Bisphenol F (BPF) has become a new risk factor for male semen quality, but its specific mechanism is still unclear. Therefore, this study explored the potential mechanism of BPF affecting male semen quality from the perspective of ferroptosis and m6A RNA methylation. In vivo experiments showed that BPF destroyed the structure of seminiferous tubules, reduced the layers of spermatogenic cells, and reduced semen quality in mice. Moreover, BPF reduced cell viability and induced ferroptosis in GC-2 cells in vitro. Meanwhile, BPF inhibited the expression of fat mass and obesity-associated gene (FTO). Therefore, we constructed differential expression model of FTO and detected key indicators of ferroptosis such as Fe2+, malondialdehyde (MDA), and lipid peroxide (LPO). The results found that FTO was important in inhibiting BPF-induced ferroptosis in GC-2 cells. Mechanistically, we found that the m6A modification level on ferritin heavy chain 1 (FTH1) mRNA increased after interfering with FTO by MeRIP assay. Moreover, the RIP assay showed that both YTH N6-methyladenosine RNA binding protein F1 (YTHDF1) and YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) could bind FTH1 mRNA to regulate its expression. This study suggests that FTO regulates the expression of FTH1 in YTHDF1 and YTHDF2 dependent manner and mediates ferroptosis in GC-2 cells, thus alleviating the reproductive damage induced by BPF.