Pub Date : 2024-10-07DOI: 10.1093/g3journal/jkae240
Sidhant Chaudhary, Rosa Margarida Nogueira Ricardo, Mukesh Dubey, Dan Funck Jensen, Laura Grenville-Briggs, Magnus Karlsson
Biological control to manage plant diseases is an environmentally friendly alternative to using chemical pesticides. However, little is known about the role of genetic variation in plants affecting the efficacy of biological control agents (BCAs). The aim of this study was to explore the genetic variation in winter wheat for disease susceptibility to fusarium foot rot caused by Fusarium graminearum and variation in biocontrol efficacy of the fungal BCA Clonostachys rosea to control the disease. In total, 190 winter wheat genotypes were evaluated under controlled conditions in two treatments, i.e. (i) F. graminearum (Fg) and (ii) F. graminearum infection on C. rosea treated seeds (FgCr). Alongside disease severity, plant growth-related traits such as shoot length and root length were also measured. Comparison of genotypes between the two treatments enabled the dissection of genotypic variation for disease resistance and C. rosea efficacy. The study revealed significant variation among plant genotypes for fusarium foot rot susceptibility and other growth traits in treatment Fg. Moreover, significant variation in C. rosea efficacy was also observed in genotype contrasts between the two treatments for all traits. Using a 20K marker array, a genome-wide association study was also performed. We identified a total of 18 significant marker-trait associations for disease resistance and C. rosea efficacy for all the traits. Moreover, the markers associated with disease resistance and C. rosea efficacy were not co-localized, highlighting the independent inheritance of these traits, which can facilitate simultaneous selection for cultivar improvement.
{"title":"Genotypic variation in winter wheat for fusarium foot rot and its biocontrol using Clonostachys rosea.","authors":"Sidhant Chaudhary, Rosa Margarida Nogueira Ricardo, Mukesh Dubey, Dan Funck Jensen, Laura Grenville-Briggs, Magnus Karlsson","doi":"10.1093/g3journal/jkae240","DOIUrl":"10.1093/g3journal/jkae240","url":null,"abstract":"<p><p>Biological control to manage plant diseases is an environmentally friendly alternative to using chemical pesticides. However, little is known about the role of genetic variation in plants affecting the efficacy of biological control agents (BCAs). The aim of this study was to explore the genetic variation in winter wheat for disease susceptibility to fusarium foot rot caused by Fusarium graminearum and variation in biocontrol efficacy of the fungal BCA Clonostachys rosea to control the disease. In total, 190 winter wheat genotypes were evaluated under controlled conditions in two treatments, i.e. (i) F. graminearum (Fg) and (ii) F. graminearum infection on C. rosea treated seeds (FgCr). Alongside disease severity, plant growth-related traits such as shoot length and root length were also measured. Comparison of genotypes between the two treatments enabled the dissection of genotypic variation for disease resistance and C. rosea efficacy. The study revealed significant variation among plant genotypes for fusarium foot rot susceptibility and other growth traits in treatment Fg. Moreover, significant variation in C. rosea efficacy was also observed in genotype contrasts between the two treatments for all traits. Using a 20K marker array, a genome-wide association study was also performed. We identified a total of 18 significant marker-trait associations for disease resistance and C. rosea efficacy for all the traits. Moreover, the markers associated with disease resistance and C. rosea efficacy were not co-localized, highlighting the independent inheritance of these traits, which can facilitate simultaneous selection for cultivar improvement.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/g3journal/jkae162
Jun Soung Kwak, M Ángel León-Tapia, Celian Diblasi, Domniki Manousi, Lars Grønvold, Guro Katrine Sandvik, Marie Saitou
The Period genes (Per) play essential roles in modulating the molecular circadian clock timing in a broad range of species, which regulates the physiological and cellular rhythms through the transcription-translation feedback loop. While the Period gene paralogs are widely observed among vertebrates, the evolutionary history and the functional diversification of Per genes across vertebrates are not well known. In this study, we comprehensively investigated the evolution of Per genes at the copy number and sequence levels, including de novo binding motif discovery by comparative genomics. We also determined the lineage-specific transcriptome landscape across tissues and developmental stages and phenotypic effects in public RNA-seq data sets of model species. We observed multiple lineage-specific gain and loss events Per genes, though no simple association was observed between ecological factors and Per gene numbers in each species. Among salmonid fish species, the per3 gene has been lost in the majority, whereas those retaining the per3 gene exhibit not a signature of relaxed selective constraint but rather a signature of intensified selection. We also determined the signature of adaptive diversification of the CRY-binding region in Per1 and Per3, which modulates the circadian rhythm. We also discovered putative regulatory sequences, which are lineage-specific, suggesting that these cis-regulatory elements may have evolved rapidly and divergently across different lineages. Collectively, our findings revealed the evolution of Per genes and their fine-tuned contribution to the plastic and precise regulation of circadian rhythms in various vertebrate taxa.
