首页 > 最新文献

Free Radical Research最新文献

英文 中文
Arachidonic acid: reconciling the dichotomy of its oxidative cascade through specific deuteration. 花生四烯酸:通过特定的重复来协调其氧化级联的二分性。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2023-11-05 DOI: 10.1080/10715762.2023.2277145
J Thomas Brenna, Marina G Sergeeva, Nikolay B Pestov, Tatyana V Korneenko, Mikhail S Shchepinov

A new approach to attenuating pathological inflammatory reactions by buffering the eicosanoid pathways with oxidation-resistant hexadeuterated arachidonic acid (D-ARA) is discussed. Enzymatic processing of ARA, released by phospholipase A2, by lipoxygenases, cyclooxygenases, and cytochromes yields a wide range of bioactive eicosanoids, including pro-inflammation, pro-angiogenesis and pro-thrombosis species that, when produced in excess, are an underlying cause of pathology. Conversely, some products of ARA oxidation possess pro-resolving properties. Non-enzymatic free radical oxidation of ARA generates another large group of products such as isoprostanes and their metabolites, associated with inflammation, ischemia-reperfusion stress, and atherosclerosis. A separate group comprises reactive carbonyl derivatives that irreversibly damage diverse biomolecules. Being resistant to both enzymatic and non-enzymatic oxidation pathways due to large kinetic isotope effects, D-ARA may play a role in mitigating inflammation-related disorders and conditions, including inflammaging.

讨论了一种通过用抗氧化的六氘代花生四烯酸(D-ARA)缓冲类二十烷途径来减轻病理性炎症反应的新方法。磷脂酶A2、脂氧合酶、环氧合酶和细胞色素释放的ARA的酶促加工产生了广泛的生物活性类二十烷,包括促炎症、促血管生成和促血栓形成物种,当产生过量时,这些物种是病理学的根本原因。相反,ARA氧化的一些产物具有促分解性质。ARA的非酶自由基氧化产生另一大类产物,如异丙肾上腺素及其代谢产物,与炎症、缺血再灌注应激和动脉粥样硬化有关。一个单独的基团包括反应性羰基衍生物,其不可逆地损伤不同的生物分子。由于大的动力学同位素效应,D-ARA对酶和非酶氧化途径都有抵抗力,它可能在减轻炎症相关疾病和条件方面发挥作用,包括炎症。
{"title":"Arachidonic acid: reconciling the dichotomy of its oxidative cascade through specific deuteration.","authors":"J Thomas Brenna, Marina G Sergeeva, Nikolay B Pestov, Tatyana V Korneenko, Mikhail S Shchepinov","doi":"10.1080/10715762.2023.2277145","DOIUrl":"10.1080/10715762.2023.2277145","url":null,"abstract":"<p><p>A new approach to attenuating pathological inflammatory reactions by buffering the eicosanoid pathways with oxidation-resistant hexadeuterated arachidonic acid (D-ARA) is discussed. Enzymatic processing of ARA, released by phospholipase A2, by lipoxygenases, cyclooxygenases, and cytochromes yields a wide range of bioactive eicosanoids, including pro-inflammation, pro-angiogenesis and pro-thrombosis species that, when produced in excess, are an underlying cause of pathology. Conversely, some products of ARA oxidation possess pro-resolving properties. Non-enzymatic free radical oxidation of ARA generates another large group of products such as isoprostanes and their metabolites, associated with inflammation, ischemia-reperfusion stress, and atherosclerosis. A separate group comprises reactive carbonyl derivatives that irreversibly damage diverse biomolecules. Being resistant to both enzymatic and non-enzymatic oxidation pathways due to large kinetic isotope effects, D-ARA may play a role in mitigating inflammation-related disorders and conditions, including inflammaging.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"583-593"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66783751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epoxides: an underestimated lipid oxidation product. 环氧化物:一种被低估的脂质氧化产物。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2023-12-20 DOI: 10.1080/10715762.2023.2277142
Karen M Schaich

Immense gains in understanding of mechanisms and effects of lipid oxidation have been achieved in the nearly 90 years over which lipid oxidation has been an active research focus. Even so, the substantial questions still being raised about lipid oxidation in this special issue show clearly that missing pieces remain and must be considered for full accounting of this important reaction in any system. In this context, epoxides are spotlighted as a critical overlooked product of lipid autoxidation - underestimated in analysis, underestimated in presence as a functionally active and competitive intermediate and product of lipid oxidation, and underestimated in potential contributions to impact of lipid oxidation on other molecules and cell functions. Logical reasons for ignoring or not finding epoxides are offered in historical development of lipid oxidation knowledge. Reactions generating lipid epoxides in autoxidation are reviewed, limitations in detecting and tracking epoxides are outlined to explain why epoxides may not be detected when they should be present, and justifications for increased research and analysis of epoxides are argued. The main goal is to provide a context for recognizing epoxides as critical products that must be accounted for in determining the state rather than extent of lipid oxidation and in tracking its consequences in oils, foods, personal care products, and tissues. A secondary goal is to stimulate new research using contemporary analyses to fill in the gaps of knowledge about epoxide formation, structure, and reactions in lipid autoxidation.

