首页 > 最新文献

Free Radical Research最新文献

英文 中文
Identification of narciclasine as a novel NRF2 inhibitor. 新型NRF2抑制剂水仙精的鉴定。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-15 DOI: 10.1080/10715762.2025.2451679
Hoang Hai Ngo, Bo-Yeung Yu, Jeong-Eun Lee, Hyunwoo Kim, Young-Sam Keum

Cancer genome sequencing studies have identified somatic mutations in the KEAP1/NRF2 pathway. In an effort to identify novel NRF2 small molecule inhibitor(s), we have screened a natural compound library comprising 1330 chemicals in A549-ARE-GFP-luciferase cells and identified that narciclasine significantly inhibits NRF2-dependent luciferase activity. Narciclasine suppressed the expression of NRF2 and NRF2 target genes, caused significant oxidative stress, and sensitized cisplatin-mediated apoptosis in A549 cells. In addition, we have observed that WD Repeat Domain 43 (WDR43) serves as a direct target of narciclasine for the inhibition of NRF2 as narciclasine binds to recombinant WDR43 in vitro and silencing WDR43 attenuated the inhibition of NRF2 by narciclasine in A549 cells. Finally, we observed that administration of narciclasine significantly decreased the growth of A549 xenografts. Together, our results demonstrate that the inhibition of NRF2 by narciclasine is mediated by WDR43 and future studies are necessary to elucidate the exact mechanism of how WDR43 mediates the inhibition of NRF2 by narciclasine.

癌症基因组测序研究已经确定了KEAP1/NRF2通路中的体细胞突变。为了鉴定新的NRF2小分子抑制剂,我们在a549 - are - gfp -荧光素酶细胞中筛选了包含1330种化学物质的天然化合物文库,并发现水仙环素显著抑制NRF2依赖性荧光素酶活性。水仙碱抑制NRF2和NRF2靶基因的表达,引起明显的氧化应激,并使顺铂介导的A549细胞凋亡增敏。此外,我们观察到WD Repeat Domain 43 (WDR43)是水仙素抑制NRF2的直接靶点,水仙素在体外与重组WDR43结合,沉默WDR43可以减弱水仙素对A549细胞NRF2的抑制作用。最后,我们观察到给药水仙素显著降低了A549异种移植物的生长。综上所述,我们的研究结果表明,水仙素对NRF2的抑制是由WDR43介导的,未来的研究需要进一步阐明WDR43介导水仙素对NRF2抑制的确切机制。
{"title":"Identification of narciclasine as a novel NRF2 inhibitor.","authors":"Hoang Hai Ngo, Bo-Yeung Yu, Jeong-Eun Lee, Hyunwoo Kim, Young-Sam Keum","doi":"10.1080/10715762.2025.2451679","DOIUrl":"10.1080/10715762.2025.2451679","url":null,"abstract":"<p><p>Cancer genome sequencing studies have identified somatic mutations in the KEAP1/NRF2 pathway. In an effort to identify novel NRF2 small molecule inhibitor(s), we have screened a natural compound library comprising 1330 chemicals in A549-ARE-GFP-luciferase cells and identified that narciclasine significantly inhibits NRF2-dependent luciferase activity. Narciclasine suppressed the expression of NRF2 and NRF2 target genes, caused significant oxidative stress, and sensitized cisplatin-mediated apoptosis in A549 cells. In addition, we have observed that WD Repeat Domain 43 (WDR43) serves as a direct target of narciclasine for the inhibition of NRF2 as narciclasine binds to recombinant WDR43 <i>in vitro</i> and silencing <i>WDR43</i> attenuated the inhibition of NRF2 by narciclasine in A549 cells. Finally, we observed that administration of narciclasine significantly decreased the growth of A549 xenografts. Together, our results demonstrate that the inhibition of NRF2 by narciclasine is mediated by WDR43 and future studies are necessary to elucidate the exact mechanism of how WDR43 mediates the inhibition of NRF2 by narciclasine.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"102-115"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the impact of Apelin and Reactive Oxygen Species on autophagy and cell senescence in pre-eclampsia. 探讨Apelin和活性氧对子痫前期自噬和细胞衰老的影响。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-07 DOI: 10.1080/10715762.2024.2446337
Xue Peng, Xi Tan, Li Dai, Wei Xia, Zhao Wu

This research investigates the interplay between Reactive Oxygen Species (ROS) and Apelin (APLN) in regulating autophagy, with implications for placental cell senescence and apoptosis in pre-eclampsia (PE). We manipulated APLN expression using sgRNA to study its effects on ROS levels and subsequent cellular responses. Our findings reveal that APLN overexpression elevates ROS production, accelerating cellular senescence and apoptosis. In contrast, silencing APLN enhances autophagy, thereby diminishing cellular aging and apoptosis. These outcomes were confirmed in vitro and in vivo experiments, establishing a causative relationship between ROS-mediated APLN modulation and altered placental cell dynamics in PE. The results suggest potential therapeutic targets within the ROS and APLN pathways to alleviate detrimental changes in the placenta, offering new strategies for the clinical management of PE. This study emphasizes the crucial role of autophagy in placental health and sets the stage for future investigations into therapeutic interventions for pregnancy-related complications.

本研究探讨了活性氧(ROS)和Apelin (APLN)在调节自噬中的相互作用,以及对子痫前期(PE)胎盘细胞衰老和凋亡的影响。我们使用sgRNA操纵APLN表达,研究其对ROS水平和随后的细胞反应的影响。我们的研究结果表明,APLN过表达可提高ROS的产生,加速细胞衰老和凋亡。相反,沉默APLN可增强自噬,从而减少细胞衰老和凋亡。这些结果在体外和体内实验中得到证实,建立了ros介导的APLN调节与PE胎盘细胞动力学改变之间的因果关系。这些结果提示了ROS和APLN通路内的潜在治疗靶点,以减轻胎盘的有害变化,为PE的临床管理提供了新的策略。本研究强调了自噬在胎盘健康中的重要作用,并为未来研究妊娠相关并发症的治疗干预奠定了基础。
{"title":"Exploring the impact of Apelin and Reactive Oxygen Species on autophagy and cell senescence in pre-eclampsia.","authors":"Xue Peng, Xi Tan, Li Dai, Wei Xia, Zhao Wu","doi":"10.1080/10715762.2024.2446337","DOIUrl":"10.1080/10715762.2024.2446337","url":null,"abstract":"<p><p>This research investigates the interplay between Reactive Oxygen Species (ROS) and Apelin (APLN) in regulating autophagy, with implications for placental cell senescence and apoptosis in pre-eclampsia (PE). We manipulated APLN expression using sgRNA to study its effects on ROS levels and subsequent cellular responses. Our findings reveal that APLN overexpression elevates ROS production, accelerating cellular senescence and apoptosis. In contrast, silencing APLN enhances autophagy, thereby diminishing cellular aging and apoptosis. These outcomes were confirmed <i>in vitro</i> and <i>in vivo</i> experiments, establishing a causative relationship between ROS-mediated APLN modulation and altered placental cell dynamics in PE. The results suggest potential therapeutic targets within the ROS and APLN pathways to alleviate detrimental changes in the placenta, offering new strategies for the clinical management of PE. This study emphasizes the crucial role of autophagy in placental health and sets the stage for future investigations into therapeutic interventions for pregnancy-related complications.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"23-48"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of inflammatory signaling by vitamin E metabolites and its therapeutic implications.
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-01 Epub Date: 2025-01-08 DOI: 10.1080/10715762.2024.2449457
Seher Mese-Tayfur, Tugce Demirel-Yalcıner, Anna Migni, Desirée Bartolini, Francesco Galli, Nesrin Kartal Ozer, Erdi Sozen

Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2 R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation. However, hepatic metabolism of these compounds via cytochrome P450-initiated side chain ω-oxidation involves the production of long-chain metabolites (LCMs) followed by intermediate (ICMs) and short-chain metabolites (SCMs), respectively. Despite the initial studies indicating these metabolites as catabolic-end products, recent findings identify their importance in providing biological functions. In this scope, LCMs, especially 13'-carboxychromanols (13'-COOHs), have been reported to hold stronger anti-inflammatory capacity than their unmetabolized precursors due to their ability to inhibit 5-lipoxygenase and cyclooxygenase-catalyzed eicosanoid formation, as well as their modulation of the pro-inflammatory transcriptional protein nuclear factor κB (NF-κB). Also, these LCMs have been reported to enhance detoxification and lipid metabolism pathways associated with cellular inflammation by modulating the nuclear receptors peroxisome proliferator-activated receptor-γ (PPARγ) and pregnane x receptor (PXR). These properties of LCMs will be described in this narrative review article focusing on recent information regarding their bioavailability, anti-inflammatory effects, and mechanisms of action in acute and chronic inflammatory disorders.

{"title":"Modulation of inflammatory signaling by vitamin E metabolites and its therapeutic implications.","authors":"Seher Mese-Tayfur, Tugce Demirel-Yalcıner, Anna Migni, Desirée Bartolini, Francesco Galli, Nesrin Kartal Ozer, Erdi Sozen","doi":"10.1080/10715762.2024.2449457","DOIUrl":"10.1080/10715762.2024.2449457","url":null,"abstract":"<p><p>Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2 R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation. However, hepatic metabolism of these compounds <i>via</i> cytochrome P450-initiated side chain ω-oxidation involves the production of long-chain metabolites (LCMs) followed by intermediate (ICMs) and short-chain metabolites (SCMs), respectively. Despite the initial studies indicating these metabolites as catabolic-end products, recent findings identify their importance in providing biological functions. In this scope, LCMs, especially 13'-carboxychromanols (13'-COOHs), have been reported to hold stronger anti-inflammatory capacity than their unmetabolized precursors due to their ability to inhibit 5-lipoxygenase and cyclooxygenase-catalyzed eicosanoid formation, as well as their modulation of the pro-inflammatory transcriptional protein nuclear factor κB (NF-κB). Also, these LCMs have been reported to enhance detoxification and lipid metabolism pathways associated with cellular inflammation by modulating the nuclear receptors peroxisome proliferator-activated receptor-γ (PPARγ) and pregnane x receptor (PXR). These properties of LCMs will be described in this narrative review article focusing on recent information regarding their bioavailability, anti-inflammatory effects, and mechanisms of action in acute and chronic inflammatory disorders.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"59 1","pages":"86-101"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apelin deficiency exacerbates cardiac injury following infarction by accelerating cardiomyocyte ferroptosis. Apelin缺乏通过加速心肌细胞铁下垂加重心肌梗死后的心脏损伤。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-28 DOI: 10.1080/10715762.2024.2443606
Yuechu Zhao, Xiaoting Liang, Ting Li, Zhuang Shao, Zhi Cao, Yi Zeng, Xiaofei Yan, Qi Chen, Hao Zhou, Weifeng Li, Guifen Cheng, Yaping Jiang, Xin Li, Yuelin Zhang, Bei Hu

Apelin is an endogenous ligand for the Apelin receptor and is a critical protective effector in myocardial infarction (MI). Nevertheless, these protective mechanisms are not fully understood. Ferroptosis is the major driving factor of MI. This study aimed to investigate the effects and underlying regulatory mechanisms of Apelin on cardiomyocyte ferroptosis in MI. A model of MI was induced in adult C57BL/6J wild type (WT) and Apelin knockout (Apelin-/-) mice. Cardiac function was examined by echocardiography 4 weeks post-MI. RNA-seq, histochemical analyses, and Western blotting were applied to examine the effects of Apelin knockout on the transcriptome and pathological remodeling following infarction and the molecular mechanisms. Mice neonatal cardiomyocytes (NCMs) were used to establish the serum deprivation/hypoxia (SD/H) model in vitro. Compared with WT mice, Apelin-/- mice exhibited more severe impairment of cardiac function and increased fibrosis following infarction. Transcriptome and biochemical analyses revealed the involvement of ferroptosis in mediating Apelin function in MI. Ferroptosis-related proteins were significantly increased post-MI in Apelin-/- mice whereas p-AMPK was greatly decreased. Apelin treatment activated the AMPK pathway and thereby inhibited ferroptosis of NCMs induced by SD/H in vitro. These protective effects were partially reversed by AMPK inhibitor. Apelin deficiency aggravated cardiac dysfunction following infarction by activating cardiomyocyte ferroptosis via inhibition of the AMPK pathway. This offers a novel potential therapeutic target for MI treatment.

Apelin是Apelin受体的内源性配体,在心肌梗死(MI)中具有重要的保护作用。然而,这些保护机制尚不完全清楚。本文以C57BL/6J野生型(WT)和Apelin敲除型(Apelin-/-)成年小鼠为实验对象,建立心肌梗死模型,探讨Apelin对心肌梗死心肌细胞凋亡的影响及其调控机制。心肌梗死后4周行超声心动图检查心功能。应用RNA-seq、组织化学分析和Western blotting检测Apelin敲除对梗死后转录组和病理重塑的影响及其分子机制。采用小鼠新生心肌细胞(ncm)体外建立血清剥夺/缺氧(SD/H)模型。与WT小鼠相比,Apelin-/-小鼠在梗死后表现出更严重的心功能损害和纤维化增加。转录组和生化分析显示,铁下垂介导了心肌梗死中Apelin的功能。在Apelin-/-小鼠心肌梗死后,铁下垂相关蛋白显著增加,而p-AMPK则显著降低。Apelin激活AMPK通路,从而抑制SD/H诱导的ncm铁下垂。这些保护作用被AMPK抑制剂部分逆转。Apelin缺乏通过抑制AMPK通路激活心肌细胞铁下垂而加重梗死后心功能障碍。这为心肌梗死治疗提供了一个新的潜在治疗靶点。
{"title":"Apelin deficiency exacerbates cardiac injury following infarction by accelerating cardiomyocyte ferroptosis.","authors":"Yuechu Zhao, Xiaoting Liang, Ting Li, Zhuang Shao, Zhi Cao, Yi Zeng, Xiaofei Yan, Qi Chen, Hao Zhou, Weifeng Li, Guifen Cheng, Yaping Jiang, Xin Li, Yuelin Zhang, Bei Hu","doi":"10.1080/10715762.2024.2443606","DOIUrl":"10.1080/10715762.2024.2443606","url":null,"abstract":"<p><p>Apelin is an endogenous ligand for the Apelin receptor and is a critical protective effector in myocardial infarction (MI). Nevertheless, these protective mechanisms are not fully understood. Ferroptosis is the major driving factor of MI. This study aimed to investigate the effects and underlying regulatory mechanisms of Apelin on cardiomyocyte ferroptosis in MI. A model of MI was induced in adult C57BL/6J wild type (WT) and Apelin knockout (Apelin<sup>-/-</sup>) mice. Cardiac function was examined by echocardiography 4 weeks post-MI. RNA-seq, histochemical analyses, and Western blotting were applied to examine the effects of Apelin knockout on the transcriptome and pathological remodeling following infarction and the molecular mechanisms. Mice neonatal cardiomyocytes (NCMs) were used to establish the serum deprivation/hypoxia (SD/H) model <i>in vitro</i>. Compared with WT mice, Apelin<sup>-/-</sup> mice exhibited more severe impairment of cardiac function and increased fibrosis following infarction. Transcriptome and biochemical analyses revealed the involvement of ferroptosis in mediating Apelin function in MI. Ferroptosis-related proteins were significantly increased post-MI in Apelin<sup>-/-</sup> mice whereas p-AMPK was greatly decreased. Apelin treatment activated the AMPK pathway and thereby inhibited ferroptosis of NCMs induced by SD/H <i>in vitro.</i> These protective effects were partially reversed by AMPK inhibitor. Apelin deficiency aggravated cardiac dysfunction following infarction by activating cardiomyocyte ferroptosis via inhibition of the AMPK pathway. This offers a novel potential therapeutic target for MI treatment.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"854-867"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New era of plasma dentistry. 等离子牙科的新时代。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-27 DOI: 10.1080/10715762.2024.2446323
Kotaro Sato, Hiromasa Tanaka, Yasumasa Okazaki, Masaru Hori, Hideharu Hibi, Shinya Toyokuni

Plasma, which was coined by Irving Langmuir in 1928, is the fourth physical state after the solid/liquid/gas phases. Low-temperature plasma (LTP) is a contradictory condition that involves high energy with free radicals at near-body temperatures and was developed through engineering in the 1990's. Research on LTP in engineering and medical fields has rapidly developed since the 2000's. LTP can be applied through direct or indirect exposure, and there are advantages to both methods. In the medical field, LTP has been found to exert several effects, such as wound healing, hemostasis and anticancer effects, mainly based on different levels of oxidative stress. In the dental field, studies have been performed on LTP applications for general dental procedures, such as restorative, periodontal and prosthodontic procedures, and for oral cancer treatment. Many studies have demonstrated the effectiveness of LTP. Compared with other organs, the anatomical characteristic of the oral cavity is easy direct observation, which is highly advantageous for clinical applications. Due to its good accessibility and efficiency, plasma dentistry is expected to be applied to various dental applications in clinics in the near future.

等离子体是继固/液/气相之后的第四种物理状态,由Irving Langmuir于1928年提出。低温等离子体(LTP)是20世纪90年代通过工程发展起来的一种涉及近体温度下高能量和自由基的矛盾状态。自2000年代以来,LTP在工程和医学领域的研究得到了迅速发展。LTP可以通过直接或间接暴露来应用,两种方法都有各自的优点。在医学领域,LTP已被发现发挥多种作用,如伤口愈合、止血和抗癌作用,主要基于不同水平的氧化应激。在牙科领域,LTP在一般牙科手术中的应用研究,如修复、牙周和修复手术,以及口腔癌治疗。许多研究已经证明了LTP的有效性。与其他脏器相比,口腔的解剖特点便于直接观察,对临床应用十分有利。由于等离子体牙科具有良好的可及性和高效性,有望在不久的将来应用于临床的各种牙科应用。
{"title":"New era of plasma dentistry.","authors":"Kotaro Sato, Hiromasa Tanaka, Yasumasa Okazaki, Masaru Hori, Hideharu Hibi, Shinya Toyokuni","doi":"10.1080/10715762.2024.2446323","DOIUrl":"10.1080/10715762.2024.2446323","url":null,"abstract":"<p><p>Plasma, which was coined by Irving Langmuir in 1928, is the fourth physical state after the solid/liquid/gas phases. Low-temperature plasma (LTP) is a contradictory condition that involves high energy with free radicals at near-body temperatures and was developed through engineering in the 1990's. Research on LTP in engineering and medical fields has rapidly developed since the 2000's. LTP can be applied through direct or indirect exposure, and there are advantages to both methods. In the medical field, LTP has been found to exert several effects, such as wound healing, hemostasis and anticancer effects, mainly based on different levels of oxidative stress. In the dental field, studies have been performed on LTP applications for general dental procedures, such as restorative, periodontal and prosthodontic procedures, and for oral cancer treatment. Many studies have demonstrated the effectiveness of LTP. Compared with other organs, the anatomical characteristic of the oral cavity is easy direct observation, which is highly advantageous for clinical applications. Due to its good accessibility and efficiency, plasma dentistry is expected to be applied to various dental applications in clinics in the near future.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"868-874"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical studies on the antioxidant activity of potential marine xanthones. 关于潜在海洋氧杂蒽酮抗氧化活性的理论研究。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-15 DOI: 10.1080/10715762.2024.2438918
Phan Thi Thuy, Nguyen Xuan Ha

In this study, a quantum chemical exploration was conducted to assess the antioxidant activity of xanthones isolated from marine sources, focusing on thermodynamics and kinetics within simulated physiological environments. DFT analysis revealed that xanthones such as 1,4,7-trihydroxy-6-methylxanthone (1), 1,4,5-trihydroxy-2-methylxanthone (2), arthone C (3), 2,3,4,6,8-pentahydroxy-1-methylxanthone (4), sterigmatocystin (5), oxisterigmatocystin C (6), and oxisterigmatocystin D (7) favor the SPLET pathway in water and the FHT pathway in lipid environments. The kinetic study of these xanthones reacting with the hydroperoxyl radical (HOO•) was conducted using the formal hydrogen atom transfer (FHT) mechanism and the single electron transfer (SET) mechanism. The results showed that compounds 1-4 exhibited antioxidant activities in aqueous environments surpassing that of the reference compound Trolox, with rate constants ranging from 2.02 x 105 to 9.44 x 107 M-1·s-1. In lipid environments, compounds 1 and 2 also demonstrated higher rate constants than Trolox. Additionally, molecular docking and molecular dynamics analysis suggested that xanthones 1-7 potentially inhibit the pro-oxidant effect of the Keap1 enzyme, highlighting their promise as both antiradicals and enzyme inhibitors.

在本研究中,通过量子化学探索来评估从海洋来源分离的山酮的抗氧化活性,重点关注模拟生理环境下的热力学和动力学。DFT分析显示,1,4,7-三羟基-6-甲基口山酮(1)、1,4,5-三羟基-2-甲基口山酮(2)、arthone C(3)、2,3,4,6,8-五羟基-1-甲基口山酮(4)、sterigmatocystin(5)、oxisterigmatocystin C(6)和oxisterigmatocystin D(7)等口山酮类药物有利于水中的SPLET途径和脂质环境中的FHT途径。采用形式氢原子转移(FHT)机制和单电子转移(SET)机制对这些山酮类化合物与羟基自由基(HOO•)的反应进行了动力学研究。结果表明,化合物1 ~ 4在水环境中的抗氧化活性优于对照化合物Trolox,其速率常数为2.02 × 105 ~ 9.44 × 107 M-1·s-1。在脂质环境中,化合物1和2也表现出比Trolox更高的速率常数。此外,分子对接和分子动力学分析表明,口山酮1-7可能抑制Keap1酶的促氧化作用,突出了它们作为抗自由基和酶抑制剂的前景。
{"title":"Theoretical studies on the antioxidant activity of potential marine xanthones.","authors":"Phan Thi Thuy, Nguyen Xuan Ha","doi":"10.1080/10715762.2024.2438918","DOIUrl":"10.1080/10715762.2024.2438918","url":null,"abstract":"<p><p>In this study, a quantum chemical exploration was conducted to assess the antioxidant activity of xanthones isolated from marine sources, focusing on thermodynamics and kinetics within simulated physiological environments. DFT analysis revealed that xanthones such as 1,4,7-trihydroxy-6-methylxanthone (<b>1</b>), 1,4,5-trihydroxy-2-methylxanthone (<b>2</b>), arthone C (<b>3</b>), 2,3,4,6,8-pentahydroxy-1-methylxanthone (<b>4</b>), sterigmatocystin (<b>5</b>), oxisterigmatocystin C (<b>6</b>), and oxisterigmatocystin D (<b>7</b>) favor the SPLET pathway in water and the FHT pathway in lipid environments. The kinetic study of these xanthones reacting with the hydroperoxyl radical (HOO•) was conducted using the formal hydrogen atom transfer (FHT) mechanism and the single electron transfer (SET) mechanism. The results showed that compounds <b>1</b>-<b>4</b> exhibited antioxidant activities in aqueous environments surpassing that of the reference compound Trolox, with rate constants ranging from 2.02 x 10<sup>5</sup> to 9.44 x 10<sup>7</sup> M<sup>-1</sup>·s<sup>-1</sup>. In lipid environments, compounds <b>1</b> and <b>2</b> also demonstrated higher rate constants than Trolox. Additionally, molecular docking and molecular dynamics analysis suggested that xanthones <b>1</b>-<b>7</b> potentially inhibit the pro-oxidant effect of the Keap1 enzyme, highlighting their promise as both antiradicals and enzyme inhibitors.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"826-840"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urban aerosol particulate matter promotes cellular senescence through mitochondrial ROS-mediated Akt/Nrf2 downregulation in human retinal pigment epithelial cells. 城市气溶胶颗粒物通过线粒体ros介导的Akt/Nrf2下调促进人视网膜色素上皮细胞衰老。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-08 DOI: 10.1080/10715762.2024.2438919
Beom Su Park, EunJin Bang, Hyun Hwangbo, Gi-Young Kim, JaeHun Cheong, Yung Hyun Choi

Urban aerosol particulate matter (UPM) is widespread in the environment, and its concentration continues to increase. Several recent studies have reported that UPM results in premature cellular senescence, but few studies have investigated the molecular basis of UPM-induced senescence in retinal pigment epithelial (RPE) cells. In this study, we primarily evaluated UPM-induced premature senescence and the protective function of nuclear factor erythroid 2-related factor 2 (Nrf2) in human RPE ARPE-19 cells. The findings indicated that UPM exposure substantially induced premature cellular senescence in ARPE-19 cells, as observed by increased β-galactosidase activity, expression levels of senescence-associated marker proteins, and senescence-associated phenotypes. Such UPM-induced senescence is associated with mitochondrial oxidative stress-mediated phosphatidylinositol 3'-kinase/Akt/Nrf2 downregulation. Sulforaphane-mediated Nrf2 activation Sulforaphane-mediated upregulation of phosphorylated Nrf2 suppressed the decrease in its target antioxidant gene, NAD(P)H quinone oxidoreductase 1, under UPM, which notably prevented ARPE-19 cells from UPM-induced cellular senescence. By contrast, Nrf2 knockdown exacerbated cellular senescence and promoted oxidative stress. Collectively, our results demonstrate the regulatory role of Nrf2 in UPM-induced senescence of RPE cells and suggest that Nrf2 is a potential molecular target.

城市气溶胶颗粒物(UPM)在环境中广泛存在,且浓度持续增加。最近的一些研究报道了UPM导致细胞过早衰老,但很少有研究调查UPM诱导视网膜色素上皮细胞衰老的分子基础。在这项研究中,我们主要评估了upm诱导的人RPE ARPE-19细胞的过早衰老和核因子红系2相关因子2 (Nrf2)的保护功能。研究结果表明,UPM暴露显著诱导ARPE-19细胞过早衰老,通过增加β-半乳糖苷酶活性、衰老相关标记蛋白表达水平和衰老相关表型观察到。upm诱导的衰老与线粒体氧化应激介导的磷脂酰肌醇3′-激酶/Akt/Nrf2下调有关。萝卜硫素介导的Nrf2磷酸化上调可抑制UPM作用下Nrf2靶抗氧化基因NAD(P)H醌氧化还原酶1的降低,显著阻止UPM诱导的ARPE-19细胞衰老。相反,Nrf2敲低会加剧细胞衰老,促进氧化应激。总之,我们的研究结果证明了Nrf2在upm诱导的RPE细胞衰老中的调节作用,并表明Nrf2是一个潜在的分子靶点。
{"title":"Urban aerosol particulate matter promotes cellular senescence through mitochondrial ROS-mediated Akt/Nrf2 downregulation in human retinal pigment epithelial cells.","authors":"Beom Su Park, EunJin Bang, Hyun Hwangbo, Gi-Young Kim, JaeHun Cheong, Yung Hyun Choi","doi":"10.1080/10715762.2024.2438919","DOIUrl":"10.1080/10715762.2024.2438919","url":null,"abstract":"<p><p>Urban aerosol particulate matter (UPM) is widespread in the environment, and its concentration continues to increase. Several recent studies have reported that UPM results in premature cellular senescence, but few studies have investigated the molecular basis of UPM-induced senescence in retinal pigment epithelial (RPE) cells. In this study, we primarily evaluated UPM-induced premature senescence and the protective function of nuclear factor erythroid 2-related factor 2 (Nrf2) in human RPE ARPE-19 cells. The findings indicated that UPM exposure substantially induced premature cellular senescence in ARPE-19 cells, as observed by increased β-galactosidase activity, expression levels of senescence-associated marker proteins, and senescence-associated phenotypes. Such UPM-induced senescence is associated with mitochondrial oxidative stress-mediated phosphatidylinositol 3'-kinase/Akt/Nrf2 downregulation. Sulforaphane-mediated Nrf2 activation Sulforaphane-mediated upregulation of phosphorylated Nrf2 suppressed the decrease in its target antioxidant gene, NAD(P)H quinone oxidoreductase 1, under UPM, which notably prevented ARPE-19 cells from UPM-induced cellular senescence. By contrast, Nrf2 knockdown exacerbated cellular senescence and promoted oxidative stress. Collectively, our results demonstrate the regulatory role of Nrf2 in UPM-induced senescence of RPE cells and suggest that Nrf2 is a potential molecular target.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"841-853"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of taraxerol acetate extracted from dandelion on alleviating oxidative stress responses in vitro. 蒲公英乙酸taraxerol对体外抗氧化应激反应的影响。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-12-05 DOI: 10.1080/10715762.2024.2437640
Jiaquan Lu, Siying Yi, Shuna Wang, Yafang Shang, Shaohua Yang, Kai Cui

Oxidative stress can be alleviated by antioxidants intakes. Taraxerol acetate (TA), a natural triterpenoid extracted from dandelions, may reduce the risk of metabolic disorders by regulating oxidative stress. In the study, we investigated the effects of TA in relieving oxidative stress in murine intestinal epithelial cells using multiomics techniques. Here, we found that TA activated the antioxidant defense system. Total antioxidant capacity (T-AOC) and Catalase (CAT) activity notably increased after TA treatment. Additionally, TA treatment effectively reduced the levels of lactate dehydrogenase (LDH) and malonaldehyde (MDA) and alleviated H2O2-induced oxidative stress. Furthermore, TA induced significant changes in the levels of 30 important metabolites. Specifically, it activated the complement and coagulation cascades, NF-κB and MAPK and glycerophospholipid pathways, resulting in altered transcript levels of related genes, such as Serpinb9e, SCD2, Hspa1b, and Hspa1a. Thus, the results demonstrated that TA potentially could promote health by alleviating H2O2-induced oxidative damage and provide valuable insights for its further development.

摄入抗氧化剂可以减轻氧化应激。醋酸Taraxerol (TA)是一种从蒲公英中提取的天然三萜,可以通过调节氧化应激来降低代谢紊乱的风险。在这项研究中,我们利用多组学技术研究了TA在缓解小鼠肠上皮细胞氧化应激中的作用。在这里,我们发现TA激活了抗氧化防御系统。总抗氧化能力(T-AOC)和过氧化氢酶(CAT)活性显著提高。此外,TA处理能有效降低乳酸脱氢酶(LDH)和丙二醛(MDA)水平,缓解h2o2诱导的氧化应激。此外,TA诱导了30种重要代谢物水平的显著变化。具体来说,它激活了补体和凝血级联、NF-κB和MAPK以及甘油磷脂途径,导致相关基因转录水平的改变,如Serpinb9e、SCD2、Hspa1b和Hspa1a。因此,这些结果表明TA可能通过减轻h2o2诱导的氧化损伤来促进健康,并为其进一步开发提供了有价值的见解。
{"title":"The effect of taraxerol acetate extracted from dandelion on alleviating oxidative stress responses <i>in vitro</i>.","authors":"Jiaquan Lu, Siying Yi, Shuna Wang, Yafang Shang, Shaohua Yang, Kai Cui","doi":"10.1080/10715762.2024.2437640","DOIUrl":"10.1080/10715762.2024.2437640","url":null,"abstract":"<p><p>Oxidative stress can be alleviated by antioxidants intakes. Taraxerol acetate (TA), a natural triterpenoid extracted from dandelions, may reduce the risk of metabolic disorders by regulating oxidative stress. In the study, we investigated the effects of TA in relieving oxidative stress in murine intestinal epithelial cells using multiomics techniques. Here, we found that TA activated the antioxidant defense system. Total antioxidant capacity (T-AOC) and Catalase (CAT) activity notably increased after TA treatment. Additionally, TA treatment effectively reduced the levels of lactate dehydrogenase (LDH) and malonaldehyde (MDA) and alleviated H<sub>2</sub>O<sub>2</sub>-induced oxidative stress. Furthermore, TA induced significant changes in the levels of 30 important metabolites. Specifically, it activated the complement and coagulation cascades, NF-κB and MAPK and glycerophospholipid pathways, resulting in altered transcript levels of related genes, such as Serpinb9e, SCD2, Hspa1b, and Hspa1a. Thus, the results demonstrated that TA potentially could promote health by alleviating H<sub>2</sub>O<sub>2</sub>-induced oxidative damage and provide valuable insights for its further development.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"811-825"},"PeriodicalIF":3.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142784882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of hyperbaric oxygen therapy on the redox balance of patients with diabetic foot syndrome. 高压氧疗法对糖尿病足综合征患者氧化还原平衡的影响。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-10-19 DOI: 10.1080/10715762.2024.2417286
Paweł Sutkowy, Jarosław Paprocki, Jacek Piechocki, Alina Woźniak