昼夜节律基因(Per)在多种物种的分子昼夜节律时钟定时调节中发挥着重要作用,通过转录-翻译反馈回路调节生理和细胞节律。虽然脊椎动物中广泛存在Per基因的旁系亲属,但人们对Per基因在脊椎动物中的进化历史和功能多样性并不十分清楚。在这项研究中,我们从拷贝数和序列水平上全面研究了Per基因的进化,包括通过比较基因组学发现新的结合基序。我们还在模式物种的公共 RNA-seq 数据集中确定了不同组织和发育阶段的品系特异性转录组格局以及表型效应。我们观察到多个品系特异性的 Per 基因增益和缺失事件,尽管在每个物种中没有观察到生态因素与 Per 基因数量之间的简单关联。在鲑科鱼类中,per3 基因在大多数鱼类中丢失,而保留 per3 基因的鱼类并没有表现出选择性限制放松的特征,而是表现出选择性加强的特征。我们还确定了 Per1 和 Per3 中调节昼夜节律的 CRY 结合区的适应性多样化特征。我们还发现了具有品系特异性的推定调控序列,这表明这些顺式调控元件可能在不同品系之间发生了快速和分化进化。总之,我们的研究结果揭示了Per基因的进化及其对各种脊椎动物类群昼夜节律可塑性和精确调控的微调贡献。
{"title":"Functional and regulatory diversification of Period genes responsible for circadian rhythm in vertebrates.","authors":"Jun Soung Kwak, M Ángel León-Tapia, Celian Diblasi, Domniki Manousi, Lars Grønvold, Guro Katrine Sandvik, Marie Saitou","doi":"10.1093/g3journal/jkae162","DOIUrl":"10.1093/g3journal/jkae162","url":null,"abstract":"<p><p>The Period genes (Per) play essential roles in modulating the molecular circadian clock timing in a broad range of species, which regulates the physiological and cellular rhythms through the transcription-translation feedback loop. While the Period gene paralogs are widely observed among vertebrates, the evolutionary history and the functional diversification of Per genes across vertebrates are not well known. In this study, we comprehensively investigated the evolution of Per genes at the copy number and sequence levels, including de novo binding motif discovery by comparative genomics. We also determined the lineage-specific transcriptome landscape across tissues and developmental stages and phenotypic effects in public RNA-seq data sets of model species. We observed multiple lineage-specific gain and loss events Per genes, though no simple association was observed between ecological factors and Per gene numbers in each species. Among salmonid fish species, the per3 gene has been lost in the majority, whereas those retaining the per3 gene exhibit not a signature of relaxed selective constraint but rather a signature of intensified selection. We also determined the signature of adaptive diversification of the CRY-binding region in Per1 and Per3, which modulates the circadian rhythm. We also discovered putative regulatory sequences, which are lineage-specific, suggesting that these cis-regulatory elements may have evolved rapidly and divergently across different lineages. Collectively, our findings revealed the evolution of Per genes and their fine-tuned contribution to the plastic and precise regulation of circadian rhythms in various vertebrate taxa.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/g3journal/jkae170
Hongfei Ji, Dian Chen, Christopher Fang-Yen
An animal's locomotor rate is an important indicator of its motility. In studies of the nematode Caenorhabditis elegans (C. elegans), assays of the frequency of body bending waves have often been used to discern the effects of mutations, drugs, or aging. Traditional manual methods for measuring locomotor frequency are low in throughput and subject to human error. Most current automated methods depend on image segmentation, which requires high image quality and is prone to errors. Here, we describe an algorithm for automated estimation of C. elegans locomotor frequency using image invariants, i.e. shape-based parameters that are independent of object translation, rotation, and scaling. For each video frame, the method calculates a combination of 8 Hu's moment invariants and a set of maximally stable extremal regions (MSER) invariants. The algorithm then calculates the locomotor frequency by computing the autocorrelation of the time sequence of the invariant ensemble. Results of our method show excellent agreement with manual or segmentation-based results over a wide range of frequencies. We show that compared to a segmentation-based method that analyzes a worm's shape and a method based on video covariance, our technique is more robust to low image quality and background noise. We demonstrate the system's capabilities by testing the effects of serotonin and serotonin pathway mutations on C. elegans locomotor frequency.