在脂质氧化成为研究重点的近 90 年里,人们对其机理和影响的认识取得了巨大进步。即便如此,本特刊中仍有大量关于脂质氧化的问题,这清楚地表明,要全面了解任何系统中的这一重要反应,仍然存在缺失。在这种情况下,环氧化物作为脂质自氧化的一个重要产物被忽视了--在分析中被低估了,在作为脂质氧化的功能活性和竞争性中间产物存在时被低估了,在脂质氧化对其他分子和细胞功能的潜在影响方面被低估了。脂质氧化知识的历史发展提供了忽略或未发现环氧化物的逻辑原因。回顾了在自氧化过程中产生脂质环氧化物的反应,概述了检测和跟踪环氧化物的局限性,以解释为什么环氧化物应该存在而可能检测不到,并论证了加强研究和分析环氧化物的理由。主要目的是提供一个背景,使人们认识到环氧化物是在确定脂质氧化的状态而非程度以及跟踪其在油类、食品、个人护理产品和组织中的后果时必须考虑的关键产物。次要目标是利用现代分析方法激发新的研究,以填补有关环氧化物的形成、结构和脂质自氧化反应的知识空白。
{"title":"Epoxides: an underestimated lipid oxidation product.","authors":"Karen M Schaich","doi":"10.1080/10715762.2023.2277142","DOIUrl":"10.1080/10715762.2023.2277142","url":null,"abstract":"<p><p>Immense gains in understanding of mechanisms and effects of lipid oxidation have been achieved in the nearly 90 years over which lipid oxidation has been an active research focus. Even so, the substantial questions still being raised about lipid oxidation in this special issue show clearly that missing pieces remain and must be considered for full accounting of this important reaction in any system. In this context, epoxides are spotlighted as a critical overlooked product of lipid autoxidation - underestimated in analysis, underestimated in presence as a functionally active and competitive intermediate and product of lipid oxidation, and underestimated in potential contributions to impact of lipid oxidation on other molecules and cell functions. Logical reasons for ignoring or not finding epoxides are offered in historical development of lipid oxidation knowledge. Reactions generating lipid epoxides in autoxidation are reviewed, limitations in detecting and tracking epoxides are outlined to explain why epoxides may not be detected when they should be present, and justifications for increased research and analysis of epoxides are argued. The main goal is to provide a context for recognizing epoxides as critical products that must be accounted for in determining the state rather than extent of lipid oxidation and in tracking its consequences in oils, foods, personal care products, and tissues. A secondary goal is to stimulate new research using contemporary analyses to fill in the gaps of knowledge about epoxide formation, structure, and reactions in lipid autoxidation.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"517-564"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138829142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced anticancer activity of (-)-epigallocatechin-3-gallate (EGCG) encapsulated NPs toward colon cancer cell lines. 增强(-)-表没食子儿茶素-3-棓酸盐(EGCG)包裹的 NPs 对结肠癌细胞株的抗癌活性。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-06-22 DOI: 10.1080/10715762.2024.2360013
Tanushree Das, Sanchaita Mondal, Sujata Das, Sanjib Das, Krishna Das Saha

(-)-Epigallocatechin-3-gallate (EGCG), a bioactive polyphenol of green tea, has chemo-preventive effects against various cancer cells. Nanoparticles (NPs) carrying different ligands are able to specifically interact with their receptors on different cancer cells that can provide effective release of cytotoxic drugs. In the present study, we have prepared EGCG entrapped NPs using PLGA (poly(d,l-lactide-co-glycolide)). Polyethylene glycol (PEG) and folic acid (FA) via double emulsion solvent evaporation (DESE) method obtained PLGA-EGCG (P-E), PLGA-PEG-EGCG (PP-E), and PLGA-PEG-FA-EGCG (PPF-E). Nanoformulations had been characterized with 1H NMR and FT-IR techniques, AFM, and DLS. PPF-E NPs showed an average size of 220 nm. Analysis of zeta potential confirmed the stability of NPs. HCT-116, HT-29, HCT-15, and HEK 293 cells were treated with both the prepared NPs and free EGCG (0-140 μM). Result showed PPF-E NPs had improved delivery, uptake and cell cytotoxicity toward human folic acid receptor-positive (FR+) colorectal cancer (CRC) cells as mainly on HCT-116 compared to HT-29, but not on the folic acid-negative cells (FR-) as HCT-15. PPF-E NPs enhanced intracellular reactive oxygen species (ROS) level in absence of N-acetyl-l-cysteine (NAC), elevated DNA fragmentation level, and increased apoptotic cell death at higher doses compared to other two NPs and free EGCG. In conclusion, PPF-E NPs exerted greater efficacy than PP-E, P-E, and free EGCG in HCT-116 cells.

