首页 > 最新文献

Fluids and Barriers of the CNS最新文献

英文 中文
Oxidative stress alters mitochondrial homeostasis in isolated brain capillaries. 氧化应激改变了离体脑毛细血管中线粒体的稳态。
IF 5.9 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-15 DOI: 10.1186/s12987-024-00579-9
Gopal V Velmurugan, Hemendra J Vekaria, Anika M S Hartz, Björn Bauer, W Brad Hubbard

Background: Neurovascular deficits and blood-brain barrier (BBB) dysfunction are major hallmarks of brain trauma and neurodegenerative diseases. Oxidative stress is a prominent contributor to neurovascular unit (NVU) dysfunction and can propagate BBB disruption. Oxidative damage results in an imbalance of mitochondrial homeostasis, which can further drive functional impairment of brain capillaries. To this end, we developed a method to track mitochondrial-related changes after oxidative stress in the context of neurovascular pathophysiology as a critical endophenotype of neurodegenerative diseases.

Methods: To study brain capillary-specific mitochondrial function and dynamics in response to oxidative stress, we developed an ex vivo model in which we used isolated brain capillaries from transgenic mice that express dendra2 green specifically in mitochondria (mtD2g). Isolated brain capillaries were incubated with 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH) or hydrogen peroxide (H2O2) to induce oxidative stress through lipid peroxidation. Following the oxidative insult, mitochondrial bioenergetics were measured using the Seahorse XFe96 flux analyzer, and mitochondrial dynamics were measured using confocal microscopy with Imaris software.

Results: We optimized brain capillary isolation with intact endothelial cell tight-junction and pericyte integrity. Further, we demonstrate consistency of the capillary isolation process and cellular enrichment of the isolated capillaries. Mitochondrial bioenergetics and morphology assessments were optimized in isolated brain capillaries. Finally, we found that oxidative stress significantly decreased mitochondrial respiration and altered mitochondrial morphology in brain capillaries, including mitochondrial volume and count.

Conclusions: Following ex vivo isolation of brain capillaries, we confirmed the stability of mitochondrial parameters, demonstrating the feasibility of this newly developed platform. We also demonstrated that oxidative stress has profound effects on mitochondrial homeostasis in isolated brain capillaries. This novel method can be used to evaluate pharmacological interventions to target oxidative stress or mitochondrial dysfunction in cerebral small vessel disease and neurovascular pathophysiology as major players in neurodegenerative disease.

背景:神经血管损伤和血脑屏障(BBB)功能障碍是脑外伤和神经退行性疾病的主要特征。氧化应激是造成神经血管单元(NVU)功能障碍的一个主要因素,并可导致血脑屏障破坏。氧化损伤会导致线粒体平衡失调,从而进一步损害脑毛细血管的功能。为此,我们开发了一种方法,以神经血管病理生理学为背景,追踪氧化应激后线粒体的相关变化,这是神经退行性疾病的一个关键内表型:为了研究氧化应激时脑部毛细血管特异性线粒体的功能和动态变化,我们开发了一种体外模型,利用线粒体中特异性表达dendra2 green(mtD2g)的转基因小鼠分离出的脑部毛细血管。离体脑毛细血管与 2,2'-偶氮二异丙脒二盐酸盐(AAPH)或过氧化氢(H2O2)孵育,通过脂质过氧化诱导氧化应激。氧化损伤后,使用海马 XFe96 通量分析仪测量线粒体生物能,并使用共聚焦显微镜和 Imaris 软件测量线粒体动力学:结果:我们优化了脑毛细血管的分离,使其具有完整的内皮细胞紧密连接和周细胞完整性。此外,我们还证明了毛细血管分离过程和分离毛细血管细胞富集的一致性。在分离的脑毛细血管中,线粒体生物能和形态学评估得到了优化。最后,我们发现氧化应激显著降低了线粒体呼吸,并改变了脑毛细血管中的线粒体形态,包括线粒体体积和数量:在体外分离脑毛细血管后,我们证实了线粒体参数的稳定性,证明了这一新开发平台的可行性。我们还证明了氧化应激对离体脑毛细血管线粒体平衡的深远影响。这种新方法可用于评估针对氧化应激或线粒体功能障碍的药物干预措施,而氧化应激或线粒体功能障碍是脑小血管疾病和神经血管病理生理学中神经退行性疾病的主要参与者。
{"title":"Oxidative stress alters mitochondrial homeostasis in isolated brain capillaries.","authors":"Gopal V Velmurugan, Hemendra J Vekaria, Anika M S Hartz, Björn Bauer, W Brad Hubbard","doi":"10.1186/s12987-024-00579-9","DOIUrl":"10.1186/s12987-024-00579-9","url":null,"abstract":"<p><strong>Background: </strong>Neurovascular deficits and blood-brain barrier (BBB) dysfunction are major hallmarks of brain trauma and neurodegenerative diseases. Oxidative stress is a prominent contributor to neurovascular unit (NVU) dysfunction and can propagate BBB disruption. Oxidative damage results in an imbalance of mitochondrial homeostasis, which can further drive functional impairment of brain capillaries. To this end, we developed a method to track mitochondrial-related changes after oxidative stress in the context of neurovascular pathophysiology as a critical endophenotype of neurodegenerative diseases.</p><p><strong>Methods: </strong>To study brain capillary-specific mitochondrial function and dynamics in response to oxidative stress, we developed an ex vivo model in which we used isolated brain capillaries from transgenic mice that express dendra2 green specifically in mitochondria (mtD2g). Isolated brain capillaries were incubated with 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH) or hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to induce oxidative stress through lipid peroxidation. Following the oxidative insult, mitochondrial bioenergetics were measured using the Seahorse XFe96 flux analyzer, and mitochondrial dynamics were measured using confocal microscopy with Imaris software.</p><p><strong>Results: </strong>We optimized brain capillary isolation with intact endothelial cell tight-junction and pericyte integrity. Further, we demonstrate consistency of the capillary isolation process and cellular enrichment of the isolated capillaries. Mitochondrial bioenergetics and morphology assessments were optimized in isolated brain capillaries. Finally, we found that oxidative stress significantly decreased mitochondrial respiration and altered mitochondrial morphology in brain capillaries, including mitochondrial volume and count.</p><p><strong>Conclusions: </strong>Following ex vivo isolation of brain capillaries, we confirmed the stability of mitochondrial parameters, demonstrating the feasibility of this newly developed platform. We also demonstrated that oxidative stress has profound effects on mitochondrial homeostasis in isolated brain capillaries. This novel method can be used to evaluate pharmacological interventions to target oxidative stress or mitochondrial dysfunction in cerebral small vessel disease and neurovascular pathophysiology as major players in neurodegenerative disease.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"81"},"PeriodicalIF":5.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries. 利用特定受试者的颅内压和脑几何结构,模拟输液过程中的脑脊液循环和甘液系统。
IF 5.9 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-15 DOI: 10.1186/s12987-024-00582-0
Lars Willas Dreyer, Anders Eklund, Marie E Rognes, Jan Malm, Sara Qvarlander, Karen-Helene Støverud, Kent-Andre Mardal, Vegard Vinje

Background: Infusion testing is an established method for assessing CSF resistance in patients with idiopathic normal pressure hydrocephalus (iNPH). To what extent the increased resistance is related to the glymphatic system is an open question. Here we introduce a computational model that includes the glymphatic system and enables us to determine the importance of (1) brain geometry, (2) intracranial pressure, and (3) physiological parameters on the outcome of and response to an infusion test.

Methods: We implemented a seven-compartment multiple network porous medium model with subject specific geometries from MR images using the finite element library FEniCS. The model consists of the arterial, capillary and venous blood vessels, their corresponding perivascular spaces, and the extracellular space (ECS). Both subject specific brain geometries and subject specific infusion tests were used in the modeling of both healthy adults and iNPH patients. Furthermore, we performed a systematic study of the effect of variations in model parameters.

Results: Both the iNPH group and the control group reached a similar steady state solution when subject specific geometries under identical boundary conditions was used in simulation. The difference in terms of average fluid pressure and velocity between the iNPH and control groups, was found to be less than 6% during all stages of infusion in all compartments. With subject specific boundary conditions, the largest computed difference was a 75% greater fluid speed in the arterial perivascular space (PVS) in the iNPH group compared to the control group. Changes to material parameters changed fluid speeds by several orders of magnitude in some scenarios. A considerable amount of the CSF pass through the glymphatic pathway in our models during infusion, i.e., 28% and 38% in the healthy and iNPH patients, respectively.