动物的运动速率是衡量其运动能力的重要指标。在线虫 C. elegans 的研究中,身体弯曲波频率的检测通常被用来辨别突变、药物或衰老的影响。传统的手动测量运动频率的方法吞吐量低,而且容易出现人为错误。目前大多数自动方法依赖于图像分割,这对图像质量要求很高,而且容易出错。在此,我们介绍一种利用图像不变性(即与物体平移、旋转和缩放无关的基于形状的参数)自动估算秀丽隐杆线虫运动频率的算法。对于每个视频帧,该方法计算 8 个胡氏矩不变式和一组最大稳定极值区域(MSER)不变式的组合。然后,该算法通过计算不变量组合时间序列的自相关性来计算运动频率。在广泛的频率范围内,我们的方法与人工或基于分割的结果显示出极佳的一致性。我们发现,与基于分析蠕虫形状的分割方法和基于视频协方差的方法相比,我们的技术对低图像质量和背景噪声具有更强的鲁棒性。我们通过测试血清素和血清素通路突变对 elegans 运动频率的影响来证明该系统的能力。
{"title":"Segmentation-free measurement of locomotor frequency in Caenorhabditis elegans using image invariants.","authors":"Hongfei Ji, Dian Chen, Christopher Fang-Yen","doi":"10.1093/g3journal/jkae170","DOIUrl":"10.1093/g3journal/jkae170","url":null,"abstract":"<p><p>An animal's locomotor rate is an important indicator of its motility. In studies of the nematode Caenorhabditis elegans (C. elegans), assays of the frequency of body bending waves have often been used to discern the effects of mutations, drugs, or aging. Traditional manual methods for measuring locomotor frequency are low in throughput and subject to human error. Most current automated methods depend on image segmentation, which requires high image quality and is prone to errors. Here, we describe an algorithm for automated estimation of C. elegans locomotor frequency using image invariants, i.e. shape-based parameters that are independent of object translation, rotation, and scaling. For each video frame, the method calculates a combination of 8 Hu's moment invariants and a set of maximally stable extremal regions (MSER) invariants. The algorithm then calculates the locomotor frequency by computing the autocorrelation of the time sequence of the invariant ensemble. Results of our method show excellent agreement with manual or segmentation-based results over a wide range of frequencies. We show that compared to a segmentation-based method that analyzes a worm's shape and a method based on video covariance, our technique is more robust to low image quality and background noise. We demonstrate the system's capabilities by testing the effects of serotonin and serotonin pathway mutations on C. elegans locomotor frequency.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic pain has an enormous impact on the quality of life of billions of patients, families, and caregivers worldwide. Current therapies do not adequately address pain for most patients. A basic understanding of the conserved genetic framework controlling pain may help us develop better, non-addictive pain therapies. Here, we identify new conserved and druggable analgesic targets using the tissue-specific functional genomic screening of candidate "pain" genes in fly. From these efforts, we describe 23 new pain genes for further consideration. This included Acsl, a fatty acid-metabolizing enzyme, and mammalian orthologs involved in arachidonic acid metabolism. The Acsl knockdown and mutant larvae showed delayed nocifensive responses to localized and global noxious heat. Mechanistically, the Acsl knockdown reduced dendritic branching of nociceptive neurons. Surprisingly, the pain phenotype in these animals could be rescued through dietary intervention with vitamin B5, highlighting the interplay between genetics, metabolism, and nutrient environment to establish sensory perception thresholds. Together, our functional genomic screening within the sensory nociceptor has identified new nociception genes that provide a better understanding of pain biology and can help guide the development of new painkillers.