(-)-表没食子儿茶素-3-棓酸盐(EGCG)是绿茶中的一种生物活性多酚,对多种癌细胞具有化学预防作用。携带不同配体的纳米粒子(NPs)能够与不同癌细胞上的受体发生特异性相互作用,从而有效释放细胞毒性药物。在本研究中,我们使用 PLGA(聚乳酸-聚乙二醇)制备了夹带 EGCG 的纳米颗粒。采用 1H NMR、FT-IR、AFM 和 DLS 对制备的 PLGA-EGCG (P-E)、PLGA-PEG-EGCG (PP-E) 和 PLGA-PEG-FA-EGCG (PPF-E) 纳米制剂进行了表征。PPF-E NPs 的平均尺寸为 220 纳米。Zeta 电位分析证实了 NPs 的稳定性。用制备的 NPs 和游离 EGCG(0-140μM)处理 HCT 116、HT-29、HCT-15 和 HEK 293 细胞。结果表明,与 HT-29 相比,PPF-E NPs 对人类叶酸受体阳性(FR+)结直肠癌细胞(CRCs)的递送、吸收和细胞毒性都有所改善,主要是在 HCT116 上,但在叶酸阴性(FR-)细胞(如 HCT-15)上则没有改善。与其他两种NPs和游离的EGCG相比,PPF-E NPs在没有NAC(N-乙酰-L-半胱氨酸)的情况下会提高细胞内活性氧(ROS)的水平,升高DNA碎片水平,并在更高剂量下增加细胞凋亡。总之,在 HCT 116 细胞中,PPF-E NPs 比 PP-E、P-E 和游离的 EGCG 具有更强的功效。
{"title":"Enhanced anticancer activity of (-)-epigallocatechin-3-gallate (EGCG) encapsulated NPs toward colon cancer cell lines.","authors":"Tanushree Das, Sanchaita Mondal, Sujata Das, Sanjib Das, Krishna Das Saha","doi":"10.1080/10715762.2024.2360013","DOIUrl":"10.1080/10715762.2024.2360013","url":null,"abstract":"<p><p>(-)-Epigallocatechin-3-gallate (EGCG), a bioactive polyphenol of green tea, has chemo-preventive effects against various cancer cells. Nanoparticles (NPs) carrying different ligands are able to specifically interact with their receptors on different cancer cells that can provide effective release of cytotoxic drugs. In the present study, we have prepared EGCG entrapped NPs using PLGA (poly(d,l-lactide-co-glycolide)). Polyethylene glycol (PEG) and folic acid (FA) via double emulsion solvent evaporation (DESE) method obtained PLGA-EGCG (P-E), PLGA-PEG-EGCG (PP-E), and PLGA-PEG-FA-EGCG (PPF-E). Nanoformulations had been characterized with <sup>1</sup>H NMR and FT-IR techniques, AFM, and DLS. PPF-E NPs showed an average size of 220 nm. Analysis of zeta potential confirmed the stability of NPs. HCT-116, HT-29, HCT-15, and HEK 293 cells were treated with both the prepared NPs and free EGCG (0-140 μM). Result showed PPF-E NPs had improved delivery, uptake and cell cytotoxicity toward human folic acid receptor-positive (FR+) colorectal cancer (CRC) cells as mainly on HCT-116 compared to HT-29, but not on the folic acid-negative cells (FR-) as HCT-15. PPF-E NPs enhanced intracellular reactive oxygen species (ROS) level in absence of N-acetyl-l-cysteine (NAC), elevated DNA fragmentation level, and increased apoptotic cell death at higher doses compared to other two NPs and free EGCG. In conclusion, PPF-E NPs exerted greater efficacy than PP-E, P-E, and free EGCG in HCT-116 cells.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"565-582"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-temperature plasma as a strategy to achieve SDGs. 将低温等离子体作为实现可持续发展目标的战略。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-11-28 DOI: 10.1080/10715762.2023.2297343
Hiromasa Tanaka, Kenji Ishikawa, Shinya Toyokuni
{"title":"Low-temperature plasma as a strategy to achieve SDGs.","authors":"Hiromasa Tanaka, Kenji Ishikawa, Shinya Toyokuni","doi":"10.1080/10715762.2023.2297343","DOIUrl":"https://doi.org/10.1080/10715762.2023.2297343","url":null,"abstract":"","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"58 10","pages":"594-595"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective effect of alpha-tocopherol on lipogenesis and oxysterol production in hypercholesterolemia-induced nonalcoholic steatohepatitis. α-生育酚对高胆固醇血症诱发的非酒精性脂肪性肝炎的脂肪生成和氧杂环醇产生的保护作用
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-10-30 DOI: 10.1080/10715762.2024.2421173
Ali Sahin, Tugce Demirel-Yalciner, Erdi Sozen, Nesrin Kartal Ozer