Conclusions: Using computational models, we have found the relative importance of subject specific geometries to be less important than individual differences in resistance as measured with infusion tests and model parameters such as permeability, in determining the computed pressure and flow during infusion. Model parameters are uncertain, but certain variations have large impact on the simulation results. The computations resulted in a considerable amount of the infused volume passing through the brain either through the perivascular spaces or the extracellular space.

背景:输液试验是评估特发性正常压力脑积水(iNPH)患者脑脊液阻力的一种成熟方法。阻力增加在多大程度上与甘液系统有关是一个未决问题。在此,我们引入了一个包括甘液系统的计算模型,使我们能够确定(1)大脑几何形状、(2)颅内压和(3)生理参数对输液试验结果和反应的重要性:方法:我们使用有限元库 FEniCS 从磁共振图像中建立了一个具有受试者特定几何形状的七室多网络多孔介质模型。该模型包括动脉、毛细血管和静脉血管、相应的血管周围空间以及细胞外空间(ECS)。在对健康成人和 iNPH 患者进行建模时,使用了特定受试者的大脑几何形状和特定受试者的输液测试。此外,我们还对模型参数变化的影响进行了系统研究:结果:当在相同的边界条件下使用特定受试者的几何形状进行模拟时,iNPH 组和对照组都达到了相似的稳态解决方案。结果发现,iNPH 组和对照组的平均流体压力和速度在所有舱室的所有输注阶段的差异均小于 6%。在受试者特定的边界条件下,计算出的最大差异是 iNPH 组与对照组相比,动脉血管周围空间 (PVS) 中的流体速度高出 75%。在某些情况下,材料参数的改变会使流体速度发生几个数量级的变化。在我们的模型中,相当数量的 CSF 在输注过程中通过了甘回流途径,即在健康和 iNPH 患者中分别为 28% 和 38%:通过使用计算模型,我们发现在确定输液过程中的计算压力和流量时,受试者特定几何形状的相对重要性低于输液试验测得的阻力个体差异和渗透性等模型参数。模型参数是不确定的,但某些变化会对模拟结果产生很大影响。计算结果表明,相当多的输注量通过血管周围空间或细胞外空间流经大脑。
{"title":"Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries.","authors":"Lars Willas Dreyer, Anders Eklund, Marie E Rognes, Jan Malm, Sara Qvarlander, Karen-Helene Støverud, Kent-Andre Mardal, Vegard Vinje","doi":"10.1186/s12987-024-00582-0","DOIUrl":"https://doi.org/10.1186/s12987-024-00582-0","url":null,"abstract":"<p><strong>Background: </strong>Infusion testing is an established method for assessing CSF resistance in patients with idiopathic normal pressure hydrocephalus (iNPH). To what extent the increased resistance is related to the glymphatic system is an open question. Here we introduce a computational model that includes the glymphatic system and enables us to determine the importance of (1) brain geometry, (2) intracranial pressure, and (3) physiological parameters on the outcome of and response to an infusion test.</p><p><strong>Methods: </strong>We implemented a seven-compartment multiple network porous medium model with subject specific geometries from MR images using the finite element library FEniCS. The model consists of the arterial, capillary and venous blood vessels, their corresponding perivascular spaces, and the extracellular space (ECS). Both subject specific brain geometries and subject specific infusion tests were used in the modeling of both healthy adults and iNPH patients. Furthermore, we performed a systematic study of the effect of variations in model parameters.</p><p><strong>Results: </strong>Both the iNPH group and the control group reached a similar steady state solution when subject specific geometries under identical boundary conditions was used in simulation. The difference in terms of average fluid pressure and velocity between the iNPH and control groups, was found to be less than 6% during all stages of infusion in all compartments. With subject specific boundary conditions, the largest computed difference was a 75% greater fluid speed in the arterial perivascular space (PVS) in the iNPH group compared to the control group. Changes to material parameters changed fluid speeds by several orders of magnitude in some scenarios. A considerable amount of the CSF pass through the glymphatic pathway in our models during infusion, i.e., 28% and 38% in the healthy and iNPH patients, respectively.</p><p><strong>Conclusions: </strong>Using computational models, we have found the relative importance of subject specific geometries to be less important than individual differences in resistance as measured with infusion tests and model parameters such as permeability, in determining the computed pressure and flow during infusion. Model parameters are uncertain, but certain variations have large impact on the simulation results. The computations resulted in a considerable amount of the infused volume passing through the brain either through the perivascular spaces or the extracellular space.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"82"},"PeriodicalIF":5.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ex vivo nanoscale abluminal mapping of putative cargo receptors at the blood-brain barrier of expanded brain capillaries. 对扩张脑毛细血管血脑屏障上的假定货物受体进行纳米级体外测绘。
IF 5.9 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-14 DOI: 10.1186/s12987-024-00585-x
Mikkel Roland Holst, Mette Richner, Pernille Olsgaard Arenshøj, Parvez Alam, Kathrine Hyldig, Morten Schallburg Nielsen

Receptor mediated transport of therapeutic antibodies through the blood-brain barrier (BBB) give promise for drug delivery to alleviate brain diseases. We developed a low-cost method to obtain nanoscale localization data of putative cargo receptors. We combine existing ex vivo isolation methods with expansion microscopy (ExM) to analyze receptor localizations in brain microcapillaries. Using this approach, we show how to analyze receptor localizations in endothelial cells of brain microcapillaries in relation to the abluminal marker collagen IV. By choosing the thinnest capillaries, microcapillaries for analysis, we ensure the validity of collagen IV as an abluminal marker. With this tool, we confirm transferrin receptors as well as sortilin to be both luminally and abluminally localized. Furthermore, we identify basigin to be an abluminal receptor. Our methodology can be adapted to analyze different types of isolated brain capillaries and we anticipate that this approach will be very useful for the research community to gain new insight into cargo receptor trafficking in the slim brain endothelial cells to elucidate novel paths for future drug design.

受体介导的治疗性抗体通过血脑屏障(BBB)的运输为缓解脑部疾病的药物输送带来了希望。我们开发了一种低成本方法来获取假定货物受体的纳米级定位数据。我们将现有的体外分离方法与膨胀显微镜(ExM)相结合,分析了大脑微毛细血管中的受体定位。利用这种方法,我们展示了如何分析脑微毛细血管内皮细胞中受体定位与腔内标记物胶原蛋白 IV 的关系。通过选择最细的毛细血管--微毛细血管进行分析,我们确保了胶原蛋白 IV 作为腔内标志物的有效性。通过这一工具,我们确认了转铁蛋白受体和索氏蛋白在腔内和腔外的定位。此外,我们还发现 Basigin 也是一种腔内受体。我们的方法可用于分析不同类型的离体脑毛细血管,我们预计这种方法将对研究界非常有用,有助于深入了解纤细脑内皮细胞中的货物受体贩运,从而为未来的药物设计提供新的途径。
{"title":"Ex vivo nanoscale abluminal mapping of putative cargo receptors at the blood-brain barrier of expanded brain capillaries.","authors":"Mikkel Roland Holst, Mette Richner, Pernille Olsgaard Arenshøj, Parvez Alam, Kathrine Hyldig, Morten Schallburg Nielsen","doi":"10.1186/s12987-024-00585-x","DOIUrl":"https://doi.org/10.1186/s12987-024-00585-x","url":null,"abstract":"<p><p>Receptor mediated transport of therapeutic antibodies through the blood-brain barrier (BBB) give promise for drug delivery to alleviate brain diseases. We developed a low-cost method to obtain nanoscale localization data of putative cargo receptors. We combine existing ex vivo isolation methods with expansion microscopy (ExM) to analyze receptor localizations in brain microcapillaries. Using this approach, we show how to analyze receptor localizations in endothelial cells of brain microcapillaries in relation to the abluminal marker collagen IV. By choosing the thinnest capillaries, microcapillaries for analysis, we ensure the validity of collagen IV as an abluminal marker. With this tool, we confirm transferrin receptors as well as sortilin to be both luminally and abluminally localized. Furthermore, we identify basigin to be an abluminal receptor. Our methodology can be adapted to analyze different types of isolated brain capillaries and we anticipate that this approach will be very useful for the research community to gain new insight into cargo receptor trafficking in the slim brain endothelial cells to elucidate novel paths for future drug design.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"80"},"PeriodicalIF":5.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
iPSC-derived blood-brain barrier modeling reveals APOE isoform-dependent interactions with amyloid beta. iPSC 衍生的血脑屏障模型揭示了 APOE 同工酶与淀粉样蛋白 beta 之间的相互作用。
IF 5.9 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-10-11 DOI: 10.1186/s12987-024-00580-2
Yunfeng Ding, Sean P Palecek, Eric V Shusta

Background: Three common isoforms of the apolipoprotein E (APOE) gene - APOE2, APOE3, and APOE4 - hold varying significance in Alzheimer's Disease (AD) risk. The APOE4 allele is the strongest known genetic risk factor for late-onset Alzheimer's Disease (AD), and its expression has been shown to correlate with increased central nervous system (CNS) amyloid deposition and accelerated neurodegeneration. Conversely, APOE2 is associated with reduced AD risk and lower CNS amyloid burden. Recent clinical data have suggested that increased blood-brain barrier (BBB) leakage is commonly observed among AD patients and APOE4 carriers. However, it remains unclear how different APOE isoforms may impact AD-related pathologies at the BBB.