{"title":"Vitamin B5 is a context-dependent dietary regulator of nociception.","authors":"Zina Hamoudi, Calvin Leung, Thang Manh Khuong, Gregory Cooney, G Gregory Neely","doi":"10.1093/g3journal/jkae174","DOIUrl":"10.1093/g3journal/jkae174","url":null,"abstract":"<p><p>Chronic pain has an enormous impact on the quality of life of billions of patients, families, and caregivers worldwide. Current therapies do not adequately address pain for most patients. A basic understanding of the conserved genetic framework controlling pain may help us develop better, non-addictive pain therapies. Here, we identify new conserved and druggable analgesic targets using the tissue-specific functional genomic screening of candidate \"pain\" genes in fly. From these efforts, we describe 23 new pain genes for further consideration. This included Acsl, a fatty acid-metabolizing enzyme, and mammalian orthologs involved in arachidonic acid metabolism. The Acsl knockdown and mutant larvae showed delayed nocifensive responses to localized and global noxious heat. Mechanistically, the Acsl knockdown reduced dendritic branching of nociceptive neurons. Surprisingly, the pain phenotype in these animals could be rescued through dietary intervention with vitamin B5, highlighting the interplay between genetics, metabolism, and nutrient environment to establish sensory perception thresholds. Together, our functional genomic screening within the sensory nociceptor has identified new nociception genes that provide a better understanding of pain biology and can help guide the development of new painkillers.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/g3journal/jkae153
Aaron Hong, Rebecca G Cheek, Suhashi Nihara De Silva, Kingshuk Mukherjee, Isha Yooseph, Marco Oliva, Mark Heim, Chris W Funk, David Tallmon, Christina Boucher
The genetic effective size (Ne) is arguably one of the most important characteristics of a population as it impacts the rate of loss of genetic diversity. Methods that estimate Ne are important in population and conservation genetic studies as they quantify the risk of a population being inbred or lacking genetic diversity. Yet there are very few methods that can estimate the Ne from data from a single population and without extensive information about the genetics of the population, such as a linkage map, or a reference genome of the species of interest. We present ONeSAMP 3.0, an algorithm for estimating Ne from single nucleotide polymorphism data collected from a single population sample using approximate Bayesian computation and local linear regression. We demonstrate the utility of this approach using simulated Wright-Fisher populations, and empirical data from five endangered Channel Island fox (Urocyon littoralis) populations to evaluate the performance of ONeSAMP 3.0 compared to a commonly used Ne estimator. Our results show that ONeSAMP 3.0 is broadly applicable to natural populations and is flexible enough that future versions could easily include summary statistics appropriate for a suite of biological and sampling conditions. ONeSAMP 3.0 is publicly available under the GNU General Public License at https://github.com/AaronHong1024/ONeSAMP_3.
遗传有效大小(Ne)可以说是种群最重要的特征之一,因为它影响着遗传多样性的丧失速度。估算 Ne 值的方法在种群和保护遗传研究中非常重要,因为它们可以量化种群近亲繁殖或缺乏遗传多样性的风险。然而,目前只有极少数方法可以在没有大量种群遗传学信息(如连接图或相关物种的参考基因组)的情况下,通过单个种群的数据估算 Ne 值。我们介绍了 ONeSAMP 3.0,这是一种利用近似贝叶斯计算和局部线性回归从单一种群样本收集的单核苷酸多态性(SNP)数据中估算 Ne 的算法。我们使用模拟的 Wright-Fisher 种群和来自五个濒危海峡岛狐(Urocyon littoralis)种群的经验数据展示了这种方法的实用性,以评估 ONeSAMP 3.0 与常用 Ne 估计器相比的性能。我们的研究结果表明,ONeSAMP 3.0 广泛适用于自然种群,而且非常灵活,未来的版本可以很容易地包含适合各种生物和采样条件的汇总统计。ONeSAMP 3.0 在 GNU 许可证下公开发布,网址为 https://github.com/AaronHong1024/ONeSAMP_3。
{"title":"ONeSAMP 3.0: estimation of effective population size via single nucleotide polymorphism data from one population.","authors":"Aaron Hong, Rebecca G Cheek, Suhashi Nihara De Silva, Kingshuk Mukherjee, Isha Yooseph, Marco Oliva, Mark Heim, Chris W Funk, David Tallmon, Christina Boucher","doi":"10.1093/g3journal/jkae153","DOIUrl":"10.1093/g3journal/jkae153","url":null,"abstract":"<p><p>The genetic effective size (Ne) is arguably one of the most important characteristics of a population as it impacts the rate of loss of genetic diversity. Methods that estimate Ne are important in population and conservation genetic studies as they quantify the risk of a population being inbred or lacking genetic diversity. Yet there are very few methods that can estimate the Ne from data from a single population and without extensive information about the genetics of the population, such as a linkage map, or a reference genome of the species of interest. We present ONeSAMP 3.0, an algorithm for estimating Ne from single nucleotide polymorphism data collected from a single population sample using approximate Bayesian computation and local linear regression. We demonstrate the utility of this approach using simulated Wright-Fisher populations, and empirical data from five endangered Channel Island fox (Urocyon littoralis) populations to evaluate the performance of ONeSAMP 3.0 compared to a commonly used Ne estimator. Our results show that ONeSAMP 3.0 is broadly applicable to natural populations and is flexible enough that future versions could easily include summary statistics appropriate for a suite of biological and sampling conditions. ONeSAMP 3.0 is publicly available under the GNU General Public License at https://github.com/AaronHong1024/ONeSAMP_3.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141599088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/g3journal/jkae155
