Mengzi Zhou, Xiancai Lu, Xiandong Liu, Yingchun Zhang, Xiaoyu Zhang, Kai Wang
The transport of sulfate-bearing brines is closely relevant to mineralization of sulfide deposits as metal-sulfate complexes exist in hydrothermal fluids. Liquid-liquid phase separation evidently occurs in various metal-sulfate systems with transport and precipitating different from homogeneous fluids. Previous studies have revealed a new species with a Raman peak at ~1020 cm-1 in rich concentration phase of liquid-liquid phase separated MgSO4 solution, and it was interpreted as chain structure polymers. Ab initio molecular dynamics simulations (AIMD) and autocorrelation functions for frequency calculation have been performed to disclose the speciation. The results show that more Mg2+ ions surrounding a SO42- anion lead to higher wavenumber of Raman peaks, which indicates the formation of complicate clusters with ion associations similar to kieserite. Besides, the splitting peaks of v-980 Raman bands at ~980, 990, and 1005 cm-1 in homogeneous solution represent more monodentate Mg-Os (Os: O of SO42-) associations instead of certain species, which favors the formation of prenucleation clusters. Furthermore, bidentate Mg-SO4 ligand is less stable than monodentate ligands at 543 K by applying free energy calculations. Our findings give atomic level recognition of concentrated phase in liquid-liquid phase separated MgSO4 fluids and theoretical explanation of the 980 cm-1 Raman peak shifting, which will further inspire understandings on nucleation processes of hydrated sulfate minerals and Raman spectra resolving of other sulfate systems.
{"title":"Ab Initio Molecular Dynamics Simulations and Vibrational Frequency Calculations of Species in Liquid-Liquid Phase Separated MgSO4 Solution at 543 K","authors":"Mengzi Zhou, Xiancai Lu, Xiandong Liu, Yingchun Zhang, Xiaoyu Zhang, Kai Wang","doi":"10.1155/2024/8852421","DOIUrl":"10.1155/2024/8852421","url":null,"abstract":"<p>The transport of sulfate-bearing brines is closely relevant to mineralization of sulfide deposits as metal-sulfate complexes exist in hydrothermal fluids. Liquid-liquid phase separation evidently occurs in various metal-sulfate systems with transport and precipitating different from homogeneous fluids. Previous studies have revealed a new species with a Raman peak at ~1020 cm<sup>-1</sup> in rich concentration phase of liquid-liquid phase separated MgSO<sub>4</sub> solution, and it was interpreted as chain structure polymers. <i>Ab initio</i> molecular dynamics simulations (AIMD) and autocorrelation functions for frequency calculation have been performed to disclose the speciation. The results show that more Mg<sup>2+</sup> ions surrounding a SO<sub>4</sub><sup>2-</sup> anion lead to higher wavenumber of Raman peaks, which indicates the formation of complicate clusters with ion associations similar to kieserite. Besides, the splitting peaks of <i>v</i>-980 Raman bands at ~980, 990, and 1005 cm<sup>-1</sup> in homogeneous solution represent more monodentate Mg-Os (Os: O of SO<sub>4</sub><sup>2-</sup>) associations instead of certain species, which favors the formation of prenucleation clusters. Furthermore, bidentate Mg-SO<sub>4</sub> ligand is less stable than monodentate ligands at 543 K by applying free energy calculations. Our findings give atomic level recognition of concentrated phase in liquid-liquid phase separated MgSO<sub>4</sub> fluids and theoretical explanation of the 980 cm<sup>-1</sup> Raman peak shifting, which will further inspire understandings on nucleation processes of hydrated sulfate minerals and Raman spectra resolving of other sulfate systems.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Wen, Ping Guo, Xin Zhang, Wen-qiang Lu, Zhong Fang Liu
Broken rock masses with the complexity and concealment widely exist in nature such as underground mine, collapse column, and zone. It is extremely difficult to model fracture networks and to simulate water diffusion for broken rock masses. To explore a reasonable fracture network model for broken rock masses, a new method for modeling a two-dimensional planar fracture network model is proposed in this paper. It includes packer test, empirical relationship, fractal width description, and symmetric expansion modeling. Then, the fluid-solid coupling is used to simulate the diffusion properties of water in the two-dimensional planar fracture network model. It is found that the diffusion velocities vmax and vmin do not appear in the fracture widths λmax and λmin. It indicates that the fracture widths λmax and λmin in the fracture network model for broken rock mass have little impact on the diffusion velocity. Furthermore, the fracture distribution pattern in the fracture network model is an important factor affecting the diffusion velocities vmax and vmin. The simulation results of water diffusion in the currently proposed model are almost consistent with the actual process of the packer test. Also, the validity of the two-dimensional planar fracture network model is verified by comparing the simulation results with the existing research.