Methods: To explore potential impacts of APOE genotypes on BBB properties and BBB interactions with amyloid beta, we differentiated isogenic human induced pluripotent stem cell (iPSC) lines with different APOE genotypes into both brain microvascular endothelial cell-like cells (BMEC-like cells) and brain pericyte-like cells. We then compared the effect of different APOE isoforms on BBB-related and AD-related phenotypes. Statistical significance was determined via ANOVA with Tukey's post hoc testing as appropriate.

Results: Isogenic BMEC-like cells with different APOE genotypes had similar trans-endothelial electrical resistance, tight junction integrity and efflux transporter gene expression. However, recombinant APOE4 protein significantly impeded the "brain-to-blood" amyloid beta 1-40 (Aβ40) transport capabilities of BMEC-like cells, suggesting a role in diminished amyloid clearance. Conversely, APOE2 increased amyloid beta 1-42 (Aβ42) transport in the model. Furthermore, we demonstrated that APOE-mediated amyloid transport by BMEC-like cells is dependent on LRP1 and p-glycoprotein pathways, mirroring in vivo findings. Pericyte-like cells exhibited similar APOE secretion levels across genotypes, yet APOE4 pericyte-like cells showed heightened extracellular amyloid deposition, while APOE2 pericyte-like cells displayed the least amyloid deposition, an observation in line with vascular pathologies in AD patients.

Conclusions: While APOE genotype did not directly impact general BMEC or pericyte properties, APOE4 exacerbated amyloid clearance and deposition at the model BBB. Conversely, APOE2 demonstrated a potentially protective role by increasing amyloid transport and decreasing deposition. Our findings highlight that iPSC-derived BBB models can potentially capture amyloid pathologies at the BBB, motivating further development of such in vitro models in AD modeling and drug development.

背景:载脂蛋白 E(APOE)基因的三种常见异构体--APOE2、APOE3 和 APOE4--在阿尔茨海默病(AD)风险中具有不同的重要性。APOE4 等位基因是已知的晚发性阿尔茨海默病(AD)最强的遗传风险因素,其表达已被证明与中枢神经系统(CNS)淀粉样蛋白沉积增加和神经变性加速相关。相反,APOE2 则与降低 AD 风险和减少中枢神经系统淀粉样蛋白负担有关。最近的临床数据表明,AD 患者和 APOE4 携带者普遍存在血脑屏障(BBB)渗漏增加的现象。然而,目前仍不清楚不同的 APOE 同工酶会如何影响血脑屏障上与 AD 相关的病理变化:为了探索APOE基因型对BBB特性和BBB与淀粉样β相互作用的潜在影响,我们将具有不同APOE基因型的同源人类诱导多能干细胞(iPSC)系分化成脑微血管内皮细胞样细胞(BMEC样细胞)和脑周细胞样细胞。然后,我们比较了不同 APOE 同工型对 BBB 相关表型和 AD 相关表型的影响。统计意义通过方差分析确定,并酌情进行Tukey's事后检验:结果:不同 APOE 基因型的同源 BMEC 样细胞具有相似的跨内皮电阻、紧密连接完整性和外流转运体基因表达。然而,重组 APOE4 蛋白明显阻碍了 BMEC 样细胞的 "脑-血 "淀粉样β1-40(Aβ40)转运能力,这表明淀粉样蛋白清除能力减弱。相反,APOE2 增加了模型中淀粉样β1-42(Aβ42)的转运能力。此外,我们还证明了APOE介导的淀粉样蛋白在BMEC样细胞中的转运依赖于LRP1和p-糖蛋白途径,这与体内的研究结果一致。不同基因型的包膜样细胞表现出相似的APOE分泌水平,但APOE4型包膜样细胞显示出细胞外淀粉样沉积增加,而APOE2型包膜样细胞显示出最少的淀粉样沉积,这一观察结果与AD患者的血管病变一致:虽然APOE基因型并不直接影响一般BMEC或包膜细胞的特性,但APOE4会加剧淀粉样蛋白在模型BBB的清除和沉积。相反,APOE2 通过增加淀粉样蛋白转运和减少沉积,显示出潜在的保护作用。我们的研究结果突出表明,iPSC衍生的BBB模型有可能捕捉到BBB上的淀粉样病理变化,这促使我们在AD建模和药物开发中进一步开发这种体外模型。
{"title":"iPSC-derived blood-brain barrier modeling reveals APOE isoform-dependent interactions with amyloid beta.","authors":"Yunfeng Ding, Sean P Palecek, Eric V Shusta","doi":"10.1186/s12987-024-00580-2","DOIUrl":"10.1186/s12987-024-00580-2","url":null,"abstract":"<p><strong>Background: </strong>Three common isoforms of the apolipoprotein E (APOE) gene - APOE2, APOE3, and APOE4 - hold varying significance in Alzheimer's Disease (AD) risk. The APOE4 allele is the strongest known genetic risk factor for late-onset Alzheimer's Disease (AD), and its expression has been shown to correlate with increased central nervous system (CNS) amyloid deposition and accelerated neurodegeneration. Conversely, APOE2 is associated with reduced AD risk and lower CNS amyloid burden. Recent clinical data have suggested that increased blood-brain barrier (BBB) leakage is commonly observed among AD patients and APOE4 carriers. However, it remains unclear how different APOE isoforms may impact AD-related pathologies at the BBB.</p><p><strong>Methods: </strong>To explore potential impacts of APOE genotypes on BBB properties and BBB interactions with amyloid beta, we differentiated isogenic human induced pluripotent stem cell (iPSC) lines with different APOE genotypes into both brain microvascular endothelial cell-like cells (BMEC-like cells) and brain pericyte-like cells. We then compared the effect of different APOE isoforms on BBB-related and AD-related phenotypes. Statistical significance was determined via ANOVA with Tukey's post hoc testing as appropriate.</p><p><strong>Results: </strong>Isogenic BMEC-like cells with different APOE genotypes had similar trans-endothelial electrical resistance, tight junction integrity and efflux transporter gene expression. However, recombinant APOE4 protein significantly impeded the \"brain-to-blood\" amyloid beta 1-40 (Aβ40) transport capabilities of BMEC-like cells, suggesting a role in diminished amyloid clearance. Conversely, APOE2 increased amyloid beta 1-42 (Aβ42) transport in the model. Furthermore, we demonstrated that APOE-mediated amyloid transport by BMEC-like cells is dependent on LRP1 and p-glycoprotein pathways, mirroring in vivo findings. Pericyte-like cells exhibited similar APOE secretion levels across genotypes, yet APOE4 pericyte-like cells showed heightened extracellular amyloid deposition, while APOE2 pericyte-like cells displayed the least amyloid deposition, an observation in line with vascular pathologies in AD patients.</p><p><strong>Conclusions: </strong>While APOE genotype did not directly impact general BMEC or pericyte properties, APOE4 exacerbated amyloid clearance and deposition at the model BBB. Conversely, APOE2 demonstrated a potentially protective role by increasing amyloid transport and decreasing deposition. Our findings highlight that iPSC-derived BBB models can potentially capture amyloid pathologies at the BBB, motivating further development of such in vitro models in AD modeling and drug development.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"79"},"PeriodicalIF":5.9,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging alters the expression of trophic factors and tight junction proteins in the mouse choroid plexus. 衰老会改变小鼠脉络丛中营养因子和紧密连接蛋白的表达。
IF 5.9 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-27 DOI: 10.1186/s12987-024-00574-0
Jayanarayanan Sadanandan, Monica Sathyanesan, Samuel S Newton

Background: The choroid plexus (CP) is an understudied tissue in the central nervous system and is primarily implicated in cerebrospinal fluid (CSF) production. CP also produces numerous neurotrophic factors (NTF) which circulate to different brain regions. Regulation of NTFs in the CP during natural aging is largely unknown. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and the water channel protein Aquaporin (AQP1).