Despite limited number of studies, oxysterols are known to contribute to the progression of nonalcoholic steatohepatitis (NASH) by affecting lipid/cholesterol metabolism and elevating proinflammatory and profibrotic processes. Accordingly, we used a high cholesterol-mediated in vivo NASH model and aimed to determine alterations in fatty acid content and oxysterol levels together with their effects on cholesterol/lipid metabolism during the progression of the disease. We further investigated the beneficial role of α-tocopherol. To this end, in our hypercholesterolemic rabbit model, we determined fatty acid profile by GC-MS while 25-, 27-, 4β-, 7α, and 24(S)-Hydroxycholesterol levels by means of LC-MS/MS. Additionally, lipid (SREBP-1c, PPARα, PPARγ) and cholesterol metabolism-related proteins (LXRα, SREBP2 and ABCA1) were determined by immunoblotting. In conclusion, the present findings provide a complete analysis of the hepatic alterations in lipid and oxysterol profiles mediated by a high-cholesterol diet. In addition, this study explains the protective effect of α-tocopherol on lipogenesis and oxysterol production in hypercholesterolemia-induced NASH. We believe that present study will guide to novel theories in the progression and therapeutic targeting of fatty liver diseases.

尽管研究数量有限,但众所周知氧杂环醇会影响脂质/胆固醇代谢并促进炎症和组织坏死过程,从而导致非酒精性脂肪性肝炎(NASH)的恶化。因此,我们使用了高胆固醇介导的体内非酒精性脂肪性肝炎模型,旨在确定脂肪酸含量和氧杂环醇水平的变化及其在疾病进展过程中对胆固醇/脂质代谢的影响。我们进一步研究了α-生育酚的有益作用。为此,我们在高胆固醇血症兔模型中,通过气相色谱-质谱(GC-MS)测定了脂肪酸谱,同时通过液相色谱-质谱/质谱(LC-MS/MS)测定了25-、27-、4β-、7α和24(S)-羟基胆固醇水平。此外,还通过免疫印迹法测定了脂质(SREBP-1c、PPARα、PPARγ)和胆固醇代谢相关蛋白(LXRα、SREBP2 和 ABCA1)。总之,本研究结果全面分析了高胆固醇饮食介导的肝脏脂质和氧杂环醇谱的改变。此外,本研究还解释了α-生育酚对高胆固醇血症诱导的 NASH 中脂肪生成和氧杂醇产生的保护作用。我们相信,本研究将为脂肪肝的进展和靶向治疗提供新的理论依据。
{"title":"Protective effect of alpha-tocopherol on lipogenesis and oxysterol production in hypercholesterolemia-induced nonalcoholic steatohepatitis.","authors":"Ali Sahin, Tugce Demirel-Yalciner, Erdi Sozen, Nesrin Kartal Ozer","doi":"10.1080/10715762.2024.2421173","DOIUrl":"10.1080/10715762.2024.2421173","url":null,"abstract":"<p><p>Despite limited number of studies, oxysterols are known to contribute to the progression of nonalcoholic steatohepatitis (NASH) by affecting lipid/cholesterol metabolism and elevating proinflammatory and profibrotic processes. Accordingly, we used a high cholesterol-mediated in vivo NASH model and aimed to determine alterations in fatty acid content and oxysterol levels together with their effects on cholesterol/lipid metabolism during the progression of the disease. We further investigated the beneficial role of α-tocopherol. To this end, in our hypercholesterolemic rabbit model, we determined fatty acid profile by GC-MS while 25-, 27-, 4β-, 7α, and 24(S)-Hydroxycholesterol levels by means of LC-MS/MS. Additionally, lipid (SREBP-1c, PPARα, PPARγ) and cholesterol metabolism-related proteins (LXRα, SREBP2 and ABCA1) were determined by immunoblotting. In conclusion, the present findings provide a complete analysis of the hepatic alterations in lipid and oxysterol profiles mediated by a high-cholesterol diet. In addition, this study explains the protective effect of α-tocopherol on lipogenesis and oxysterol production in hypercholesterolemia-induced NASH. We believe that present study will guide to novel theories in the progression and therapeutic targeting of fatty liver diseases.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"630-640"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction. 中枢代谢的氧化还原重塑是细胞保护、增殖、分化和功能障碍的驱动力。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-09-24 DOI: 10.1080/10715762.2024.2407147
Junichi Fujii

The production of reactive oxygen species (ROS) is elevated via metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes via oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated via amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.

