by phylogenetic analyses. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and AAI values among these six strains and current Haloarcula and Halomicroarcula species were 76.2-89.8%, 25.3-46.0%, and 70.3-89.7%, respectively, clearly below the species demarcation threshold. These six strains were distinguished from current Haloarcula and Halomicroarcula species according to differential phenotypic characteristics. Six novel species, Haloarcula halophila sp. nov., Haloarcula litorea sp. nov., Haloarcula rara sp. nov., Haloarcula halobia sp. nov., Haloarcula pelagica sp. nov., and Haloarcula ordinaria sp. nov., are proposed to accommodate strains DFY41T, GDY20T, SHR3T, XH51T, YJ-61-ST, and ZS-22-S1T, respectively.
{"title":"Genome-based taxonomy of genera Haloarcula and Halomicroarcula, and description of six novel species of Haloarcula.","authors":"Xue Ma, Yao Hu, Xin-Xin Li, Shun Tan, Mu Cheng, Jing Hou, Heng-Lin Cui","doi":"10.1007/s00792-023-01329-9","DOIUrl":"10.1007/s00792-023-01329-9","url":null,"abstract":"<p><p>The genera Haloarcula and Halomicroarcula are the most closely related genera within the family Haloarculaceae (class Halobacteria). The respective 16S rRNA genes of type strains from the genus Haloarcula showed 94.7-96.5% similarities to their homologous genes of type strains from the genus Halomicroarcula. The Haloarcula species showed 89.3-92.8% rpoB' gene similarities to Halomicroarcula species. These similarities were higher than the proposed genus boundary. Phylogenomic analysis revealed that these two genera formed a tight cluster separated from Halomicrobium with high bootstrap confidence. The average amino acid identity (AAI) values among Haloarcula and Halomicroarcula were 70.1-74.5%, higher than the cutoff value (67.0%) to differentiate the genera Haloarcula and Halomicroarcula from Halomicrobium. These results indicated that the genus Halomicroarcula should be merged with Haloarcula. Then, six novel species are described based on strains DFY41<sup>T</sup>, GDY20<sup>T</sup>, SHR3<sup>T</sup>, XH51<sup>T</sup>, YJ-61-S<sup>T</sup>, and ZS-22-S1<sup>T</sup> isolated from coarse sea salt, marine solar saltern, and salt lake (China). These six strains formed separate clades (90.1-99.3% 16S rRNA and 89.0-94.9% rpoB' gene similarities) and then clustered with current Haloarcula and Halomicroarcula species (89.4-99.1% 16S rRNA and 87.6-95.0% rpoB' gene similarities), as revealed by phylogenetic analyses. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and AAI values among these six strains and current Haloarcula and Halomicroarcula species were 76.2-89.8%, 25.3-46.0%, and 70.3-89.7%, respectively, clearly below the species demarcation threshold. These six strains were distinguished from current Haloarcula and Halomicroarcula species according to differential phenotypic characteristics. Six novel species, Haloarcula halophila sp. nov., Haloarcula litorea sp. nov., Haloarcula rara sp. nov., Haloarcula halobia sp. nov., Haloarcula pelagica sp. nov., and Haloarcula ordinaria sp. nov., are proposed to accommodate strains DFY41<sup>T</sup>, GDY20<sup>T</sup>, SHR3<sup>T</sup>, XH51<sup>T</sup>, YJ-61-S<sup>T</sup>, and ZS-22-S1<sup>T</sup>, respectively.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Second-generation ethanol, a promising biofuel for reducing greenhouse gas emissions, faces challenges due to the inefficient metabolism of xylose, a pentose sugar. Overcoming this hurdle requires exploration of genes, pathways, and organisms capable of fermenting xylose. Thermoanaerobacterium saccharolyticum is an organism capable of naturally fermenting compounds of industrial interest, such as xylose, and understanding evolutionary adaptations may help to bring novel genes and information that can be used for industrial yeast, increasing production of current bio-platforms. This study presents a deep evolutionary study of members of the firmicutes clade, focusing on adaptations in Thermoanaerobacterium saccharolyticum that may be related to overall fermentation metabolism, especially for xylose fermentation. One highlight is the finding of positive selection on a xylose-binding protein of the xylFGH operon, close to the annotated sugar binding site, with this protein already being found to be expressed in xylose fermenting conditions in a previous study. Results from this study can serve as basis for searching for candidate genes to use in industrial strains or to improve Thermoanaerobacterium saccharolyticum as a new microbial cell factory, which may help to solve current problems found in the biofuels' industry.
{"title":"Comparative genomics reveals probable adaptations for xylose use in Thermoanaerobacterium saccharolyticum.","authors":"Mateus Bernabe Fiamenghi, Juliana Silveira Prodonoff, Guilherme Borelli, Marcelo Falsarella Carazzolle, Gonçalo Amarante Guimaraes Pereira, Juliana José","doi":"10.1007/s00792-023-01327-x","DOIUrl":"10.1007/s00792-023-01327-x","url":null,"abstract":"<p><p>Second-generation ethanol, a promising biofuel for reducing greenhouse gas emissions, faces challenges due to the inefficient metabolism of xylose, a pentose sugar. Overcoming this hurdle requires exploration of genes, pathways, and organisms capable of fermenting xylose. Thermoanaerobacterium saccharolyticum is an organism capable of naturally fermenting compounds of industrial interest, such as xylose, and understanding evolutionary adaptations may help to bring novel genes and information that can be used for industrial yeast, increasing production of current bio-platforms. This study presents a deep evolutionary study of members of the firmicutes clade, focusing on adaptations in Thermoanaerobacterium saccharolyticum that may be related to overall fermentation metabolism, especially for xylose fermentation. One highlight is the finding of positive selection on a xylose-binding protein of the xylFGH operon, close to the annotated sugar binding site, with this protein already being found to be expressed in xylose fermenting conditions in a previous study. Results from this study can serve as basis for searching for candidate genes to use in industrial strains or to improve Thermoanaerobacterium saccharolyticum as a new microbial cell factory, which may help to solve current problems found in the biofuels' industry.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}