Methods: Male and female mice were used for our study. Age-related transcriptional changes were analyzed using quantitative PCR at three different time points: mature adult, middle-aged, and aged. Transcriptional changes during aging were further confirmed with digital droplet PCR. Additionally, we used immunohistochemical analysis (IHC) for the evaluation of in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP, and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, Plectin.

Results: Aging significantly altered NTF gene expression in the CP. Brain-derived neurotrophic factor (BDNF), Midkine (MDK), VGF, Insulin-like growth factor (IGF1), IGF2, Klotho (KL), Erythropoietin (EPO), and its receptor (EPOR) were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression was unchanged in the aged CP, while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2 and CLAUDIN5 were reduced in aged mice.

Conclusions: Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.

背景:脉络丛(CP)是中枢神经系统中研究不足的组织,主要参与脑脊液(CSF)的生成。脉络丛还产生许多神经营养因子(NTF),这些因子循环到不同的脑区。自然衰老过程中 CP 中 NTFs 的调节在很大程度上是未知的。在此,我们研究了 NTFs 的年龄和性别特异性转录以及紧密连接蛋白(TJPs)和水通道蛋白 Aquaporin(AQP1)的变化:我们的研究使用了雌雄小鼠。采用定量 PCR 方法分析了成年、中年和老年三个不同时间点与年龄相关的转录变化。通过数字液滴 PCR 进一步证实了衰老过程中的转录变化。此外,我们还使用免疫组化分析(IHC)评估了体内蛋白质的表达。通过与经典血管标记物 Isolectin B4 和上皮细胞标记物 Plectin 共同标记,我们进一步研究了这些 NTFS、TJP 和水通道蛋白在小鼠 CP 中的细胞表型:结果:老化明显改变了 CP 中 NTF 基因的表达。结果表明:衰老明显改变了 CP 中 NTF 基因的表达。在男性和女性的老年 CP 中,脑源性神经营养因子(BDNF)、Midkine(MDK)、血管内皮生长因子(VGF)、胰岛素样生长因子(IGF1)、IGF2、Klotho(KL)、促红细胞生成素(EPO)及其受体(EPOR)均减少。血管内皮生长因子(VEGF)的转录具有性别特异性;男性的基因表达在老年心肌梗死中没有变化,而女性则表现出与年龄相关的减少。从血管到上皮细胞,血管内皮生长因子的定位发生了明显的年龄依赖性变化。IGF2 和 klotho 定位于 CP 的基底侧膜,在上皮细胞中的减少与年龄有关。水通道蛋白 AQP1 定位于上皮细胞的顶端,其 mRNA 和蛋白水平的降低与年龄有关。TJP的JAM、CLAUDIN1、CLAUDIN2和CLAUDIN5在老年小鼠中减少:我们的研究强调了 CP 在衰老过程中的转录水平变化。结论:我们的研究强调了衰老过程中氯化石蜡转录水平的变化。与年龄相关的转录变化在雌雄氯化石蜡中表现出相似性和基因特异性差异。水通道蛋白 AQP1 和 TJPs 的转录改变可能与衰老过程中 CSF 生成减少有关。重要的是,神经营养因子和长寿因子 Klotho 的减少可能在调节大脑衰老中发挥作用。
{"title":"Aging alters the expression of trophic factors and tight junction proteins in the mouse choroid plexus.","authors":"Jayanarayanan Sadanandan, Monica Sathyanesan, Samuel S Newton","doi":"10.1186/s12987-024-00574-0","DOIUrl":"10.1186/s12987-024-00574-0","url":null,"abstract":"<p><strong>Background: </strong>The choroid plexus (CP) is an understudied tissue in the central nervous system and is primarily implicated in cerebrospinal fluid (CSF) production. CP also produces numerous neurotrophic factors (NTF) which circulate to different brain regions. Regulation of NTFs in the CP during natural aging is largely unknown. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and the water channel protein Aquaporin (AQP1).</p><p><strong>Methods: </strong>Male and female mice were used for our study. Age-related transcriptional changes were analyzed using quantitative PCR at three different time points: mature adult, middle-aged, and aged. Transcriptional changes during aging were further confirmed with digital droplet PCR. Additionally, we used immunohistochemical analysis (IHC) for the evaluation of in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP, and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, Plectin.</p><p><strong>Results: </strong>Aging significantly altered NTF gene expression in the CP. Brain-derived neurotrophic factor (BDNF), Midkine (MDK), VGF, Insulin-like growth factor (IGF1), IGF2, Klotho (KL), Erythropoietin (EPO), and its receptor (EPOR) were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression was unchanged in the aged CP, while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2 and CLAUDIN5 were reduced in aged mice.</p><p><strong>Conclusions: </strong>Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"77"},"PeriodicalIF":5.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human iPSC-derived pericyte-like cells carrying APP Swedish mutation overproduce beta-amyloid and induce cerebral amyloid angiopathy-like changes. 携带APP瑞典突变的人iPSC衍生的周细胞样细胞过度产生β-淀粉样蛋白并诱发脑淀粉样血管病样改变。
IF 5.9 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-27 DOI: 10.1186/s12987-024-00576-y
Ying-Chieh Wu, Šárka Lehtonen, Kalevi Trontti, Riitta Kauppinen, Pinja Kettunen, Ville Leinonen, Markku Laakso, Johanna Kuusisto, Mikko Hiltunen, Iiris Hovatta, Kristine Freude, Hiramani Dhungana, Jari Koistinaho, Taisia Rolova

Background: Patients with Alzheimer's disease (AD) frequently present with cerebral amyloid angiopathy (CAA), characterized by the accumulation of beta-amyloid (Aβ) within the cerebral blood vessels, leading to cerebrovascular dysfunction. Pericytes, which wrap around vascular capillaries, are crucial for regulating cerebral blood flow, angiogenesis, and vessel stability. Despite the known impact of vascular dysfunction on the progression of neurodegenerative diseases, the specific role of pericytes in AD pathology remains to be elucidated.

Methods: To explore this, we generated pericyte-like cells from human induced pluripotent stem cells (iPSCs) harboring the Swedish mutation in the amyloid precursor protein (APPswe) along with cells from healthy controls. We initially verified the expression of classic pericyte markers in these cells. Subsequent functional assessments, including permeability, tube formation, and contraction assays, were conducted to evaluate the functionality of both the APPswe and control cells. Additionally, bulk RNA sequencing was utilized to compare the transcriptional profiles between the two groups.

Results: Our study reveals that iPSC-derived pericyte-like cells (iPLCs) can produce Aβ peptides. Notably, cells with the APPswe mutation secreted Aβ1-42 at levels ten-fold higher than those of control cells. The APPswe iPLCs also demonstrated a reduced ability to support angiogenesis and maintain barrier integrity, exhibited a prolonged contractile response, and produced elevated levels of pro-inflammatory cytokines following inflammatory stimulation. These functional changes in APPswe iPLCs correspond with transcriptional upregulation in genes related to actin cytoskeleton and extracellular matrix organization.

Conclusions: Our findings indicate that the APPswe mutation in iPLCs mimics several aspects of CAA pathology in vitro, suggesting that our iPSC-based vascular cell model could serve as an effective platform for drug discovery aimed to ameliorate vascular dysfunction in AD.