在生长因子和炎症等多种刺激下,活性氧(ROS)会通过代谢亢进而产生。可容忍量的 ROS 会通过氧化修饰使酶适度失活,而酶又能以氧化还原依赖的方式逆转回原生形态。然而,过量产生的 ROS 会导致细胞功能障碍和死亡。氧化还原反应酶存在于糖酵解和三羧酸循环等初级代谢途径中,它们是碳通量的闸门。一种特定形式的半胱氨酸氧化会抑制甘油醛-3-磷酸脱氢酶(这是可逆的),并导致上游中间化合物的积累,从而增加葡萄糖-6-磷酸到磷酸戊糖途径的通量。这些反应分别增加了可用于还原反应和核苷酸合成的 NADPH 和核糖-5-磷酸。另一方面,线粒体丙酮酸酶的氧化失活增加了柠檬酸盐,然后柠檬酸盐被用于在细胞质中合成脂肪酸。用于产生 ATP 的碳水化合物的减少可以通过氨基酸分解代谢得到补偿,这种代谢变化使氮可用于核酸合成。尿素循环耦合也将氮转化为尿素和多胺,后者有助于细胞生长。这种代谢重塑会刺激肿瘤细胞的增殖和氧化损伤组织的纤维化。在氧化反应的早期阶段,这些酶的氧化修饰通常是可逆的,这表明早期使用适当的抗氧化剂可促进自然代谢的维持。
{"title":"Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction.","authors":"Junichi Fujii","doi":"10.1080/10715762.2024.2407147","DOIUrl":"10.1080/10715762.2024.2407147","url":null,"abstract":"<p><p>The production of reactive oxygen species (ROS) is elevated <i>via</i> metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes <i>via</i> oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated <i>via</i> amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"606-629"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NRF2 signaling and amino acid metabolism in cancer. 癌症中的 NRF2 信号传导和氨基酸代谢。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-11-14 DOI: 10.1080/10715762.2024.2423690
Suji Ham, Bo-Hyun Choi, Mi-Kyoung Kwak

Alterations in amino acid metabolism have emerged as a critical component in cancer biology, influencing various aspects of tumor initiation, progression, and metastasis. This review explores how amino acids, beyond their role as protein building blocks, are essential for redox balance, cell proliferation, metastasis, signaling/epigenetic regulation, and tumor microenvironment modulation in cancer. We particularly focus on the intricate relationship between amino acid metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling, a master regulator of oxidative stress response that frequently hyperactivated in cancer. Increasing evidence indicates that NRF2 is a key player in amino acid metabolism, orchestrating metabolism of cysteine, glutamine, and serine/glycine to promote cancer cell survival and growth. This comprehensive analysis provides insights into potential therapeutic strategies targeting the NRF2-amino acid metabolism axis, offering new avenues for cancer treatment that address multiple aspects of tumor biology.

氨基酸代谢的改变已成为癌症生物学的一个关键组成部分,影响着肿瘤发生、发展和转移的各个方面。这篇综述探讨了氨基酸除了作为蛋白质的组成成分外,如何对癌症中的氧化还原平衡、细胞增殖、转移、信号/表观遗传调控和肿瘤微环境调控起着至关重要的作用。我们尤其关注氨基酸代谢与核因子红细胞 2 相关因子 2(NRF2)信号转导之间错综复杂的关系,NRF2 是氧化应激反应的主调节因子,在癌症中经常被过度激活。越来越多的证据表明,NRF2 是氨基酸代谢的关键参与者,它协调半胱氨酸、谷氨酰胺和丝氨酸/甘氨酸的代谢,促进癌细胞的存活和生长。这项全面的分析深入揭示了针对 NRF2-氨基酸代谢轴的潜在治疗策略,为针对肿瘤生物学多个方面的癌症治疗提供了新途径。
{"title":"NRF2 signaling and amino acid metabolism in cancer.","authors":"Suji Ham, Bo-Hyun Choi, Mi-Kyoung Kwak","doi":"10.1080/10715762.2024.2423690","DOIUrl":"10.1080/10715762.2024.2423690","url":null,"abstract":"<p><p>Alterations in amino acid metabolism have emerged as a critical component in cancer biology, influencing various aspects of tumor initiation, progression, and metastasis. This review explores how amino acids, beyond their role as protein building blocks, are essential for redox balance, cell proliferation, metastasis, signaling/epigenetic regulation, and tumor microenvironment modulation in cancer. We particularly focus on the intricate relationship between amino acid metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling, a master regulator of oxidative stress response that frequently hyperactivated in cancer. Increasing evidence indicates that NRF2 is a key player in amino acid metabolism, orchestrating metabolism of cysteine, glutamine, and serine/glycine to promote cancer cell survival and growth. This comprehensive analysis provides insights into potential therapeutic strategies targeting the NRF2-amino acid metabolism axis, offering new avenues for cancer treatment that address multiple aspects of tumor biology.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"648-661"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox system and ROS-related disorders in peroxisomes. 过氧物酶体中的氧化还原系统和 ROS 相关紊乱。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-11-17 DOI: 10.1080/10715762.2024.2427088
Hyunsoo Kim, Jaetaek Hwang, Channy Park, Raekil Park