David Luecke, Yige Luo, Halina Krzystek, Corbin Jones, Artyom Kopp
Drosophila prolongata is a member of the melanogaster species group and rhopaloa subgroup native to the subtropical highlands of Southeast Asia. This species exhibits an array of recently evolved male-specific morphological, physiological, and behavioral traits that distinguish it from its closest relatives, making it an attractive model for studying the evolution of sexual dimorphism and testing theories of sexual selection. The lack of genomic resources has impeded the dissection of the molecular basis of sex-specific development and behavior in this species. To address this, we assembled the genome of D. prolongata using long-read sequencing and Hi-C scaffolding, resulting in a highly complete and contiguous (scaffold N50 2.2 Mb) genome assembly of 220 Mb. The repetitive content of the genome is 24.6%, the plurality of which are long terminal repeats retrotransposons (33.2%). Annotations based on RNA-seq data and homology to related species revealed a total of 19,330 genes, of which 16,170 are protein-coding. The assembly includes 98.5% of Diptera BUSCO genes, including 93.8% present as a single copy. Despite some likely regional duplications, the completeness of this genome suggests that it can be readily used for gene expression, genome-wide association studies (GWAS), and other genomic analyses.
{"title":"Highly contiguous genome assembly of Drosophila prolongata-a model for evolution of sexual dimorphism and male-specific innovations.","authors":"David Luecke, Yige Luo, Halina Krzystek, Corbin Jones, Artyom Kopp","doi":"10.1093/g3journal/jkae155","DOIUrl":"10.1093/g3journal/jkae155","url":null,"abstract":"<p><p>Drosophila prolongata is a member of the melanogaster species group and rhopaloa subgroup native to the subtropical highlands of Southeast Asia. This species exhibits an array of recently evolved male-specific morphological, physiological, and behavioral traits that distinguish it from its closest relatives, making it an attractive model for studying the evolution of sexual dimorphism and testing theories of sexual selection. The lack of genomic resources has impeded the dissection of the molecular basis of sex-specific development and behavior in this species. To address this, we assembled the genome of D. prolongata using long-read sequencing and Hi-C scaffolding, resulting in a highly complete and contiguous (scaffold N50 2.2 Mb) genome assembly of 220 Mb. The repetitive content of the genome is 24.6%, the plurality of which are long terminal repeats retrotransposons (33.2%). Annotations based on RNA-seq data and homology to related species revealed a total of 19,330 genes, of which 16,170 are protein-coding. The assembly includes 98.5% of Diptera BUSCO genes, including 93.8% present as a single copy. Despite some likely regional duplications, the completeness of this genome suggests that it can be readily used for gene expression, genome-wide association studies (GWAS), and other genomic analyses.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the signaling pathways in which genes participate is essential for discovering the etiology of diseases in humans. The model organism, Drosophila melanogaster, has been crucial in understanding the signaling pathways in humans, given the evolutionary conservation of a significant number of genes between the two species. Genetic screens using Drosophila are a useful way of testing large number of genes to study their function and roles within signaling pathways. We conducted a large-scale genetic screen to identify which human genes cause an alteration in the morphology of the Drosophila eye. The GMR-Gal4 was employed to activate a single UAS-human gene in the eye tissue. In total, we screened 802 UAS-human gene stocks, corresponding to 787 human protein-coding genes, for the ability to influence eye development. We found that overexpression of 64 human genes were capable of disrupting eye development, as determined by phenotypic changes in eye texture, size, shape, bristle morphology, and ommatidia organization. Subsequent analysis revealed that the fly genome encodes proteins that are homologous to a majority of the 64 human genes, raising the possibility that overexpression of these transgenes altered eye development by altering the activity of evolutionarily conserved developmental signaling pathways. Consistent with this hypothesis, a secondary screen demonstrated that overexpression of fly homologs produced phenotypes that mimicked those produced by overexpression of the human gene. Our screening has identified 64 human genes capable of inducing phenotypes in the fly, offering a foundation for ongoing research aimed at understanding functionally conserved pathways across species.