背景:阿尔茨海默病(AD)患者经常出现脑淀粉样血管病变(CAA),其特点是β-淀粉样蛋白(Aβ)在脑血管内积聚,导致脑血管功能障碍。包绕血管毛细血管的周细胞对调节脑血流、血管生成和血管稳定性至关重要。尽管已知血管功能障碍对神经退行性疾病的进展有影响,但周细胞在AD病理学中的具体作用仍有待阐明:为了探讨这一问题,我们从携带瑞典淀粉样前体蛋白(APPswe)突变的人类诱导多能干细胞(iPSCs)和健康对照组细胞中生成了类包膜细胞。我们初步验证了这些细胞中经典周细胞标志物的表达。随后进行了功能评估,包括渗透性、管形成和收缩试验,以评估 APPswe 细胞和对照组细胞的功能。此外,还利用大量 RNA 测序比较了两组细胞的转录情况:我们的研究发现,iPSC衍生的类包膜细胞(iPLCs)能产生Aβ肽。值得注意的是,APPswe突变的细胞分泌Aβ1-42的水平比对照细胞高十倍。APPswe iPLC 还表现出支持血管生成和维持屏障完整性的能力下降,表现出长时间的收缩反应,并在炎症刺激后产生较高水平的促炎细胞因子。APPswe iPLCs的这些功能变化与肌动蛋白细胞骨架和细胞外基质组织相关基因的转录上调相一致:我们的研究结果表明,iPLCs 中的 APPswe 突变在体外模拟了 CAA 病理的多个方面,这表明我们基于 iPSC 的血管细胞模型可以作为一个有效的平台,用于发现旨在改善 AD 血管功能障碍的药物。
{"title":"Human iPSC-derived pericyte-like cells carrying APP Swedish mutation overproduce beta-amyloid and induce cerebral amyloid angiopathy-like changes.","authors":"Ying-Chieh Wu, Šárka Lehtonen, Kalevi Trontti, Riitta Kauppinen, Pinja Kettunen, Ville Leinonen, Markku Laakso, Johanna Kuusisto, Mikko Hiltunen, Iiris Hovatta, Kristine Freude, Hiramani Dhungana, Jari Koistinaho, Taisia Rolova","doi":"10.1186/s12987-024-00576-y","DOIUrl":"10.1186/s12987-024-00576-y","url":null,"abstract":"<p><strong>Background: </strong>Patients with Alzheimer's disease (AD) frequently present with cerebral amyloid angiopathy (CAA), characterized by the accumulation of beta-amyloid (Aβ) within the cerebral blood vessels, leading to cerebrovascular dysfunction. Pericytes, which wrap around vascular capillaries, are crucial for regulating cerebral blood flow, angiogenesis, and vessel stability. Despite the known impact of vascular dysfunction on the progression of neurodegenerative diseases, the specific role of pericytes in AD pathology remains to be elucidated.</p><p><strong>Methods: </strong>To explore this, we generated pericyte-like cells from human induced pluripotent stem cells (iPSCs) harboring the Swedish mutation in the amyloid precursor protein (APPswe) along with cells from healthy controls. We initially verified the expression of classic pericyte markers in these cells. Subsequent functional assessments, including permeability, tube formation, and contraction assays, were conducted to evaluate the functionality of both the APPswe and control cells. Additionally, bulk RNA sequencing was utilized to compare the transcriptional profiles between the two groups.</p><p><strong>Results: </strong>Our study reveals that iPSC-derived pericyte-like cells (iPLCs) can produce Aβ peptides. Notably, cells with the APPswe mutation secreted Aβ1-42 at levels ten-fold higher than those of control cells. The APPswe iPLCs also demonstrated a reduced ability to support angiogenesis and maintain barrier integrity, exhibited a prolonged contractile response, and produced elevated levels of pro-inflammatory cytokines following inflammatory stimulation. These functional changes in APPswe iPLCs correspond with transcriptional upregulation in genes related to actin cytoskeleton and extracellular matrix organization.</p><p><strong>Conclusions: </strong>Our findings indicate that the APPswe mutation in iPLCs mimics several aspects of CAA pathology in vitro, suggesting that our iPSC-based vascular cell model could serve as an effective platform for drug discovery aimed to ameliorate vascular dysfunction in AD.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"78"},"PeriodicalIF":5.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NX210c drug candidate peptide strengthens mouse and human blood-brain barriers. NX210c 候选药物肽能增强小鼠和人类的血脑屏障。
IF 5.9 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-27 DOI: 10.1186/s12987-024-00577-x
Chris Greene, Nicolas Rebergue, Gwen Fewell, Damir Janigro, Yann Godfrin, Matthew Campbell, Sighild Lemarchant

Background: Alterations of blood-brain barrier (BBB) and blood-spinal cord barrier have been documented in various animal models of neurodegenerative diseases and in patients. Correlations of these alterations with functional deficits suggest that repairing barriers integrity may represent a disease-modifying approach to prevent neuroinflammation and neurodegeneration induced by the extravasation of blood components into the parenchyma. Here, we screened the effect of a subcommissural organ-spondin-derived peptide (NX210c), known to promote functional recovery in several models of neurological disorders, on BBB integrity in vitro and in vivo.

Methods: In vitro, bEnd.3 endothelial cell (EC) monolayers and two different primary human BBB models containing EC, astrocytes and pericytes, in static and microfluidic conditions, were treated with NX210c (1-100 µM), or its vehicle, for 4 h and up to 5 days. Tight junction (TJ) protein levels, permeability to dextrans and transendothelial electrical resistance (TEER) were evaluated. In vivo, young and old mice (3- and 21-month-old, respectively) were treated daily intraperitoneally with NX210c at 10 mg/kg or its vehicle for 5 days and their brains collected at day 6 to measure TJ protein levels by immunohistochemistry.

Results: NX210c induced an increase in claudin-5 protein expression after 24-h and 72-h treatments in mouse EC. Occludin level was also increased after a 24-h treatment. Accordingly, NX210c decreased by half the permeability of EC to a 40-kDa FITC-dextran and increased TEER. In the human static BBB model, NX210c increased by ∼ 25% the TEER from 3 to 5 days. NX210c also increased TEER in the human 3D dynamic BBB model after 4 h, which was associated with a reduced permeability to a 4-kDa FITC-dextran. In line with in vitro results, after only 5 days of daily treatments in mice, NX210c restored aging-induced reduction of claudin-5 and occludin levels in the hippocampus, and also in the cortex for occludin.

Conclusions: In summary, we have gathered preclinical data showing the capacity of NX210c to strengthen BBB integrity. Through this property, NX210c holds great promises of being a disease-modifying treatment for several neurological disorders with high unmet medical needs.

