Introduction: Flow is characterized by complete immersion and optimal engagement in a task, striking a balance between challenge and skill. Recent neuroimaging studies suggest that flow involves dynamic interactions among large-scale brain networks, particularly the default mode network (DMN) and the executive control network (ECN). This review aims to synthesize current findings on how flow-related DMN-ECN connectivity supports creativity and emotional regulation (ER).
Methodology: Following PRISMA guidelines, we searched PubMed, PsycINFO, and Google Scholar for peer-reviewed neuroimaging studies that experimentally induced or measured flow states. Inclusion criteria encompassed task-based and resting-state fMRI, PET, or EEG designs focusing on DMN, ECN, or related networks (e.g., salience, reward), and studies explicitly reporting on creativity or ER outcomes. We extracted data on sample characteristics, flow induction methods, neuroimaging modalities, and main findings regarding DMN/ECN activation and connectivity. Risk of bias was assessed in the domains of selection, performance, detection, attrition, and reporting.
Results: Nine studies met the inclusion criteria. Across diverse tasks-ranging from video games to jazz improvisation-flow was consistently associated with (1) down-regulation of core DMN regions (e.g., medial prefrontal cortex, posterior cingulate cortex) linked to diminished self-referential thought, (2) increased activity in lateral prefrontal and parietal areas underpinning attentional control, and (3) functional connectivity between networks often considered anti-correlated (e.g., DMN and ECN). This integrated network state appears to facilitate simultaneous idea generation (DMN) and goal-directed processing (ECN), supporting creativity. Additionally, reduced amygdala activity and insula-reward network coupling during flow suggest potential benefits for emotional regulation, allowing high focus and low anxiety.
Conclusion: Flow emerges as a unique neurocognitive phenomenon marked by selective DMN suppression and enhanced ECN engagement. Such network reconfiguration fosters creativity through DMN-ECN synergy while providing emotional stability via reduced self-monitoring and negative affect. Although these findings are promising, further research should employ larger, more diverse samples, incorporate causal and longitudinal designs, and explicitly measure ER outcomes. Elucidating the neurochemical underpinnings of flow (e.g., dopamine release) and individual differences in "flow-proneness" remains an important future direction.
扫码关注我们
求助内容:
应助结果提醒方式:
