Both mothers and infants experience oxidative stress due to gestational diabetes mellitus (GDM), which is strongly associated with adverse pregnancy outcomes. Ferroptosis, a novel form of programmed cell death characterized by iron-dependent lipid peroxidation, is believed to play a critical role in the pathogenesis and progression of GDM. Metformin (MET) has shown potential in alleviating oxidative stress; however, research on its specific mechanisms of action in GDM remains limited. We collected placental tissues from GDM patients and healthy controls and established an in vitro GDM cell model. We measured markers of ferroptosis including malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase 4 (GPX4) activity. Additionally, we evaluated reactive oxygen species (ROS) levels, apoptosis, cell viability, and migration in the cell model. Our findings revealed significant changes in the GDM group compared to controls, including increased MDA and GSSG levels, decreased GSH levels, and reduced expression of GPX4 protein in the GDM placenta. High-glucose (HG) conditions were shown to reduce trophoblast cell viability and migration, accompanied by elevated ROS and MDA levels, as well as reduced expression of GSH, GPX4, Nrf2, and HO-1 proteins. Importantly, treatment with MET reversed these effects, similar to the action of deferoxamine mesylate (DFOM), a known ferroptosis inhibitor. These results confirm the occurrence of ferroptosis in the placentas of GDM patients and demonstrate that MET mitigates high-glucose-induced ferroptosis in trophoblasts through the Nrf2/HO-1 signaling pathway. This study provides novel insights into the protective mechanisms of MET, offering potential therapeutic strategies for GDM. management.
{"title":"Metformin ameliorates gestational diabetes mellitus via inhibiting ferroptosis of trophoblasts through the Nrf2/HO-1 signaling pathway.","authors":"Lingya Fang, Sha Lu, Liuyuan Fang, Junxin Yu, Nisile Kakongma, Wensheng Hu","doi":"10.1080/10715762.2025.2468737","DOIUrl":"10.1080/10715762.2025.2468737","url":null,"abstract":"<p><p>Both mothers and infants experience oxidative stress due to gestational diabetes mellitus (GDM), which is strongly associated with adverse pregnancy outcomes. Ferroptosis, a novel form of programmed cell death characterized by iron-dependent lipid peroxidation, is believed to play a critical role in the pathogenesis and progression of GDM. Metformin (MET) has shown potential in alleviating oxidative stress; however, research on its specific mechanisms of action in GDM remains limited. We collected placental tissues from GDM patients and healthy controls and established an <i>in vitro</i> GDM cell model. We measured markers of ferroptosis including malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase 4 (GPX4) activity. Additionally, we evaluated reactive oxygen species (ROS) levels, apoptosis, cell viability, and migration in the cell model. Our findings revealed significant changes in the GDM group compared to controls, including increased MDA and GSSG levels, decreased GSH levels, and reduced expression of GPX4 protein in the GDM placenta. High-glucose (HG) conditions were shown to reduce trophoblast cell viability and migration, accompanied by elevated ROS and MDA levels, as well as reduced expression of GSH, GPX4, Nrf2, and HO-1 proteins. Importantly, treatment with MET reversed these effects, similar to the action of deferoxamine mesylate (DFOM), a known ferroptosis inhibitor. These results confirm the occurrence of ferroptosis in the placentas of GDM patients and demonstrate that MET mitigates high-glucose-induced ferroptosis in trophoblasts through the Nrf2/HO-1 signaling pathway. This study provides novel insights into the protective mechanisms of MET, offering potential therapeutic strategies for GDM. management.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"190-203"},"PeriodicalIF":3.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-03-08DOI: 10.1080/10715762.2025.2465277
Felix Kosta, Elisabeth Gludovacz, Rudolf Figl, Nicole Borth, Bernd Jilma, Thomas Boehm
Diamine oxidase (DAO) histamine-degradation rates are compromised in plasma of mastocytosis patients during severe mast cell activation events. Mast cell-liberated histamine induces the release of nitric oxide (NO) close to DAO extracellular storage sites. We hypothesized that NO inhibits DAO activity. Recombinant human DAO activity was measured after incubation with NO-releasing NONOates (R1R2N-(NO-)-N = O). Topaquinone reactivity was quantified by absorption measurements and by mass spectrometry. Several murine models of NO-production were assessed for DAO activity inhibition in vivo. Nitric oxide released from NONOates dose dependently and irreversibly inhibited DAO activity. The NO scavengers Trolox (Vitamin E derivative) and 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), the reversible DAO inhibitors diminazene and ciproxifan, the substrates histamine (EC50 = 32 µM) and putrescine (EC50 = 39 µM), heparin whole blood and plasma protected DAO from inhibition. Nitric oxide reduced the reactivity of topaquinone to phenylhydrazine by 90%. None of the NO producing in vivo models showed DAO inhibition in plasma or tissue. Nitric oxide is a potent irreversible DAO inhibitor in vitro representing the first discovered natural inhibitor for this enzyme. Endogenous mouse DAO inhibition in vivo could not be demonstrated. The true nature of human DAO activity inhibition during severe mastocytosis events remains unknown.