Diabetic foot wounds associated with oxidative stress are treated with hyperbaric oxygen (HBO), but that may also induce the stress itself; therefore, we studied the effect of HBO treatments on the oxidant-antioxidant balance in the venous blood of patients with diabetic foot syndrome. In addition, blood counts were also examined. 14 male patients (24-74 years), at risk of lower limb amputation were treated with 30 HBO procedures (60 min of the inhalation of pure oxygen at a pressure of 2.5 atm per day, 5 days a week). The control group consisted of 29 healthy male volunteers aged 25-69 years. No members of the group had been subjected to HBO therapy previously (ClinicalTrials.gov, no. NCT06401941). The analyzed redox parameters did not change during the experiment in the patients (p > 0.05). The concentration of thiobarbituric acid reactive substances (TBARS) in the plasma was higher in the patients before the first and after the thirtieth HBO treatments when compared to the control group. In contrast, the TBARS concentration in erythrocytes was lower in the patients after the first treatment vs. the controls. Moreover, the higher activity of catalase in the patients' erythrocytes was noted before the therapy and after the first and last treatments compared to the controls. HBO therapy increased the percentage of monocytes and platelet volume, but it decreased the volume of platelets in the patients' blood. HBO therapy does not affect the oxidant-antioxidant balance disturbed in diabetic foot patients.

与氧化应激有关的糖尿病足伤口可通过高压氧(HBO)治疗,但高压氧本身也可能诱发氧化应激;因此,我们研究了高压氧治疗对糖尿病足综合征患者静脉血中氧化-抗氧化平衡的影响。此外,我们还检查了血细胞计数。14 名面临下肢截肢风险的男性患者(24-74 岁)接受了 30 次 HBO 治疗(每天以 2.5 atm 的压力吸入纯氧 60 分钟,每周 5 天)。对照组由 29 名 25-69 岁的健康男性志愿者组成。对照组中没有人曾接受过 HBO 治疗(ClinicalTrials.gov,编号:NCT06401941)。在实验过程中,患者的氧化还原参数没有发生变化(P > 0.05)。与对照组相比,患者在第一次和第三十次 HBO 治疗前血浆中硫代巴比妥酸活性物质(TBARS)的浓度较高。相比之下,第一次治疗后患者红细胞中的 TBARS 浓度低于对照组。此外,与对照组相比,治疗前、第一次和最后一次治疗后,患者红细胞中过氧化氢酶的活性较高。HBO 疗法增加了单核细胞的百分比和血小板的体积,但减少了患者血液中血小板的体积。HBO 疗法不会影响糖尿病足患者受到干扰的氧化-抗氧化平衡。
{"title":"The impact of hyperbaric oxygen therapy on the redox balance of patients with diabetic foot syndrome.","authors":"Paweł Sutkowy, Jarosław Paprocki, Jacek Piechocki, Alina Woźniak","doi":"10.1080/10715762.2024.2417286","DOIUrl":"10.1080/10715762.2024.2417286","url":null,"abstract":"<p><p>Diabetic foot wounds associated with oxidative stress are treated with hyperbaric oxygen (HBO), but that may also induce the stress itself; therefore, we studied the effect of HBO treatments on the oxidant-antioxidant balance in the venous blood of patients with diabetic foot syndrome. In addition, blood counts were also examined. 14 male patients (24-74 years), at risk of lower limb amputation were treated with 30 HBO procedures (60 min of the inhalation of pure oxygen at a pressure of 2.5 atm per day, 5 days a week). The control group consisted of 29 healthy male volunteers aged 25-69 years. No members of the group had been subjected to HBO therapy previously (ClinicalTrials.gov, no. NCT06401941). The analyzed redox parameters did not change during the experiment in the patients (<i>p</i> > 0.05). The concentration of thiobarbituric acid reactive substances (TBARS) in the plasma was higher in the patients before the first and after the thirtieth HBO treatments when compared to the control group. In contrast, the TBARS concentration in erythrocytes was lower in the patients after the first treatment vs. the controls. Moreover, the higher activity of catalase in the patients' erythrocytes was noted before the therapy and after the first and last treatments compared to the controls. HBO therapy increased the percentage of monocytes and platelet volume, but it decreased the volume of platelets in the patients' blood. HBO therapy does not affect the oxidant-antioxidant balance disturbed in diabetic foot patients.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"723-732"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accumulation of polyunsaturated lipids fuels ferroptosis to promote liver failure after extended hepatectomy in mice. 多不饱和脂质的积累助长了铁变态反应,从而导致小鼠肝切除术后肝功能衰竭。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-11-08 DOI: 10.1080/10715762.2024.2423691
Can Huang, Jian Gan, Xiangyue Mo, Qingping Li, Leyi Liao, Biao Wang, Xianqiu Wu, Hanbiao Liang, Chen Xie, Tianzhou Peng, Yang Lei, Baoxiong Zhuang, Minghui Zeng, Yonghong Peng, Yisi Chen, Cuiting Liu, Jie Zhou, Kai Wang, Chuanjiang Li