背景:血脑屏障(BBB)和血脊髓屏障的改变已在各种神经退行性疾病动物模型和患者中得到证实。这些改变与功能缺陷的相关性表明,修复屏障的完整性可能是防止血液成分外渗到实质组织所诱发的神经炎症和神经变性的一种疾病调节方法。在此,我们筛选了一种来源于软骨下器官的多肽(NX210c)对体外和体内 BBB 完整性的影响:方法:在体外,在静态和微流体条件下,用 NX210c(1-100 µM)或其载体处理 bEnd.3 内皮细胞(EC)单层和两种不同的原发性人 BBB 模型(包含 EC、星形胶质细胞和周细胞)4 小时和长达 5 天。对紧密连接(TJ)蛋白水平、右旋糖酐通透性和跨内皮电阻(TEER)进行了评估。在体内,年轻和年老的小鼠(分别为 3 个月和 21 个月大)每天腹腔注射 10 毫克/千克的 NX210c 或其载体,共注射 5 天,在第 6 天收集它们的大脑,用免疫组化法测定 TJ 蛋白水平:结果:NX210c处理小鼠EC 24小时和72小时后,诱导claudin-5蛋白表达增加。经过 24 小时处理后,闭塞素水平也有所增加。因此,NX210c 可使小鼠心肌对 40-kDa FITC-葡聚糖的通透性降低一半,并增加 TEER。在人体静态 BBB 模型中,从 3 天到 5 天,NX210c 可使 TEER 增加 25%。4 小时后,NX210c 还能增加人体三维动态 BBB 模型的 TEER,这与 4 kDa FITC-葡聚糖通透性降低有关。与体外实验结果一致的是,小鼠每天服用 5 天后,NX210c 就能恢复老化引起的海马中 claudin-5 和 occludin 水平的降低,同时也能恢复皮层中 occludin 水平的降低:总之,我们收集的临床前数据显示,NX210c 有能力加强 BBB 的完整性。通过这一特性,NX210c 很有希望成为治疗多种神经系统疾病的疾病调节剂,这些疾病的医疗需求尚未得到满足。
{"title":"NX210c drug candidate peptide strengthens mouse and human blood-brain barriers.","authors":"Chris Greene, Nicolas Rebergue, Gwen Fewell, Damir Janigro, Yann Godfrin, Matthew Campbell, Sighild Lemarchant","doi":"10.1186/s12987-024-00577-x","DOIUrl":"https://doi.org/10.1186/s12987-024-00577-x","url":null,"abstract":"<p><strong>Background: </strong>Alterations of blood-brain barrier (BBB) and blood-spinal cord barrier have been documented in various animal models of neurodegenerative diseases and in patients. Correlations of these alterations with functional deficits suggest that repairing barriers integrity may represent a disease-modifying approach to prevent neuroinflammation and neurodegeneration induced by the extravasation of blood components into the parenchyma. Here, we screened the effect of a subcommissural organ-spondin-derived peptide (NX210c), known to promote functional recovery in several models of neurological disorders, on BBB integrity in vitro and in vivo.</p><p><strong>Methods: </strong>In vitro, bEnd.3 endothelial cell (EC) monolayers and two different primary human BBB models containing EC, astrocytes and pericytes, in static and microfluidic conditions, were treated with NX210c (1-100 µM), or its vehicle, for 4 h and up to 5 days. Tight junction (TJ) protein levels, permeability to dextrans and transendothelial electrical resistance (TEER) were evaluated. In vivo, young and old mice (3- and 21-month-old, respectively) were treated daily intraperitoneally with NX210c at 10 mg/kg or its vehicle for 5 days and their brains collected at day 6 to measure TJ protein levels by immunohistochemistry.</p><p><strong>Results: </strong>NX210c induced an increase in claudin-5 protein expression after 24-h and 72-h treatments in mouse EC. Occludin level was also increased after a 24-h treatment. Accordingly, NX210c decreased by half the permeability of EC to a 40-kDa FITC-dextran and increased TEER. In the human static BBB model, NX210c increased by ∼ 25% the TEER from 3 to 5 days. NX210c also increased TEER in the human 3D dynamic BBB model after 4 h, which was associated with a reduced permeability to a 4-kDa FITC-dextran. In line with in vitro results, after only 5 days of daily treatments in mice, NX210c restored aging-induced reduction of claudin-5 and occludin levels in the hippocampus, and also in the cortex for occludin.</p><p><strong>Conclusions: </strong>In summary, we have gathered preclinical data showing the capacity of NX210c to strengthen BBB integrity. Through this property, NX210c holds great promises of being a disease-modifying treatment for several neurological disorders with high unmet medical needs.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"76"},"PeriodicalIF":5.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Truncated mini LRP1 transports cargo from luminal to basolateral side across the blood brain barrier 截短的迷你 LRP1 将货物从管腔转运至基底侧,穿越血脑屏障
IF 7.3 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-17 DOI: 10.1186/s12987-024-00573-1
Laura Fritzen, Katharina Wienken, Lelia Wagner, Magdalena Kurtyka, Katharina Vogel, Jakob Körbelin, Sascha Weggen, Gert Fricker, Claus U. Pietrzik
The most crucial area to focus on when thinking of novel pathways for drug delivery into the CNS is the blood brain barrier (BBB). A number of nanoparticulate formulations have been shown in earlier research to target receptors at the BBB and transport therapeutics into the CNS. However, no mechanism for CNS entrance and movement throughout the CNS parenchyma has been proposed yet. Here, the truncated mini low-density lipoprotein receptor-related protein 1 mLRP1_DIV* was presented as blood to brain transport carrier, exemplified by antibodies and immunoliposomes using a systematic approach to screen the receptor and its ligands’ route across endothelial cells in vitro. The use of mLRP1_DIV* as liposomal carrier into the CNS was validated based on internalization and transport assays across an in vitro model of the BBB using hcMEC/D3 and bEnd.3 cells. Trafficking routes of mLRP1_DIV* and corresponding cargo across endothelial cells were analyzed using immunofluorescence. Modulation of γ-secretase activity by immunoliposomes loaded with the γ-secretase modulator BB25 was investigated in co-cultures of bEnd.3 mLRP1_DIV* cells and CHO cells overexpressing human amyloid precursor protein (APP) and presenilin 1 (PSEN1). We showed that while expressed in vitro, mLRP1_DIV* transports both, antibodies and functionalized immunoliposomes from luminal to basolateral side across an in vitro model of the BBB, followed by their mLRP1_DIV* dependent release of the cargo. Importantly, functionalized liposomes loaded with the γ-secretase modulator BB25 were demonstrated to effectively reduce toxic Aß42 peptide levels after mLRP1_DIV* mediated transport across a co-cultured endothelial monolayer. Together, the data strongly suggest mLRP1_DIV* as a promising tool for drug delivery into the CNS, as it allows a straight transport of cargo from luminal to abluminal side across an endothelial monolayer and it’s release into brain parenchyma in vitro, where it exhibits its intended therapeutic effect.
在考虑向中枢神经系统输送药物的新途径时,最关键的领域是脑血屏障(BBB)。早期研究表明,许多纳米颗粒制剂都能靶向 BBB 的受体,将治疗药物输送到中枢神经系统。然而,目前还没有提出中枢神经系统入口和在中枢神经系统实质内移动的机制。在这里,研究人员提出了截短的迷你低密度脂蛋白受体相关蛋白1 mLRP1_DIV*作为血液到大脑的转运载体,以抗体和免疫脂质体为例,采用系统的方法在体外筛选受体及其配体穿过内皮细胞的路线。通过使用 hcMEC/D3 和 bEnd.3 细胞在 BBB 体外模型中进行内化和运输试验,验证了 mLRP1_DIV* 作为脂质体载体进入中枢神经系统的有效性。使用免疫荧光分析了 mLRP1_DIV* 和相应货物通过内皮细胞的运输路线。在bEnd.3 mLRP1_DIV*细胞和过表达人淀粉样前体蛋白(APP)和预淀粉样蛋白1(PSEN1)的CHO细胞的共培养物中,研究了装载有γ-分泌酶调节剂BB25的免疫脂质体对γ-分泌酶活性的调节作用。我们的研究表明,在体外表达时,mLRP1_DIV*能将抗体和功能化免疫脂质体从管腔转运到基底侧,穿过体外的 BBB 模型,然后依赖 mLRP1_DIV* 释放货物。重要的是,在 mLRP1_DIV* 介导的跨共培养内皮单层运输过程中,负载有 γ 分泌酶调节剂 BB25 的功能化脂质体被证明能有效降低毒性 Aß42 肽的水平。总之,这些数据有力地表明,mLRP1_DIV* 是一种很有前景的向中枢神经系统递送药物的工具,因为它能使货物从管腔侧直接运输到管腔侧,穿过内皮单层,并在体外释放到脑实质中,在脑实质中显示出预期的治疗效果。
{"title":"Truncated mini LRP1 transports cargo from luminal to basolateral side across the blood brain barrier","authors":"Laura Fritzen, Katharina Wienken, Lelia Wagner, Magdalena Kurtyka, Katharina Vogel, Jakob Körbelin, Sascha Weggen, Gert Fricker, Claus U. Pietrzik","doi":"10.1186/s12987-024-00573-1","DOIUrl":"https://doi.org/10.1186/s12987-024-00573-1","url":null,"abstract":"The most crucial area to focus on when thinking of novel pathways for drug delivery into the CNS is the blood brain barrier (BBB). A number of nanoparticulate formulations have been shown in earlier research to target receptors at the BBB and transport therapeutics into the CNS. However, no mechanism for CNS entrance and movement throughout the CNS parenchyma has been proposed yet. Here, the truncated mini low-density lipoprotein receptor-related protein 1 mLRP1_DIV* was presented as blood to brain transport carrier, exemplified by antibodies and immunoliposomes using a systematic approach to screen the receptor and its ligands’ route across endothelial cells in vitro. The use of mLRP1_DIV* as liposomal carrier into the CNS was validated based on internalization and transport assays across an in vitro model of the BBB using hcMEC/D3 and