{"title":"Nitric oxide is an irreversible human diamine oxidase inhibitor.","authors":"Felix Kosta, Elisabeth Gludovacz, Rudolf Figl, Nicole Borth, Bernd Jilma, Thomas Boehm","doi":"10.1080/10715762.2025.2465277","DOIUrl":"10.1080/10715762.2025.2465277","url":null,"abstract":"<p><p>Diamine oxidase (DAO) histamine-degradation rates are compromised in plasma of mastocytosis patients during severe mast cell activation events. Mast cell-liberated histamine induces the release of nitric oxide (NO) close to DAO extracellular storage sites. We hypothesized that NO inhibits DAO activity. Recombinant human DAO activity was measured after incubation with NO-releasing NONOates (R<sup>1</sup>R<sup>2</sup>N-(NO<sup>-</sup>)-N = O). Topaquinone reactivity was quantified by absorption measurements and by mass spectrometry. Several murine models of NO-production were assessed for DAO activity inhibition <i>in vivo</i>. Nitric oxide released from NONOates dose dependently and irreversibly inhibited DAO activity. The NO scavengers Trolox (Vitamin E derivative) and 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), the reversible DAO inhibitors diminazene and ciproxifan, the substrates histamine (EC<sub>50</sub> = 32 µM) and putrescine (EC<sub>50</sub> = 39 µM), heparin whole blood and plasma protected DAO from inhibition. Nitric oxide reduced the reactivity of topaquinone to phenylhydrazine by 90%. None of the NO producing <i>in vivo</i> models showed DAO inhibition in plasma or tissue. Nitric oxide is a potent irreversible DAO inhibitor <i>in vitro</i> representing the first discovered natural inhibitor for this enzyme. Endogenous mouse DAO inhibition <i>in vivo</i> could not be demonstrated. The true nature of human DAO activity inhibition during severe mastocytosis events remains unknown.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"138-151"},"PeriodicalIF":3.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-02-14DOI: 10.1080/10715762.2025.2466685
Quan V Vo, Nguyen Thi Hoa, Adam Mechler
The synthetic naringenin derivative (2S)-8-carboxymethylnaringenin (CMN) was developed for the treatment of bacterial and viral respiratory infections. There are indications that CMN may act as an antioxidant, however, no studies have been conducted in this regard. This work is aimed at assessing the antiradical capacity of CMN against various physiologically relevant species in physiological environments by using thermodynamic and kinetic calculations. According to the results, CMN only exhibits modest HOO• antiradical activity in lipid medium, modeled here as pentyl ethanoate solvent, with an overall rate constant (koverall) of 2.01 × 102 M-1 s-1. However, significant antiradical activity is predicted for the aqueous medium (koverall = 2.60 × 105 M-1s-1) that is equivalent to the activity of the reference antioxidant Trolox. In a screen performed on a range of radicals, HO•, NO2, SO4•-, N3•, CH3O•, CCl3O•, CH3OO•, and CCl3OO• were also successfully scavenged by CMN in water at physiological pH. Therefore, other than a potent drug, CMN is also a good antioxidant in polar environments.
{"title":"Carboxymethylnaringenin: a promising antioxidant in the aqueous physiological environment.","authors":"Quan V Vo, Nguyen Thi Hoa, Adam Mechler","doi":"10.1080/10715762.2025.2466685","DOIUrl":"10.1080/10715762.2025.2466685","url":null,"abstract":"<p><p>The synthetic naringenin derivative (2S)-8-carboxymethylnaringenin (<b>CMN</b>) was developed for the treatment of bacterial and viral respiratory infections. There are indications that <b>CMN</b> may act as an antioxidant, however, no studies have been conducted in this regard. This work is aimed at assessing the antiradical capacity of <b>CMN</b> against various physiologically relevant species in physiological environments by using thermodynamic and kinetic calculations. According to the results, <b>CMN</b> only exhibits modest HOO<sup>•</sup> antiradical activity in lipid medium, modeled here as pentyl ethanoate solvent, with an overall rate constant (<i>k</i><sub>overall</sub>) of 2.01 × 10<sup>2</sup> M<sup>-1</sup> s<sup>-1</sup>. However, significant antiradical activity is predicted for the aqueous medium (<i>k</i><sub>overall</sub> = 2.60 × 10<sup>5</sup> M<sup>-1</sup>s<sup>-1</sup>) that is equivalent to the activity of the reference antioxidant Trolox. In a screen performed on a range of radicals, HO<sup>•</sup>, NO<sub>2</sub>, SO<sub>4</sub><sup>•-</sup>, N<sub>3</sub><sup>•</sup>, CH<sub>3</sub>O<sup>•</sup>, CCl<sub>3</sub>O<sup>•</sup>, CH<sub>3</sub>OO<sup>•,</sup> and CCl<sub>3</sub>OO<sup>•</sup> were also successfully scavenged by <b>CMN</b> in water at physiological pH. Therefore, other than a potent drug, <b>CMN</b> is also a good antioxidant in polar environments.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"183-189"},"PeriodicalIF":3.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferroptosis characterized by iron-dependent lipid peroxidation induced by traumatic brain injury (TBI) is an important factor that aggravates diseases. Studies have shown that tetrahydrocurcumin (THC) has neuroprotective effects in brain injury. However, whether THC inhibits neurocyte ferroptosis after TBI and its mechanism remains unclear. To investigate this, a weight-drop model in rats and H2O2 induced oxidative stress model in SH-SY5Y cells were established, and THC was used for treatment. Immunohistochemical staining showed that iron deposition reached its peak at 8th day after TBI. We found that THC remarkably inhibited iron accumulation in the cortical cortex and corpus callosum, improved neurological damage, reduced acute cerebral edema, weight loss, oxidative stress, and inflammation. Furthermore, the activity of iPLA2β was significantly reduced, and phosphorylation of p38 was increased after TBI, while THC alleviated the decrease in iPLA2β activity and increase in the level of P-p38. It confirmed that THC effectively mitigated ferroptosis, while iPLA2β inhibitor s-BEL could reverse the effects of THC on ferroptosis in vivo and in vitro experiments. In addition, SB202190 which is an inhibitor of p38 could enhance THC protection and lessen formation of ferroptosis-related proteins in cells. In conclusion, these findings suggested that THC may promote neurological function recovery after TBI by inhibiting neuron ferroptosis via activity of iPLA2β/P-p38.