Peroxisomes are essential organelles that help mitigate the oxidative damage caused by reactive oxygen species (ROS) through their antioxidant systems. They perform functions such as α-oxidation, β-oxidation, and the synthesis of cholesterol and ether phospholipids. During the breakdown of specific metabolites, peroxisomes generate ROS as byproducts, which can either be neutralized or contribute to oxidative stress. The relationship between peroxisomal metabolism and ROS-related disorders, including neurodegenerative diseases and cancers, has been studied for decades; however, the exact mechanisms remain unclear. Our review will provide recent insights into the peroxisomal redox system and its association with oxidative stress-related diseases.

过氧物酶体是一种重要的细胞器,通过其抗氧化系统帮助减轻活性氧(ROS)造成的氧化损伤。它们具有α氧化、β氧化以及合成胆固醇和醚磷脂等功能。在分解特定代谢物的过程中,过氧物酶体产生 ROS 作为副产品,这些副产品可以被中和,也可以导致氧化应激。数十年来,人们一直在研究过氧化物酶体代谢与 ROS 相关疾病(包括神经退行性疾病和癌症)之间的关系,但确切的机制仍不清楚。我们的综述将提供有关过氧化物酶体氧化还原系统及其与氧化应激相关疾病的关系的最新见解。
{"title":"Redox system and ROS-related disorders in peroxisomes.","authors":"Hyunsoo Kim, Jaetaek Hwang, Channy Park, Raekil Park","doi":"10.1080/10715762.2024.2427088","DOIUrl":"10.1080/10715762.2024.2427088","url":null,"abstract":"<p><p>Peroxisomes are essential organelles that help mitigate the oxidative damage caused by reactive oxygen species (ROS) through their antioxidant systems. They perform functions such as α-oxidation, β-oxidation, and the synthesis of cholesterol and ether phospholipids. During the breakdown of specific metabolites, peroxisomes generate ROS as byproducts, which can either be neutralized or contribute to oxidative stress. The relationship between peroxisomal metabolism and ROS-related disorders, including neurodegenerative diseases and cancers, has been studied for decades; however, the exact mechanisms remain unclear. Our review will provide recent insights into the peroxisomal redox system and its association with oxidative stress-related diseases.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"662-675"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The inhibitory potential of 4,7-dihydroxycoumarin derivatives on ROS-producing enzymes and direct HOO•/o2• - radical scavenging activity - a comprehensive kinetic DFT study. 4,7-二羟基香豆素衍生物对产生 ROS 的酶的抑制潜力和直接清除 HOO-/o2- 自由基的活性--一项全面的动力学 DFT 研究。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-12 DOI: 10.1080/10715762.2024.2400674
Žiko Milanović,Svetlana Jeremić,Marko Antonijević,Dušan Dimić,Đura Nakarada,Edina Avdović,Zoran Marković
This study examined the antiradical activity of three synthesized coumarin derivatives: (E)-3-(1-((2-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A1-OH), (E)-3-(1-((3-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A2-OH), and (E)-3-(1-((4-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A3-OH) against HOO•/O2•- radical species. The investigation included electron spin resonance (ESR) measurements and a DFT kinetic study. Thermodynamic and kinetic parameters of antiradical mechanisms-Formal Hydrogen Atom Transfer (f-HAT), Radical Adduct Formation (RAF), Sequential Proton Loss followed by Electron Transfer (SPLET), and Single-Electron Transfer followed by Proton Transfer (SET-PT)-were evaluated using the Quantum Mechanics-based test for Overall Free Radical Scavenging Activity (QM-ORSA) under physiological conditions. ESR results indicated antiradical activity decreased in the sequence A1-OH (58.7%) > A2-OH (57.5%) > A3-OH (53.1%). Kinetic analysis revealed the f-HAT mechanism dominated HOO• inactivation. A newly formulated Sequential Proton Loss followed by Radical Adduct Formation (SPL-RAF) mechanism described interactions with O2•-. The activity toward O2•- was A2-OH (1.26 × 106 M-1s-1) > A3-OH (7.71 × 105 M-1s-1) > A1-OH (4.22 × 105 M-1s-1). Molecular docking and dynamics studies tested inhibitory capability against enzymes producing reactive species: Lipoxygenase (LOX), Myeloperoxidase (MPO), NAD(P)H oxidase (NOX), and Xanthine Oxidase (XOD). Affinity to enzymes decreased in the order: XOD > LOX > NOX > MPO.