Background: Post-hepatectomy liver failure (PHLF) is a fatal complication of hepatectomy. However, the mechanism of hepatocyte injury in PHLF remains elusive.

Methods: PHLF was induced by extended 86% hepatectomy (eHx) in mice. Lipidomics was performed to investigate the eHx-induced lipid alteration in the residual liver. Ferroptosis was assessed to screen the hepatocyte injury induced by eHx. The therapeutic effects of ferrostatin-1 (Fer-1) on PHLF were evaluated.

Results: PHLF was induced by eHx with elevation in markers of hepatocyte injury and mortality in mice within 48 h after surgery. eHx-induced hepatocyte injury was manifested by hepatocyte enlargement and hepatocyte death with glycogen depletion and lipid accumulation. Lipidomics revealed that eHx induced the accumulation of ferroptosis-favored polyunsaturated lipids. Ferroptosis was found to mediate the eHx-induced hepatocyte death in the residual liver during the development of PHLF. Fer-1 could attenuate the eHx-induced ferroptotic hepatocyte death and PHLF in mice.

Conclusions: Ferroptosis partly mediates the eHx-induced hepatocyte injury during the development of PHLF. Accumulation of polyunsaturated lipids in hepatocytes may promote eHx-induced ferroptosis, and targeting lipid peroxidation is a potential therapeutic strategy for PHLF.

背景:肝切除术后肝衰竭(PHLF肝切除术后肝衰竭(PHLF)是肝切除术的一种致命并发症。然而,PHLF 中肝细胞损伤的机制仍不明确:方法:通过延长86%肝切除术(eHx)诱导小鼠发生PHLF。脂质组学用于研究 eHx 诱导的残肝脂质改变。评估了铁蛋白沉积,以筛选eHx诱导的肝细胞损伤。评估了铁前列素-1(Fer-1)对 PHLF 的治疗效果:eHx诱导的肝细胞损伤表现为肝细胞增大和肝细胞死亡,并伴有糖原耗竭和脂质积累。脂质组学显示,eHx诱导了有利于铁变态反应的多不饱和脂质的积累。研究发现,在PHLF的发展过程中,铁突变介导了eHx诱导的残肝肝细胞死亡。Fer-1可减轻eHx诱导的小鼠铁突变肝细胞死亡和PHLF:结论:在 PHLF 的发展过程中,铁变态反应在一定程度上介导了 eHx 诱导的肝细胞损伤。肝细胞中多不饱和脂质的积累可能会促进 eHx 诱导的铁变态反应,而针对脂质过氧化是治疗 PHLF 的一种潜在策略。
{"title":"Accumulation of polyunsaturated lipids fuels ferroptosis to promote liver failure after extended hepatectomy in mice.","authors":"Can Huang, Jian Gan, Xiangyue Mo, Qingping Li, Leyi Liao, Biao Wang, Xianqiu Wu, Hanbiao Liang, Chen Xie, Tianzhou Peng, Yang Lei, Baoxiong Zhuang, Minghui Zeng, Yonghong Peng, Yisi Chen, Cuiting Liu, Jie Zhou, Kai Wang, Chuanjiang Li","doi":"10.1080/10715762.2024.2423691","DOIUrl":"10.1080/10715762.2024.2423691","url":null,"abstract":"<p><strong>Background: </strong>Post-hepatectomy liver failure (PHLF) is a fatal complication of hepatectomy. However, the mechanism of hepatocyte injury in PHLF remains elusive.</p><p><strong>Methods: </strong>PHLF was induced by extended 86% hepatectomy (eHx) in mice. Lipidomics was performed to investigate the eHx-induced lipid alteration in the residual liver. Ferroptosis was assessed to screen the hepatocyte injury induced by eHx. The therapeutic effects of ferrostatin-1 (Fer-1) on PHLF were evaluated.</p><p><strong>Results: </strong>PHLF was induced by eHx with elevation in markers of hepatocyte injury and mortality in mice within 48 h after surgery. eHx-induced hepatocyte injury was manifested by hepatocyte enlargement and hepatocyte death with glycogen depletion and lipid accumulation. Lipidomics revealed that eHx induced the accumulation of ferroptosis-favored polyunsaturated lipids. Ferroptosis was found to mediate the eHx-induced hepatocyte death in the residual liver during the development of PHLF. Fer-1 could attenuate the eHx-induced ferroptotic hepatocyte death and PHLF in mice.</p><p><strong>Conclusions: </strong>Ferroptosis partly mediates the eHx-induced hepatocyte injury during the development of PHLF. Accumulation of polyunsaturated lipids in hepatocytes may promote eHx-induced ferroptosis, and targeting lipid peroxidation is a potential therapeutic strategy for PHLF.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"733-747"},"PeriodicalIF":3.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Free Radical Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1