{"title":"Tetrahydrocurcumin exhibits neuroprotective effects by inhibiting neuron ferroptosis via activity of iPLA2β/p38 MAPK phosphorylation in rat TBI model.","authors":"Yonghong Bi, Lan Luo, Pengyu Duan, Zhehao Jin, Xiaoqian Zhang, Guanghui He, Xiaoyan Li, Weiyu Feng, Bing Zhang","doi":"10.1080/10715762.2025.2465282","DOIUrl":"10.1080/10715762.2025.2465282","url":null,"abstract":"<p><p>Ferroptosis characterized by iron-dependent lipid peroxidation induced by traumatic brain injury (TBI) is an important factor that aggravates diseases. Studies have shown that tetrahydrocurcumin (THC) has neuroprotective effects in brain injury. However, whether THC inhibits neurocyte ferroptosis after TBI and its mechanism remains unclear. To investigate this, a weight-drop model in rats and H<sub>2</sub>O<sub>2</sub> induced oxidative stress model in SH-SY5Y cells were established, and THC was used for treatment. Immunohistochemical staining showed that iron deposition reached its peak at 8th day after TBI. We found that THC remarkably inhibited iron accumulation in the cortical cortex and corpus callosum, improved neurological damage, reduced acute cerebral edema, weight loss, oxidative stress, and inflammation. Furthermore, the activity of iPLA2β was significantly reduced, and phosphorylation of p38 was increased after TBI, while THC alleviated the decrease in iPLA2β activity and increase in the level of P-p38. It confirmed that THC effectively mitigated ferroptosis, while iPLA2β inhibitor s-BEL could reverse the effects of THC on ferroptosis <i>in vivo</i> and <i>in vitro</i> experiments. In addition, SB202190 which is an inhibitor of p38 could enhance THC protection and lessen formation of ferroptosis-related proteins in cells. In conclusion, these findings suggested that THC may promote neurological function recovery after TBI by inhibiting neuron ferroptosis <i>via</i> activity of iPLA2β/P-p38.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"152-168"},"PeriodicalIF":3.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-22DOI: 10.1080/10715762.2024.2443609
M Chambion-Diaz, R Faiss, V Pialoux, G P Millet
Little is known regarding the effects high-intensity training performed in hypoxia on the oxidative stress and antioxidant systems. The aim of this study was to assess the potential effect of 4 weeks of repeated sprint training in hypoxia (RSH) on the redox balance. Forty male well-trained cyclists were matched into two different interventions (RSH, n = 20) or in normoxia, RSN, n = 20) and tested twice (before (Pre-) and after (Post-) a 4-week of training) for performance (repeated sprint ability (RSA) test), oxidative stress, and antioxidant status. Antioxidant enzyme activity (Superoxide Dismutase, Glutathione Peroxidase, and catalase), NO metabolites (NOx: nitrites and nitrates), ferric reducing antioxidant power, Malondialdehyde (MDA), nitrotyrosine, and carbonyls were measured in plasma. At Post-, MDA, and carbonyls increased (p < 0.05) in the RSN group both at rest (+90.6%) and also acutely in response to RSA (+22.9%); but not in RSH. At Post-, in the RSH group, catalase increased (p < 0.05) both at rest (+44.7%) and in response to the RSA test (+66.3%). At Post-, SOD, and nitrotyrosine decreased after RSA and at rest, regardless of the group (p = 0.0012 and p = 0.0413, respectively). At Post-, NOx decreased after the RSA test, regardless of the group (p < 0.05). In conclusion, several weeks of RSH training limits the increase in oxidative stress markers both at rest and in response to RSA test. Moreover, such training downregulated SOD activity, possibly due to an overproduction of reactive oxygen species. These findings could constitute a paradigm shift with a better enzymatic adaptation after RSH concomitant with a distinct reactive oxygen species (ROS) production between RSH and RSN.
关于在缺氧条件下进行的高强度训练对氧化应激和抗氧化系统的影响,我们所知甚少。本研究的目的是评估在缺氧(RSH)条件下进行4周重复短跑训练对氧化还原平衡的潜在影响。40名训练有素的男性自行车手被分为两种不同的干预(RSH, n = 20)或正常缺氧,RSN, n = 20),并在4周训练之前(前)和之后(后)进行两次性能测试(重复冲刺能力(RSA)测试),氧化应激和抗氧化状态。测定血浆中抗氧化酶活性(超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶)、NO代谢产物(NOx:亚硝酸盐和硝酸盐)、铁还原抗氧化能力、丙二醛(MDA)、硝基酪氨酸和羰基。后,MDA和羰基增加(p = 0.0012和p = 0.0413)。在后,在RSA测试后,NOx下降,无论组(p