bEnd.3 cells. Trafficking routes of mLRP1_DIV* and corresponding cargo across endothelial cells were analyzed using immunofluorescence. Modulation of γ-secretase activity by immunoliposomes loaded with the γ-secretase modulator BB25 was investigated in co-cultures of bEnd.3 mLRP1_DIV* cells and CHO cells overexpressing human amyloid precursor protein (APP) and presenilin 1 (PSEN1). We showed that while expressed in vitro, mLRP1_DIV* transports both, antibodies and functionalized immunoliposomes from luminal to basolateral side across an in vitro model of the BBB, followed by their mLRP1_DIV* dependent release of the cargo. Importantly, functionalized liposomes loaded with the γ-secretase modulator BB25 were demonstrated to effectively reduce toxic Aß42 peptide levels after mLRP1_DIV* mediated transport across a co-cultured endothelial monolayer. Together, the data strongly suggest mLRP1_DIV* as a promising tool for drug delivery into the CNS, as it allows a straight transport of cargo from luminal to abluminal side across an endothelial monolayer and it’s release into brain parenchyma in vitro, where it exhibits its intended therapeutic effect.","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"44 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commentary on “Transient intracranial pressure elevations (B waves) associated with sleep apnea”: the neglected role of cyclic alternating pattern 关于 "与睡眠呼吸暂停相关的一过性颅内压升高(B 波)"的评论:被忽视的周期性交替模式的作用
IF 7.3 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-17 DOI: 10.1186/s12987-024-00569-x
Carlotta Mutti, Clara Rapina, Francesco Rausa, Giulia Balella, Dario Bottignole, Marcello Giuseppe Maggio, Liborio Parrino
<p>Riedel et al. recently published an interesting paper on the association between intracranial pressure (ICP) elevation, measured through the Lundberg B waves, and sleep apnea in a group of patients with idiopathic intracranial hypertension (IIH) and hydrocephalus [1].</p><p>ICP B waves are defined as short, repetitive elevation of intracranial pressure of up to 50 mmHg with a frequency of 0.5-2 waves/min, which are typically observed in patients with IIH, but can also be measured in subjects with normal intracranial pressure [2].</p><p>Obstructive sleep apnea (OSA) is a multi-systemic syndrome characterized by phasic interruptions of airflow during sleep, leading to severe sleep fragmentation and cardiovascular consequences, presenting a typical 20-40 s periodicity (Panel A, Fig. 1).</p><figure><figcaption><b data-test="figure-caption-text">Fig. 1</b></figcaption><picture><source srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs12987-024-00569-x/MediaObjects/12987_2024_569_Fig1_HTML.png?as=webp" type="image/webp"/><img alt="figure 1" aria-describedby="Fig1" height="383" loading="lazy" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs12987-024-00569-x/MediaObjects/12987_2024_569_Fig1_HTML.png" width="685"/></picture><p><b>A</b> Vertical integration between CAP fluctuations during NREM sleep, respiratory events, oxygen desaturation and pulse rate dynamic in a patient affected by OSA. <b>B</b> figure published in Riedel et al., 2023 showing the vertical integration between ICP oscillations, obstructive apnea events and sleep fragmentation. <b>C</b> example of physiological CAP fluctuations during NREM sleep in a healthy subject. <b>D</b> example of stable NREM with no CAP intrusion</p><span>Full size image</span><svg aria-hidden="true" focusable="false" height="16" role="img" width="16"><use xlink:href="#icon-eds-i-chevron-right-small" xmlns:xlink="http://www.w3.org/1999/xlink"></use></svg></figure><p>According to Riedel et al. [1], there is an interesting association between ICP B waves and sleep apnea. The overlap of B waves with repetitive respiratory events induces a further increase in the ICP elevation (See Panel B in Fig. 1). The synusoidal pattern becomes particularly relevant during obstructive respiratory events (compared to central-type events), whereas the introduction of CPAP leads to overall reduction of phasic ICP elevations.</p><p>Riedel et al. [1] show the temporal coupling between ICP fluctuations, nasal airflow flattening, thorax and abdomen activity changes, SatO2% oscillations and sleep stage dynamics.</p><p>In Panel B (Fig. 1) severe sleep fragmentation characterized by numerous brief awakening lasting < 2 min is recognizable in a patient with idiopathic normal pressure hydrocephalus and OSA during stage N2 of NREM sleep.</p><p>It is known that OSA is closely associated cyclic alternating pattern (CAP) oscillations, including not only fast but also slow-wave arous
Riedel 等人最近发表了一篇有趣的论文,研究了一组特发性颅内高压(IIH)和脑积水患者的颅内压(ICP)升高(通过伦德伯格 B 波测量)与睡眠呼吸暂停之间的关系[1]。ICP B 波是指颅内压短时、重复性升高,最高可达 50 mmHg,频率为 0.5-2 波/分钟,通常在 IIH 患者中观察到,但也可在颅内压正常的受试者中测量到[2]。阻塞性睡眠呼吸暂停(OSA)是一种多系统综合征,其特点是睡眠期间气流的阶段性中断,导致严重的睡眠破碎和心血管后果,呈现典型的 20-40 秒周期性(图 1,A 组)。B 图发表于 Riedel 等人,2023 年,显示了 ICP 振荡、阻塞性呼吸暂停事件和睡眠片段之间的垂直整合。C 健康人 NREM 睡眠期间 CAP 生理波动示例。根据 Riedel 等人的研究[1],ICP B 波与睡眠呼吸暂停之间存在有趣的联系。B 波与重复呼吸事件重叠会导致 ICP 进一步升高(见图 1 中的 B 小组)。Riedel 等人[1] 显示了 ICP 波动、鼻气流平缓、胸腹活动变化、SatO2% 振荡和睡眠阶段动态之间的时间耦合。众所周知,OSA 与周期性交替模式(CAP)振荡密切相关,不仅包括快波唤醒,还包括慢波唤醒[3],与正在发生的睡眠呼吸紊乱的严重程度密切相关[4]。CAP 是睡眠不稳定性的电生理生物标记,在 NREM 睡眠期间周期性地干扰脑电图背景(C 小组)。值得注意的是,CAP 与伦德伯格 B 波的时域完全相同,从 2 秒到 60 秒不等,突破了睡眠评分 30 秒的硬性界限。NREM 睡眠期间剩余的静止脑电图活动被描述为非 CAP 睡眠(图 1,D 小组)。我们认为,CAP 指标更能反映 Lundberg B 波与 OSA 依赖性睡眠支离破碎之间的关联,而不是简短的觉醒或唤醒。Riedel 等人[1]的研究表明,在研究的 OSA 患者群中,CPAP 会显著改变 Lundberg B 波。这些发现可能解释了为什么在快速眼动睡眠中 ICP 波动会部分丧失清晰的振荡模式,因为众所周知,CAP 生理上只发生在快速眼动睡眠中[7].无论处于哪个睡眠阶段,快速眼动睡眠都可以被描述为稳定(非 CAP)和不稳定(CAP)交替的双峰大脑状态(分别见图 1 中的面板 C 和面板 D)。垂直整合 "方法包括脑电图以外的特征(如心肺耦合、行为变化,或许还包括颅内 B 波),可能是研究 NREM 睡眠期间所有振荡的最适当方法[8]。据我们所知,探索 ICP 升高与 CAP 之间联系的研究从未进行过。Riedel CS, Martinez-Tejada I, Andresen M, Wilhjelm JE, Jennum P, Juhler M. Transient intracranial pressure elevations (B waves) are associated with sleep apnea.Fluids Barriers CNS.2023;20(1):69. https://doi.org/10.1186/s12987-023-00469-6.Article PubMed PubMed Central Google Scholar Riedel CS, Martinez-Tejada I, Norager NH, Kempfner L, Jennum P, Juhler M. B波存在于无颅内压紊乱的患者中。J Sleep Res. 2021;30(4): e13214. https://doi.org/10.1111/jsr.13214.Article PubMed Google Scholar Milioli G, Bosi M, Grassi A, et al. Can sleep microstructure improve diagnosis of OSAS? integrative information from CAP parameters.2015;153(2-3):194-203. https://doi.org/10.12871/0003982920152344.
{"title":"Commentary on “Transient intracranial pressure elevations (B waves) associated with sleep apnea”: the neglected role of cyclic alternating pattern","authors":"Carlotta Mutti, Clara Rapina, Francesco Rausa, Giulia Balella, Dario Bottignole, Marcello Giuseppe Maggio, Liborio Parrino","doi":"10.1186/s12987-024-00569-x","DOIUrl":"https://doi.org/10.1186/s12987-024-00569-x","url":null,"abstract":"&lt;p&gt;Riedel et al. recently published an interesting paper on the association between intracranial pressure (ICP) elevation, measured through the Lundberg B waves, and sleep apnea in a group of patients with idiopathic intracranial hypertension (IIH) and hydrocephalus [1].&lt;/p&gt;&lt;p&gt;ICP B waves are defined as short, repetitive elevation of intracranial pressure of up to 50 mmHg with a frequency of 0.5-2 waves/min, which are typically observed in patients with IIH, but can also be measured in subjects with normal intracranial pressure [2].&lt;/p&gt;&lt;p&gt;Obstructive sleep apnea (OSA) is a multi-systemic syndrome characterized by phasic interruptions of airflow during sleep, leading to severe sleep fragmentation and cardiovascular consequences, presenting a typical 20-40 s periodicity (Panel A, Fig. 1).