{"title":"A large-scale in vivo screen to investigate the roles of human genes in Drosophila melanogaster.","authors":"Ashley Avila, Lily Paculis, Roxana Gonzalez Tascon, Belen Ramos, Dongyu Jia","doi":"10.1093/g3journal/jkae188","DOIUrl":"10.1093/g3journal/jkae188","url":null,"abstract":"<p><p>Understanding the signaling pathways in which genes participate is essential for discovering the etiology of diseases in humans. The model organism, Drosophila melanogaster, has been crucial in understanding the signaling pathways in humans, given the evolutionary conservation of a significant number of genes between the two species. Genetic screens using Drosophila are a useful way of testing large number of genes to study their function and roles within signaling pathways. We conducted a large-scale genetic screen to identify which human genes cause an alteration in the morphology of the Drosophila eye. The GMR-Gal4 was employed to activate a single UAS-human gene in the eye tissue. In total, we screened 802 UAS-human gene stocks, corresponding to 787 human protein-coding genes, for the ability to influence eye development. We found that overexpression of 64 human genes were capable of disrupting eye development, as determined by phenotypic changes in eye texture, size, shape, bristle morphology, and ommatidia organization. Subsequent analysis revealed that the fly genome encodes proteins that are homologous to a majority of the 64 human genes, raising the possibility that overexpression of these transgenes altered eye development by altering the activity of evolutionarily conserved developmental signaling pathways. Consistent with this hypothesis, a secondary screen demonstrated that overexpression of fly homologs produced phenotypes that mimicked those produced by overexpression of the human gene. Our screening has identified 64 human genes capable of inducing phenotypes in the fly, offering a foundation for ongoing research aimed at understanding functionally conserved pathways across species.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/g3journal/jkae198
Maxwell C Coyle, Carolyn N Elya, Michael J Bronski, Michael B Eisen
We report a virus infecting Entomophthora muscae, a behavior-manipulating fungal pathogen of dipterans. The virus, which we name Berkeley Entomophthovirus, is a positive-strand RNA virus in the iflaviridae family of capsid-forming viruses, which are mostly known to infect insects. The viral RNA is expressed at high levels in fungal cells in vitro and during in vivo infections of Drosophila melanogaster, and virus particles can be seen intracellularly in E. muscae. This virus, of which we find two closely related variants in our culture of E. muscae, is also closely related to three different viruses reported from metagenomic surveys, two of which were isolated from wild dipterans, and a third isolated from wild ticks. By analyzing sequencing data from these earlier reports, we find abundant reads aligning to E. muscae specifically in the samples from which viral reads were sequenced. These data establish a wide and perhaps obligate association with E. muscae in the wild, consistent with our laboratory data that E. muscae is the host for these closely related viruses. Because of this, we propose the name Entomophthovirus (EV) for this group of highly related virus variants. As other members of the iflaviridae have been reported to cause behavioral changes in insects, we speculate on the possibility that EV plays a role in the behavioral manipulation of flies infected with E. muscae.
{"title":"Entomophthovirus: an insect-derived iflavirus that infects a behavior-manipulating fungal pathogen of dipterans.","authors":"Maxwell C Coyle, Carolyn N Elya, Michael J Bronski, Michael B Eisen","doi":"10.1093/g3journal/jkae198","DOIUrl":"10.1093/g3journal/jkae198","url":null,"abstract":"<p><p>We report a virus infecting Entomophthora muscae, a behavior-manipulating fungal pathogen of dipterans. The virus, which we name Berkeley Entomophthovirus, is a positive-strand RNA virus in the iflaviridae family of capsid-forming viruses, which are mostly known to infect insects. The viral RNA is expressed at high levels in fungal cells in vitro and during in vivo infections of Drosophila melanogaster, and virus particles can be seen intracellularly in E. muscae. This virus, of which we find two closely related variants in our culture of E. muscae, is also closely related to three different viruses reported from metagenomic surveys, two of which were isolated from wild dipterans, and a third isolated from wild ticks. By analyzing sequencing data from these earlier reports, we find abundant reads aligning to E. muscae specifically in the samples from which viral reads were sequenced. These data establish a wide and perhaps obligate association with E. muscae in the wild, consistent with our laboratory data that E. muscae is the host for these closely related viruses. Because of this, we propose the name Entomophthovirus (EV) for this group of highly related virus variants. As other members of the iflaviridae have been reported to cause behavioral changes in insects, we speculate on the possibility that EV plays a role in the behavioral manipulation of flies infected with E. muscae.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/g3journal/jkae184
Phillip E McClean, Jayanta Roy, Christopher L Colbert, Caroline Osborne, Rian Lee, Phillip N Miklas, Juan M Osorno
Flavonoids are secondary metabolites associated with plant seed coat and flower color. These compounds provide health benefits to humans as anti-inflammatory and antioxidant compounds. The expression of the late biosynthetic genes in the flavonoid pathway is controlled by a ternary MBW protein complex consisting of interfacing MYB, beta-helix-loop-helix (bHLH), and WD40 Repeat (WDR) proteins. P, the master regulator gene of the flavonoid expression in common bean (Phaseolus vulgaris L.), was recently determined to encode a bHLH protein. The T and Z genes control the distribution of color in bean seeds and flowers and have historically been considered regulators of the flavonoid gene expression. T and Z candidates were identified using reverse genetics based on genetic mapping, phylogenetic analysis, and mutant analysis. Domain and AlphaFold2 structure analyses determined that T encodes a seven-bladed β-propeller WDR protein, while Z encodes a R2R3 MYB protein. Deletions and SNPs in T and Z mutants, respectively, altered the 3D structure of these proteins. Modeling of the Z MYB/P bHLH/T WDR MBW complex identified interfacing sequence domains and motifs in all three genes that are conserved in dicots. One Z MYB motif is a possible beta-molecular recognition feature (β-MoRF) that only appears in a structured state when Z MYB is modeled as a component of a MBW complex. Complexes containing mutant T and Z proteins changed the interaction of members of the complex in ways that would alter their role in regulating the expression of genes in the flavonoid pathway.