{"title":"Effect of repeated sprint training in hypoxia on acute and chronic redox balance modulation.","authors":"M Chambion-Diaz, R Faiss, V Pialoux, G P Millet","doi":"10.1080/10715762.2024.2443609","DOIUrl":"10.1080/10715762.2024.2443609","url":null,"abstract":"<p><p>Little is known regarding the effects high-intensity training performed in hypoxia on the oxidative stress and antioxidant systems. The aim of this study was to assess the potential effect of 4 weeks of repeated sprint training in hypoxia (RSH) on the redox balance. Forty male well-trained cyclists were matched into two different interventions (RSH, <i>n</i> = 20) or in normoxia, RSN, <i>n</i> = 20) and tested twice (before (Pre-) and after (Post-) a 4-week of training) for performance (repeated sprint ability (RSA) test), oxidative stress, and antioxidant status. Antioxidant enzyme activity (Superoxide Dismutase, Glutathione Peroxidase, and catalase), NO metabolites (NOx: nitrites and nitrates), ferric reducing antioxidant power, Malondialdehyde (MDA), nitrotyrosine, and carbonyls were measured in plasma. At Post-, MDA, and carbonyls increased (<i>p</i> < 0.05) in the RSN group both at rest (+90.6%) and also acutely in response to RSA (+22.9%); but not in RSH. At Post-, in the RSH group, catalase increased (<i>p</i> < 0.05) both at rest (+44.7%) and in response to the RSA test (+66.3%). At Post-, SOD, and nitrotyrosine decreased after RSA and at rest, regardless of the group (<i>p</i> = 0.0012 and <i>p</i> = 0.0413, respectively). At Post-, NOx decreased after the RSA test, regardless of the group (<i>p</i> < 0.05). In conclusion, several weeks of RSH training limits the increase in oxidative stress markers both at rest and in response to RSA test. Moreover, such training downregulated SOD activity, possibly due to an overproduction of reactive oxygen species. These findings could constitute a paradigm shift with a better enzymatic adaptation after RSH concomitant with a distinct reactive oxygen species (ROS) production between RSH and RSN.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-8"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patients with hypoxemia require high-concentration oxygen therapy. However, prolonged exposure to oxygen concentrations 21% higher than physiological concentrations (hyperoxia) may cause oxidative cellular damage. Pulmonary alveolar epithelial cells are major targets for hyperoxia-induced oxidative stress. In this study, we evaluated the therapeutic potential of the antioxidant N-acetyl-L-cysteine (NAC) for preventing hyperoxia-induced cell death. In vitro experiments were performed using the human lung cancer cell line A549. In brief, NAC-treated and untreated cells were exposed to various concentrations of oxygen (hyperoxia) for different durations. The results indicated that hyperoxia inhibited proliferation and caused cell cycle arrest in A549 cells. It also induced necrosis and autophagy. Furthermore, hyperoxia increased intracellular reactive oxygen species levels and altered mitochondrial membrane potential. Co-treatment with NAC improved the survival of cells exposed to 95% oxygen for 24 h. Experiments performed using a neonatal rat model of acute lung injury confirmed that hyperoxia induced an autophagic response. This study provides evidence for hyperoxia-induced autophagy both in vitro and in vivo. NAC can protect A549 cells from death induced by short-term hyperoxia. Our findings may inform protective strategies against hyperoxia-induced injury in developing lungs-for example, bronchopulmonary dysplasia in premature infants.
{"title":"Hyperoxia induces autophagy in pulmonary epithelial cells: insights from in vivo and in vitro experiments.","authors":"Kuo-Tsang Huang, Wen-Hui Tsai, Chih-Wei Chen, Yea-Shwu Hwang, Hung-Chi Cheng, Chin-Wei Yeh, Yuan-Ho Lin, An-Jie Cheng, Hao-Chun Chang, Shio-Jean Lin, Meng-Chi Yen, Wen-Tsan Chang","doi":"10.1080/10715762.2024.2446321","DOIUrl":"10.1080/10715762.2024.2446321","url":null,"abstract":"<p><p>Patients with hypoxemia require high-concentration oxygen therapy. However, prolonged exposure to oxygen concentrations 21% higher than physiological concentrations (hyperoxia) may cause oxidative cellular damage. Pulmonary alveolar epithelial cells are major targets for hyperoxia-induced oxidative stress. In this study, we evaluated the therapeutic potential of the antioxidant N-acetyl-L-cysteine (NAC) for preventing hyperoxia-induced cell death. <i>In vitro</i> experiments were performed using the human lung cancer cell line A549. In brief, NAC-treated and untreated cells were exposed to various concentrations of oxygen (hyperoxia) for different durations. The results indicated that hyperoxia inhibited proliferation and caused cell cycle arrest in A549 cells. It also induced necrosis and autophagy. Furthermore, hyperoxia increased intracellular reactive oxygen species levels and altered mitochondrial membrane potential. Co-treatment with NAC improved the survival of cells exposed to 95% oxygen for 24 h. Experiments performed using a neonatal rat model of acute lung injury confirmed that hyperoxia induced an autophagic response. This study provides evidence for hyperoxia-induced autophagy both <i>in vitro</i> and <i>in vivo</i>. NAC can protect A549 cells from death induced by short-term hyperoxia. Our findings may inform protective strategies against hyperoxia-induced injury in developing lungs-for example, bronchopulmonary dysplasia in premature infants.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"9-22"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-10DOI: 10.1080/10715762.2025.2450504