&lt;/p&gt;&lt;figure&gt;&lt;figcaption&gt;&lt;b data-test=\"figure-caption-text\"&gt;Fig. 1&lt;/b&gt;&lt;/figcaption&gt;&lt;picture&gt;&lt;source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs12987-024-00569-x/MediaObjects/12987_2024_569_Fig1_HTML.png?as=webp\" type=\"image/webp\"/&gt;&lt;img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"383\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs12987-024-00569-x/MediaObjects/12987_2024_569_Fig1_HTML.png\" width=\"685\"/&gt;&lt;/picture&gt;&lt;p&gt;&lt;b&gt;A&lt;/b&gt; Vertical integration between CAP fluctuations during NREM sleep, respiratory events, oxygen desaturation and pulse rate dynamic in a patient affected by OSA. &lt;b&gt;B&lt;/b&gt; figure published in Riedel et al., 2023 showing the vertical integration between ICP oscillations, obstructive apnea events and sleep fragmentation. &lt;b&gt;C&lt;/b&gt; example of physiological CAP fluctuations during NREM sleep in a healthy subject. &lt;b&gt;D&lt;/b&gt; example of stable NREM with no CAP intrusion&lt;/p&gt;&lt;span&gt;Full size image&lt;/span&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"&gt;&lt;use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;/use&gt;&lt;/svg&gt;&lt;/figure&gt;&lt;p&gt;According to Riedel et al. [1], there is an interesting association between ICP B waves and sleep apnea. The overlap of B waves with repetitive respiratory events induces a further increase in the ICP elevation (See Panel B in Fig. 1). The synusoidal pattern becomes particularly relevant during obstructive respiratory events (compared to central-type events), whereas the introduction of CPAP leads to overall reduction of phasic ICP elevations.&lt;/p&gt;&lt;p&gt;Riedel et al. [1] show the temporal coupling between ICP fluctuations, nasal airflow flattening, thorax and abdomen activity changes, SatO2% oscillations and sleep stage dynamics.&lt;/p&gt;&lt;p&gt;In Panel B (Fig. 1) severe sleep fragmentation characterized by numerous brief awakening lasting &lt; 2 min is recognizable in a patient with idiopathic normal pressure hydrocephalus and OSA during stage N2 of NREM sleep.&lt;/p&gt;&lt;p&gt;It is known that OSA is closely associated cyclic alternating pattern (CAP) oscillations, including not only fast but also slow-wave arous","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"7 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood–brain barrier breakdown in dementia with Lewy bodies 路易体痴呆症的血脑屏障破坏
IF 7.3 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-17 DOI: 10.1186/s12987-024-00575-z
Jinghuan Gan, Ziming Xu, Zhichao Chen, Shuai Liu, Hao Lu, Yajie Wang, Hao Wu, Zhihong Shi, Huijun Chen, Yong Ji
Blood–brain barrier (BBB) dysfunction has been viewed as a potential underlying mechanism of neurodegenerative disorders, possibly involved in the pathogenesis and progression of Alzheimer’s disease (AD). However, a relation between BBB dysfunction and dementia with Lewy bodies (DLB) has yet to be systematically investigated. Given the overlapping clinical features and neuropathology of AD and DLB, we sought to evaluate BBB permeability in the context of DLB and determine its association with plasma amyloid-β (Aβ) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). For this prospective study, we examined healthy controls (n = 24, HC group) and patients diagnosed with AD (n = 29) or DLB (n = 20) between December 2020 and April 2022. Based on DCE-MRI studies, mean rates of contrast agent transfer from intra- to extravascular spaces (Ktrans) were calculated within regions of interest. Spearman’s correlation and multivariate linear regression were applied to analyze associations between Ktrans and specific clinical characteristics. In members of the DLB (vs HC) group, Ktrans values of cerebral cortex (p = 0.024), parietal lobe (p = 0.007), and occipital lobe (p = 0.014) were significantly higher; and Ktrans values of cerebral cortex (p = 0.041) and occipital lobe (p = 0.018) in the DLB group were significantly increased, relative to those of the AD group. All participants also showed increased Ktrans values of parietal ( $$upbeta$$ = 0.391; p = 0.001) and occipital ( $$upbeta$$ = 0.357; p = 0.002) lobes that were significantly associated with higher scores of the Clinical Dementia Rating, once adjusted for age and sex. Similarly, increased Ktrans values of cerebral cortex ( $$upbeta$$ = 0.285; p = 0.015), frontal lobe ( $$upbeta$$ = 0.237; p = 0.043), and parietal lobe ( $$upbeta$$ = 0.265; p = 0.024) were significantly linked to higher plasma Aβ1-42/Aβ1-40 ratios, after above adjustments. BBB leakage is a common feature of DLB and possibly is even more severe than in the setting of AD for certain regions of the brain. BBB leakage appears to correlate with plasma Aβ1-42/Aβ1-40 ratio and dementia severity.
血脑屏障(BBB)功能障碍一直被视为神经退行性疾病的潜在潜在机制,可能与阿尔茨海默病(AD)的发病机制和进展有关。然而,血脑屏障功能障碍与路易体痴呆(DLB)之间的关系还有待系统研究。鉴于AD和DLB的临床特征和神经病理学有重叠之处,我们试图评估DLB的BBB通透性,并使用动态对比增强磁共振成像(DCE-MRI)确定其与血浆淀粉样蛋白-β(Aβ)的关系。在这项前瞻性研究中,我们对2020年12月至2022年4月期间的健康对照组(24人,HC组)和确诊为AD(29人)或DLB(20人)的患者进行了检查。基于 DCE-MRI 研究,我们计算了相关区域内造影剂从血管内向血管外转移的平均速率(Ktrans)。斯皮尔曼相关性和多变量线性回归用于分析 Ktrans 与特定临床特征之间的关联。在DLB(vs HC)组中,大脑皮层(p = 0.024)、顶叶(p = 0.007)和枕叶(p = 0.014)的Ktrans值显著高于AD组;而在DLB组中,大脑皮层(p = 0.041)和枕叶(p = 0.018)的Ktrans值显著高于AD组。所有参与者的顶叶($$upbeta$$ = 0.391; p = 0.001)和枕叶($$upbeta$$ = 0.357; p = 0.002)的Ktrans值也显示出增加,在对年龄和性别进行调整后,这与临床痴呆评级的较高分数显著相关。同样,经上述调整后,大脑皮层($$upbeta$$ = 0.285; p = 0.015)、额叶($$upbeta$$ = 0.237; p = 0.043)和顶叶($$upbeta$$ = 0.265; p = 0.024)的Ktrans值增加与血浆Aβ1-42/Aβ1-40比率升高有显著联系。BBB 渗漏是 DLB 的常见特征,在大脑的某些区域可能比 AD 更为严重。BBB 渗漏似乎与血浆 Aβ1-42/Aβ1-40 比率和痴呆症严重程度相关。
{"title":"Blood–brain barrier breakdown in dementia with Lewy bodies","authors":"Jinghuan Gan, Ziming Xu, Zhichao Chen, Shuai Liu, Hao Lu, Yajie Wang, Hao Wu, Zhihong Shi, Huijun Chen, Yong Ji","doi":"10.1186/s12987-024-00575-z","DOIUrl":"https://doi.org/10.1186/s12987-024-00575-z","url":null,"abstract":"Blood–brain barrier (BBB) dysfunction has been viewed as a potential underlying mechanism of neurodegenerative disorders, possibly involved in the pathogenesis and progression of Alzheimer’s disease (AD). However, a relation between BBB dysfunction and dementia with Lewy bodies (DLB) has yet to be systematically investigated. Given the overlapping clinical features and neuropathology of AD and DLB, we sought to evaluate BBB permeability in the context of DLB and determine its association with plasma amyloid-β (Aβ) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). For this prospective study, we examined healthy controls (n = 24, HC group) and patients diagnosed with AD (n = 29) or DLB (n = 20) between December 2020 and April 2022. Based on DCE-MRI studies, mean rates of contrast agent transfer from intra- to extravascular spaces (Ktrans) were calculated within regions of interest. Spearman’s correlation and multivariate linear regression were applied to analyze associations between Ktrans and specific clinical characteristics. In members of the DLB (vs HC) group, Ktrans values of cerebral cortex (p = 0.024), parietal lobe (p = 0.007), and occipital lobe (p = 0.014) were significantly higher; and Ktrans values of cerebral cortex (p = 0.041) and occipital lobe (p = 0.018) in the DLB group were significantly increased, relative to those of the AD group. All participants also showed increased Ktrans values of parietal ( $$upbeta$$ = 0.391; p = 0.001) and occipital ( $$upbeta$$ = 0.357; p = 0.002) lobes that were significantly associated with higher scores of the Clinical Dementia Rating, once adjusted for age and sex. Similarly, increased Ktrans values of cerebral cortex ( $$upbeta$$ = 0.285; p = 0.015), frontal lobe ( $$upbeta$$ = 0.237; p = 0.043), and parietal lobe ( $$upbeta$$ = 0.265; p = 0.024) were significantly linked to higher plasma Aβ1-42/Aβ1-40 ratios, after above adjustments. BBB leakage is a common feature of DLB and possibly is even more severe than in the setting of AD for certain regions of the brain. BBB leakage appears to correlate with plasma Aβ1-42/Aβ1-40 ratio and dementia severity.","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"12 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fluids and Barriers of the CNS
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1