本研究考察了三种合成香豆素衍生物的抗自由基活性:(E)-3-(1-((2-羟基苯基)氨基)亚乙基)-2,4-二氧二苯并二氢吡喃-7-基乙酸酯(A1-OH)、(E)-3-(1-((3-羟基苯基)氨基)亚乙基)-2、4-二氧二苯并二氢吡喃-7-基乙酸酯(A2-OH)和(E)-3-(1-((4-羟基苯基)氨基)亚乙基)-2,4-二氧二苯并二氢吡喃-7-基乙酸酯(A3-OH)。研究包括电子自旋共振(ESR)测量和 DFT 动力学研究。在生理条件下,利用基于量子力学的整体自由基清除活性测试(QM-ORSA)评估了抗自由基机制的热力学和动力学参数--法式氢原子转移(f-HAT)、自由基加合物形成(RAF)、电子转移后的顺序质子丢失(SPLET)和质子转移后的单电子转移(SET-PT)。ESR 结果表明,抗自由基活性的下降顺序为 A1-OH (58.7%) > A2-OH (57.5%) > A3-OH (53.1%)。动力学分析表明,f-HAT 机制主导了 HOO- 失活。一种新提出的 "质子顺序损失与自由基加成(SPL-RAF)"机制描述了与 O2-的相互作用。对 O2--的活性为 A2-OH (1.26 × 106 M-1s-1) > A3-OH (7.71 × 105 M-1s-1) > A1-OH(4.22 × 105 M-1s-1)。分子对接和动力学研究测试了对产生活性物种的酶的抑制能力:脂氧合脢 (LOX)、髓过氧化物酶 (MPO)、NAD(P)H 氧化酶 (NOX) 和黄嘌呤氧化酶 (XOD)。与酶的亲和力依次降低:XOD > LOX > NOX > MPO。
{"title":"The inhibitory potential of 4,7-dihydroxycoumarin derivatives on ROS-producing enzymes and direct HOO•/o2• - radical scavenging activity - a comprehensive kinetic DFT study.","authors":"Žiko Milanović,Svetlana Jeremić,Marko Antonijević,Dušan Dimić,Đura Nakarada,Edina Avdović,Zoran Marković","doi":"10.1080/10715762.2024.2400674","DOIUrl":"https://doi.org/10.1080/10715762.2024.2400674","url":null,"abstract":"This study examined the antiradical activity of three synthesized coumarin derivatives: (E)-3-(1-((2-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A1-OH), (E)-3-(1-((3-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A2-OH), and (E)-3-(1-((4-hydroxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A3-OH) against HOO•/O2•- radical species. The investigation included electron spin resonance (ESR) measurements and a DFT kinetic study. Thermodynamic and kinetic parameters of antiradical mechanisms-Formal Hydrogen Atom Transfer (f-HAT), Radical Adduct Formation (RAF), Sequential Proton Loss followed by Electron Transfer (SPLET), and Single-Electron Transfer followed by Proton Transfer (SET-PT)-were evaluated using the Quantum Mechanics-based test for Overall Free Radical Scavenging Activity (QM-ORSA) under physiological conditions. ESR results indicated antiradical activity decreased in the sequence A1-OH (58.7%) > A2-OH (57.5%) > A3-OH (53.1%). Kinetic analysis revealed the f-HAT mechanism dominated HOO• inactivation. A newly formulated Sequential Proton Loss followed by Radical Adduct Formation (SPL-RAF) mechanism described interactions with O2•-. The activity toward O2•- was A2-OH (1.26 × 106 M-1s-1) > A3-OH (7.71 × 105 M-1s-1) > A1-OH (4.22 × 105 M-1s-1). Molecular docking and dynamics studies tested inhibitory capability against enzymes producing reactive species: Lipoxygenase (LOX), Myeloperoxidase (MPO), NAD(P)H oxidase (NOX), and Xanthine Oxidase (XOD). Affinity to enzymes decreased in the order: XOD > LOX > NOX > MPO.","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"27 1","pages":"1-16"},"PeriodicalIF":3.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EP4 receptor agonist CAY10598 upregulates ROS-dependent Hsp90 cleavage in colorectal cancer cells. EP4受体激动剂CAY10598能上调结直肠癌细胞中依赖于ROS的Hsp90裂解。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-11 DOI: 10.1080/10715762.2024.2396909
In Gyung Chae,Joohee Jung,Do-Hee Kim,Joon-Seok Choi,Kyung-Soo Chun