Shivani R Nandha, Rahul Checker, Raghavendra S Patwardhan, Deepak Sharma, Santosh K Sandur
Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects. However, these trials failed to establish anti-oxidants as therapeutic agents due to lack of efficacy. This is attributed to the fact that living systems are under dynamic redox control wherein their redox behavior is compartmentalized and simple aggregation of redox couples, distributed throughout the system, is of miniscule importance while determining their overall redox state. Further, free radical metabolism is intriguingly complex as they play plural roles segregated in a spatio-temporal manner. Depending on quality, quantity and site of generation, free radicals exhibit beneficial or harmful effects. Use of nonspecific, non-targeted, general ROS scavengers lead to systemic elimination of all types of ROS and interferes in cellular signaling. Failure of anti-oxidants to act as therapeutic agents lies in this oversimplification of extremely dynamic cellular redox environment as a static and non-compartmentalized redox state. Rather than generalizing the term "oxidative stress" if we can identify the "type of oxidative stress" in different types of diseases, a targeted and more specific anti-oxidant therapy may be developed. In this review, we discuss the concept of redox dynamics, role and type of oxidative stress in disease conditions, and current status of anti-oxidants as therapeutic agents. Further, we probe the possibility of developing novel, targeted and efficacious anti-oxidants with drug-like properties.
{"title":"Anti-oxidants as therapeutic agents for oxidative stress associated pathologies: future challenges and opportunities.","authors":"Shivani R Nandha, Rahul Checker, Raghavendra S Patwardhan, Deepak Sharma, Santosh K Sandur","doi":"10.1080/10715762.2025.2450504","DOIUrl":"10.1080/10715762.2025.2450504","url":null,"abstract":"<p><p>Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects. However, these trials failed to establish anti-oxidants as therapeutic agents due to lack of efficacy. This is attributed to the fact that living systems are under dynamic redox control wherein their redox behavior is compartmentalized and simple aggregation of redox couples, distributed throughout the system, is of miniscule importance while determining their overall redox state. Further, free radical metabolism is intriguingly complex as they play plural roles segregated in a spatio-temporal manner. Depending on quality, quantity and site of generation, free radicals exhibit beneficial or harmful effects. Use of nonspecific, non-targeted, general ROS scavengers lead to systemic elimination of all types of ROS and interferes in cellular signaling. Failure of anti-oxidants to act as therapeutic agents lies in this oversimplification of extremely dynamic cellular redox environment as a static and non-compartmentalized redox state. Rather than generalizing the term \"oxidative stress\" if we can identify the \"type of oxidative stress\" in different types of diseases, a targeted and more specific anti-oxidant therapy may be developed. In this review, we discuss the concept of redox dynamics, role and type of oxidative stress in disease conditions, and current status of anti-oxidants as therapeutic agents. Further, we probe the possibility of developing novel, targeted and efficacious anti-oxidants with drug-like properties.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"61-85"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-30DOI: 10.1080/10715762.2024.2448483
Anastasia A Shvetsova, Valentina S Shateeva, Margarita A Khlystova, Yulia A Makukha, Olga S Tarasova, Dina K Gaynullina
Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca2+ channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways. Saphenous arteries from 11- to 15-day-old male rats were studied using quantitative PCR, isometric myography and lucigenin-enhanced chemiluminescence. Arterial tissue of early postnatal rats contained Nox2, Nox4, Duox1 and Duox2 mRNAs, among which Nox2 mRNA was the most abundant. Pan-NADPH oxidase inhibitor VAS2870 (10 µM) significantly reduced arterial contractile responses to methoxamine. The inhibitors of Rho-kinase (Y27632, 3 µM), PKC (GF109203X, 10 µM) and Src-kinase (PP2, 10 µM), as well as LTCC blockers (nimodipine, 0.1 µM, and verapamil, 0.1 μM) also reduced methoxamine-induced contraction. Importantly, the effect of VAS2870 persisted in the presence of Rho-kinase, PKC or Src-kinase inhibitors, but not in the presence of LTCC blocker. Notably, the blockade of LTCC did not affect either basal or NADPH-induced O2•- production. Our data show that LTCC, but not Rho-kinase, PKC or Src-kinase are involved into procontractile effect of ROS, produced by NADPH oxidase, in saphenous artery of young rats. Сalcium influx through LTCC does not activate ROS production by NADPH oxidase.