类黄酮是与植物种子外皮和花朵颜色有关的次级代谢物。这些化合物具有抗炎和抗氧化作用,对人类健康有益。类黄酮途径中的晚期生物合成基因的表达受三元 MBW 蛋白复合物控制,该复合物由相互连接的 MYB、β-螺旋环-螺旋(bHLH)和 WD40 重复(WDR)蛋白组成。蚕豆(Phaseolus vulgaris L.)黄酮类化合物表达的主调节基因 P 最近被确定编码一种 bHLH 蛋白。T 和 Z 基因控制着豆类种子和花的颜色分布,历来被认为是黄酮类基因表达的调控因子。根据基因图谱、系统发育分析和突变体分析,利用反向遗传学确定了 T 和 Z 候选基因。通过结构域和 AlphaFold2 结构分析,确定 T 编码七叶片 β-螺旋桨 WDR 蛋白,而 Z 编码 R2R3 MYB 蛋白。T和Z突变体中的缺失和SNP分别改变了这些蛋白质的三维结构。对 Z MYB/P bHLH/T WDR MBW 复合物的建模发现了这三个基因中在双子叶植物中保守的界面序列结构域和基序。其中一个 Z MYB 矩阵是一个可能的β分子识别特征(β-MoRF),只有当 Z MYB 被建模为 MBW 复合物的一个组成部分时,它才会以结构化状态出现。含有突变 T 蛋白和 Z 蛋白的复合体改变了复合体成员之间的相互作用,从而改变了它们在调节类黄酮途径基因表达方面的作用。
{"title":"T and Z, partial seed coat patterning genes in common bean, provide insight into the structure and protein interactions of a plant MBW complex.","authors":"Phillip E McClean, Jayanta Roy, Christopher L Colbert, Caroline Osborne, Rian Lee, Phillip N Miklas, Juan M Osorno","doi":"10.1093/g3journal/jkae184","DOIUrl":"10.1093/g3journal/jkae184","url":null,"abstract":"<p><p>Flavonoids are secondary metabolites associated with plant seed coat and flower color. These compounds provide health benefits to humans as anti-inflammatory and antioxidant compounds. The expression of the late biosynthetic genes in the flavonoid pathway is controlled by a ternary MBW protein complex consisting of interfacing MYB, beta-helix-loop-helix (bHLH), and WD40 Repeat (WDR) proteins. P, the master regulator gene of the flavonoid expression in common bean (Phaseolus vulgaris L.), was recently determined to encode a bHLH protein. The T and Z genes control the distribution of color in bean seeds and flowers and have historically been considered regulators of the flavonoid gene expression. T and Z candidates were identified using reverse genetics based on genetic mapping, phylogenetic analysis, and mutant analysis. Domain and AlphaFold2 structure analyses determined that T encodes a seven-bladed β-propeller WDR protein, while Z encodes a R2R3 MYB protein. Deletions and SNPs in T and Z mutants, respectively, altered the 3D structure of these proteins. Modeling of the Z MYB/P bHLH/T WDR MBW complex identified interfacing sequence domains and motifs in all three genes that are conserved in dicots. One Z MYB motif is a possible beta-molecular recognition feature (β-MoRF) that only appears in a structured state when Z MYB is modeled as a component of a MBW complex. Complexes containing mutant T and Z proteins changed the interaction of members of the complex in ways that would alter their role in regulating the expression of genes in the flavonoid pathway.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457125/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1093/g3journal/jkae180
Ehsan Kayal, Mark A Arick, Chuan-Yu Hsu, Adam Thrash, Mitsuko Yorkston, Clifford W Morden, Jonathan F Wendel, Daniel G Peterson, Corrinne E Grover