Prostaglandin E2 (PGE2) interacts with four specific G protein-coupled receptors, namely EP1, EP2, EP3, and EP4, playing a pivotal role in determining the fate of cells. Our previous findings highlighted that stimulating the EP4 receptor with its agonist, CAY10598, triggers apoptosis in colon cancer HCT116 cells via the production of reactive oxygen species (ROS). This process also reduces the phosphorylation of the oncogenic protein JAK2 and leads to its degradation in these cells. In this study, our goal was to explore the pathways through which CAY10598 leads to JAK2 degradation. We focused on Hsp90, a heat shock protein family member known for its role as a molecular chaperone maintaining the stability of several key proteins including EGFR, MET, Akt, and JAK2. Our results show that CAY10598 decreases the levels of client proteins of Hsp90 in HCT116 cells, an effect reversible by pretreatment with the ROS scavenger N-acetyl cysteine (NAC) or the proteasome inhibitor MG132, indicating that the degradation is likely driven by ROS. Furthermore, we observed that CAY10598 cleaves both α and β isoforms of Hsp90, the process inhibited by NAC. Inhibition of EP4 with the antagonist GW627368x not only prevented the degradation of Hsp90 client proteins but also the cleavage of Hsp90 itself in CAY10598-treated HCT116 cells. Additionally, CAY10598 suppressed the growth of HCT116 cells implanted in mice. Our findings reveal that CAY10598 induces apoptosis in cancer cells by a novel mechanism involving the ROS-dependent cleavage of Hsp90, thereby inhibiting the function of crucial Hsp90 client proteins.
前列腺素 E2(PGE2)与四种特定的 G 蛋白偶联受体(即 EP1、EP2、EP3 和 EP4)相互作用,在决定细胞命运方面起着关键作用。我们之前的研究结果表明,用激动剂 CAY10598 刺激 EP4 受体,可通过产生活性氧(ROS)引发结肠癌 HCT116 细胞凋亡。这一过程还能减少致癌蛋白 JAK2 的磷酸化,并导致其在这些细胞中降解。在本研究中,我们的目标是探索 CAY10598 导致 JAK2 降解的途径。我们重点研究了 Hsp90,它是一种热休克蛋白家族成员,因其作为分子伴侣维持包括表皮生长因子受体、MET、Akt 和 JAK2 在内的多种关键蛋白的稳定性而闻名。我们的研究结果表明,CAY10598会降低HCT116细胞中Hsp90客户蛋白的水平,这种效应在ROS清除剂N-乙酰半胱氨酸(NAC)或蛋白酶体抑制剂MG132的预处理下是可逆的,这表明降解可能是由ROS驱动的。此外,我们观察到 CAY10598 可裂解 Hsp90 的 α 和 β 异构体,而 NAC 可抑制这一过程。用拮抗剂 GW627368x 抑制 EP4 不仅能阻止 Hsp90 客户蛋白的降解,还能阻止 CAY10598 处理的 HCT116 细胞中 Hsp90 本身的裂解。此外,CAY10598 还能抑制植入小鼠体内的 HCT116 细胞的生长。我们的研究结果表明,CAY10598通过一种新的机制诱导癌细胞凋亡,该机制涉及依赖于ROS的Hsp90裂解,从而抑制关键Hsp90客户蛋白的功能。
{"title":"EP4 receptor agonist CAY10598 upregulates ROS-dependent Hsp90 cleavage in colorectal cancer cells.","authors":"In Gyung Chae,Joohee Jung,Do-Hee Kim,Joon-Seok Choi,Kyung-Soo Chun","doi":"10.1080/10715762.2024.2396909","DOIUrl":"https://doi.org/10.1080/10715762.2024.2396909","url":null,"abstract":"Prostaglandin E2 (PGE2) interacts with four specific G protein-coupled receptors, namely EP1, EP2, EP3, and EP4, playing a pivotal role in determining the fate of cells. Our previous findings highlighted that stimulating the EP4 receptor with its agonist, CAY10598, triggers apoptosis in colon cancer HCT116 cells via the production of reactive oxygen species (ROS). This process also reduces the phosphorylation of the oncogenic protein JAK2 and leads to its degradation in these cells. In this study, our goal was to explore the pathways through which CAY10598 leads to JAK2 degradation. We focused on Hsp90, a heat shock protein family member known for its role as a molecular chaperone maintaining the stability of several key proteins including EGFR, MET, Akt, and JAK2. Our results show that CAY10598 decreases the levels of client proteins of Hsp90 in HCT116 cells, an effect reversible by pretreatment with the ROS scavenger N-acetyl cysteine (NAC) or the proteasome inhibitor MG132, indicating that the degradation is likely driven by ROS. Furthermore, we observed that CAY10598 cleaves both α and β isoforms of Hsp90, the process inhibited by NAC. Inhibition of EP4 with the antagonist GW627368x not only prevented the degradation of Hsp90 client proteins but also the cleavage of Hsp90 itself in CAY10598-treated HCT116 cells. Additionally, CAY10598 suppressed the growth of HCT116 cells implanted in mice. Our findings reveal that CAY10598 induces apoptosis in cancer cells by a novel mechanism involving the ROS-dependent cleavage of Hsp90, thereby inhibiting the function of crucial Hsp90 client proteins.","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"6 1","pages":"1-10"},"PeriodicalIF":3.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Free Radical Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1