{"title":"NADPH oxidase derived ROS promote arterial contraction in early postnatal rats by activation of L-type voltage-gated Ca<sup>2+</sup> channels.","authors":"Anastasia A Shvetsova, Valentina S Shateeva, Margarita A Khlystova, Yulia A Makukha, Olga S Tarasova, Dina K Gaynullina","doi":"10.1080/10715762.2024.2448483","DOIUrl":"https://doi.org/10.1080/10715762.2024.2448483","url":null,"abstract":"<p><p>Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca<sup>2+</sup> channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways. Saphenous arteries from 11- to 15-day-old male rats were studied using quantitative PCR, isometric myography and lucigenin-enhanced chemiluminescence. Arterial tissue of early postnatal rats contained <i>Nox2</i>, <i>Nox4</i>, <i>Duox1</i> and <i>Duox2</i> mRNAs, among which <i>Nox2</i> mRNA was the most abundant. Pan-NADPH oxidase inhibitor VAS2870 (10 µM) significantly reduced arterial contractile responses to methoxamine. The inhibitors of Rho-kinase (Y27632, 3 µM), PKC (GF109203X, 10 µM) and Src-kinase (PP2, 10 µM), as well as LTCC blockers (nimodipine, 0.1 µM, and verapamil, 0.1 μM) also reduced methoxamine-induced contraction. Importantly, the effect of VAS2870 persisted in the presence of Rho-kinase, PKC or Src-kinase inhibitors, but not in the presence of LTCC blocker. Notably, the blockade of LTCC did not affect either basal or NADPH-induced O<sub>2</sub><sup>•-</sup> production. Our data show that LTCC, but not Rho-kinase, PKC or Src-kinase are involved into procontractile effect of ROS, produced by NADPH oxidase, in saphenous artery of young rats. Сalcium influx through LTCC does not activate ROS production by NADPH oxidase.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"59 1","pages":"49-60"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-15DOI: 10.1080/10715762.2025.2451679
Hoang Hai Ngo, Bo-Yeung Yu, Jeong-Eun Lee, Hyunwoo Kim, Young-Sam Keum
Cancer genome sequencing studies have identified somatic mutations in the KEAP1/NRF2 pathway. In an effort to identify novel NRF2 small molecule inhibitor(s), we have screened a natural compound library comprising 1330 chemicals in A549-ARE-GFP-luciferase cells and identified that narciclasine significantly inhibits NRF2-dependent luciferase activity. Narciclasine suppressed the expression of NRF2 and NRF2 target genes, caused significant oxidative stress, and sensitized cisplatin-mediated apoptosis in A549 cells. In addition, we have observed that WD Repeat Domain 43 (WDR43) serves as a direct target of narciclasine for the inhibition of NRF2 as narciclasine binds to recombinant WDR43 in vitro and silencing WDR43 attenuated the inhibition of NRF2 by narciclasine in A549 cells. Finally, we observed that administration of narciclasine significantly decreased the growth of A549 xenografts. Together, our results demonstrate that the inhibition of NRF2 by narciclasine is mediated by WDR43 and future studies are necessary to elucidate the exact mechanism of how WDR43 mediates the inhibition of NRF2 by narciclasine.