Island species are highly vulnerable due to habitat destruction and their often small population sizes with reduced genetic diversity. The Hawaiian Islands constitute the most isolated archipelago on the planet, harboring many endemic species. Kokia is an endangered flowering plant genus endemic to these islands, encompassing 3 extant and 1 extinct species. Recent studies provided evidence of unexpected genetic diversity within Kokia. Here, we provide high-quality genome assemblies for all 3 extant Kokia species, including an improved genome for Kokia drynarioides. All 3 Kokia genomes contain 12 chromosomes exhibiting high synteny within and between Kokia and the sister taxon Gossypioides kirkii. Gene content analysis revealed a net loss of genes in K. cookei compared to other species, whereas the gene complement in K. drynarioides remains stable and that of Kokia kauaiensis displays a net gain. A dated phylogeny estimates the divergence time from the last common ancestor for the 3 Kokia species at ∼1.2 million years ago (mya), with the sister taxa (K. cookei + K. drynarioides) diverging ∼0.8 mya. Kokia appears to have followed a stepping-stone pattern of colonization and diversification of the Hawaiian archipelago, likely starting on low or now submerged older islands. The genetic resources provided may benefit conservation efforts of this endangered endemic genus.
由于栖息地遭到破坏,加之种群规模通常较小,遗传多样性降低,岛屿物种非常脆弱。夏威夷群岛是地球上最与世隔绝的群岛,拥有许多特有物种。Kokia 是这些岛屿特有的濒危开花植物属,包括三个现存物种和一个已灭绝物种。最近的研究提供的证据表明,Kokia 具有意想不到的遗传多样性。在这里,我们提供了所有三个现存 Kokia 物种的高质量基因组组装,包括 K. drynarioides 的改进基因组。所有三个科基亚基因组都包含 12 条染色体,在科基亚内部以及科基亚与姊妹类群 Gossypioides kirkii 之间表现出高度的同源性。基因含量分析表明,与其他物种相比,K. cookei 的基因出现了净损失,而 K. drynarioides 的基因保持稳定,K. kauaiensis 的基因则出现了净增加。根据年代系统发育估计,三个 Kokia 物种从最后一个共同祖先开始的分化时间为 120 万年前,姊妹类群 [K. cookei + K. drynarioides] 的分化时间为 80 万年前。Kokia似乎遵循了夏威夷群岛殖民和多样化的阶梯模式,很可能是从低矮或现已被淹没的较古老岛屿开始的。所提供的遗传资源可能有利于这一濒危特有属的保护工作。
{"title":"Genomic diversity and evolution of the Hawaiian Islands endemic Kokia (Malvaceae).","authors":"Ehsan Kayal, Mark A Arick, Chuan-Yu Hsu, Adam Thrash, Mitsuko Yorkston, Clifford W Morden, Jonathan F Wendel, Daniel G Peterson, Corrinne E Grover","doi":"10.1093/g3journal/jkae180","DOIUrl":"10.1093/g3journal/jkae180","url":null,"abstract":"<p><p>Island species are highly vulnerable due to habitat destruction and their often small population sizes with reduced genetic diversity. The Hawaiian Islands constitute the most isolated archipelago on the planet, harboring many endemic species. Kokia is an endangered flowering plant genus endemic to these islands, encompassing 3 extant and 1 extinct species. Recent studies provided evidence of unexpected genetic diversity within Kokia. Here, we provide high-quality genome assemblies for all 3 extant Kokia species, including an improved genome for Kokia drynarioides. All 3 Kokia genomes contain 12 chromosomes exhibiting high synteny within and between Kokia and the sister taxon Gossypioides kirkii. Gene content analysis revealed a net loss of genes in K. cookei compared to other species, whereas the gene complement in K. drynarioides remains stable and that of Kokia kauaiensis displays a net gain. A dated phylogeny estimates the divergence time from the last common ancestor for the 3 Kokia species at ∼1.2 million years ago (mya), with the sister taxa (K. cookei + K. drynarioides) diverging ∼0.8 mya. Kokia appears to have followed a stepping-stone pattern of colonization and diversification of the Hawaiian archipelago, likely starting on low or now submerged older islands. The genetic resources provided may benefit conservation efforts of this endangered endemic genus.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}