癌症基因组测序研究已经确定了KEAP1/NRF2通路中的体细胞突变。为了鉴定新的NRF2小分子抑制剂,我们在a549 - are - gfp -荧光素酶细胞中筛选了包含1330种化学物质的天然化合物文库,并发现水仙环素显著抑制NRF2依赖性荧光素酶活性。水仙碱抑制NRF2和NRF2靶基因的表达,引起明显的氧化应激,并使顺铂介导的A549细胞凋亡增敏。此外,我们观察到WD Repeat Domain 43 (WDR43)是水仙素抑制NRF2的直接靶点,水仙素在体外与重组WDR43结合,沉默WDR43可以减弱水仙素对A549细胞NRF2的抑制作用。最后,我们观察到给药水仙素显著降低了A549异种移植物的生长。综上所述,我们的研究结果表明,水仙素对NRF2的抑制是由WDR43介导的,未来的研究需要进一步阐明WDR43介导水仙素对NRF2抑制的确切机制。
{"title":"Identification of narciclasine as a novel NRF2 inhibitor.","authors":"Hoang Hai Ngo, Bo-Yeung Yu, Jeong-Eun Lee, Hyunwoo Kim, Young-Sam Keum","doi":"10.1080/10715762.2025.2451679","DOIUrl":"10.1080/10715762.2025.2451679","url":null,"abstract":"<p><p>Cancer genome sequencing studies have identified somatic mutations in the KEAP1/NRF2 pathway. In an effort to identify novel NRF2 small molecule inhibitor(s), we have screened a natural compound library comprising 1330 chemicals in A549-ARE-GFP-luciferase cells and identified that narciclasine significantly inhibits NRF2-dependent luciferase activity. Narciclasine suppressed the expression of NRF2 and NRF2 target genes, caused significant oxidative stress, and sensitized cisplatin-mediated apoptosis in A549 cells. In addition, we have observed that WD Repeat Domain 43 (WDR43) serves as a direct target of narciclasine for the inhibition of NRF2 as narciclasine binds to recombinant WDR43 <i>in vitro</i> and silencing <i>WDR43</i> attenuated the inhibition of NRF2 by narciclasine in A549 cells. Finally, we observed that administration of narciclasine significantly decreased the growth of A549 xenografts. Together, our results demonstrate that the inhibition of NRF2 by narciclasine is mediated by WDR43 and future studies are necessary to elucidate the exact mechanism of how WDR43 mediates the inhibition of NRF2 by narciclasine.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"102-115"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-01-07DOI: 10.1080/10715762.2024.2446337
Xue Peng, Xi Tan, Li Dai, Wei Xia, Zhao Wu
This research investigates the interplay between Reactive Oxygen Species (ROS) and Apelin (APLN) in regulating autophagy, with implications for placental cell senescence and apoptosis in pre-eclampsia (PE). We manipulated APLN expression using sgRNA to study its effects on ROS levels and subsequent cellular responses. Our findings reveal that APLN overexpression elevates ROS production, accelerating cellular senescence and apoptosis. In contrast, silencing APLN enhances autophagy, thereby diminishing cellular aging and apoptosis. These outcomes were confirmed in vitro and in vivo experiments, establishing a causative relationship between ROS-mediated APLN modulation and altered placental cell dynamics in PE. The results suggest potential therapeutic targets within the ROS and APLN pathways to alleviate detrimental changes in the placenta, offering new strategies for the clinical management of PE. This study emphasizes the crucial role of autophagy in placental health and sets the stage for future investigations into therapeutic interventions for pregnancy-related complications.
{"title":"Exploring the impact of Apelin and Reactive Oxygen Species on autophagy and cell senescence in pre-eclampsia.","authors":"Xue Peng, Xi Tan, Li Dai, Wei Xia, Zhao Wu","doi":"10.1080/10715762.2024.2446337","DOIUrl":"10.1080/10715762.2024.2446337","url":null,"abstract":"<p><p>This research investigates the interplay between Reactive Oxygen Species (ROS) and Apelin (APLN) in regulating autophagy, with implications for placental cell senescence and apoptosis in pre-eclampsia (PE). We manipulated APLN expression using sgRNA to study its effects on ROS levels and subsequent cellular responses. Our findings reveal that APLN overexpression elevates ROS production, accelerating cellular senescence and apoptosis. In contrast, silencing APLN enhances autophagy, thereby diminishing cellular aging and apoptosis. These outcomes were confirmed <i>in vitro</i> and <i>in vivo</i> experiments, establishing a causative relationship between ROS-mediated APLN modulation and altered placental cell dynamics in PE. The results suggest potential therapeutic targets within the ROS and APLN pathways to alleviate detrimental changes in the placenta, offering new strategies for the clinical management of PE. This study emphasizes the crucial role of autophagy in placental health and sets the stage for future investigations into therapeutic interventions for pregnancy-related complications.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"23-48"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}