{"title":"A Two-Dimensional Planar Fracture Network Model for Broken Rock Mass Based on Packer Test and Fractal Dimension","authors":"Lei Wen, Ping Guo, Xin Zhang, Wen-qiang Lu, Zhong Fang Liu","doi":"10.1155/2024/5515938","DOIUrl":"10.1155/2024/5515938","url":null,"abstract":"<p>Broken rock masses with the complexity and concealment widely exist in nature such as underground mine, collapse column, and zone. It is extremely difficult to model fracture networks and to simulate water diffusion for broken rock masses. To explore a reasonable fracture network model for broken rock masses, a new method for modeling a two-dimensional planar fracture network model is proposed in this paper. It includes packer test, empirical relationship, fractal width description, and symmetric expansion modeling. Then, the fluid-solid coupling is used to simulate the diffusion properties of water in the two-dimensional planar fracture network model. It is found that the diffusion velocities <i>v</i><sub>max</sub> and <i>v</i><sub>min</sub> do not appear in the fracture widths <i>λ</i><sub>max</sub> and <i>λ</i><sub>min</sub>. It indicates that the fracture widths <i>λ</i><sub>max</sub> and <i>λ</i><sub>min</sub> in the fracture network model for broken rock mass have little impact on the diffusion velocity. Furthermore, the fracture distribution pattern in the fracture network model is an important factor affecting the diffusion velocities <i>v</i><sub>max</sub> and <i>v</i><sub>min</sub>. The simulation results of water diffusion in the currently proposed model are almost consistent with the actual process of the packer test. Also, the validity of the two-dimensional planar fracture network model is verified by comparing the simulation results with the existing research.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139919781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng-Yu Tian, Yong-Jun Di, Chun-Yu Zhang, Shu-Guang Deng
The Bangxi–Chenxing suture zone is an essential area from which information about the closure history of the eastern Paleo-Tethys Ocean can be obtained. The Darongshan granitoid, which is adjacent to this suture, lies among the widely distributed granitic rocks and few basic rocks in the southern Guangxi Province. Herein, we report the petrogeochemistry, zircon U–Pb ages, and zircon Hf isotopic data of the Darongshan pluton in this region. The LA-ICP-MS U–Pb zircon analysis indicates that the Darongshan pluton had formed at 249.9 ± 2.6 Ma. The Darongshan granites are silica-rich (SiO2 = 65.68–72.91 wt%, mean = 69.89 wt%) with high Na2O contents (Na2O = 0.46–6.58 wt%, mean = 3.49), relatively high Mg (Mg# = 35.12–73.31, mean = 57.73), and an average Fe2O3T+TiO2+MnO+MgO of 4.96. These features are similar to those of the Mg-andesitic/dioritic rock- (MA-) like tonalite–trondhjemite–granodiorites (TTGs). Chemical analyses show that all rocks are enriched in large-ion lithophile elements (Rb, Th, and U) and light rare earth elements, with weak negative Eu anomalies (Eu/Eu∗ = 0.27–0.67), and Ta, Nb, and Ti depletion, with typical arc-like affinity. The zircon Hf isotopic results show zircon ƐHf(t) values ranging from -18.2 to -7.4 and the TDM2 model ages 1.74–2.41 Ga. The petrogeochemistry and zircon Hf isotopic signatures indicate the magma generation of the Darongshan granitoid with fluid/melt released from the subducted slab and the fluid/melt assimilated and mixed with the mantle peridotite during ascent. Combining previous extant information on Permo–Triassic subduction/collision-related magmatism in the Bangxi–Chenxing with that of the Jinshajiang–Ailaoshan–Song Ma suture zones, the Darongshan granitoid is interpreted as a magmatic formation that was generated in an active continental margin arc environment during the subduction of the Early Indosinian eastern Paleo-Tethys Ocean and the South China Block, further supporting the idea that closure occurred during the Middle–Late Triassic.
{"title":"Genesis of the Early Indosinian Darongshan Granitoid in South China: Response to the Subduction of the Eastern Paleo-Tethys Ocean","authors":"Meng-Yu Tian, Yong-Jun Di, Chun-Yu Zhang, Shu-Guang Deng","doi":"10.1155/2024/2387180","DOIUrl":"10.1155/2024/2387180","url":null,"abstract":"<p>The Bangxi–Chenxing suture zone is an essential area from which information about the closure history of the eastern Paleo-Tethys Ocean can be obtained. The Darongshan granitoid, which is adjacent to this suture, lies among the widely distributed granitic rocks and few basic rocks in the southern Guangxi Province. Herein, we report the petrogeochemistry, zircon U–Pb ages, and zircon Hf isotopic data of the Darongshan pluton in this region. The LA-ICP-MS U–Pb zircon analysis indicates that the Darongshan pluton had formed at 249.9 ± 2.6 Ma. The Darongshan granites are silica-rich (SiO<sub>2</sub> = 65.68–72.91 wt%, mean = 69.89 wt%) with high Na<sub>2</sub>O contents (Na<sub>2</sub>O = 0.46–6.58 wt%, mean = 3.49), relatively high Mg (Mg<sup>#</sup> = 35.12–73.31, mean = 57.73), and an average Fe<sub>2</sub>O<sub>3</sub><sup>T</sup>+TiO<sub>2</sub>+MnO+MgO of 4.96. These features are similar to those of the Mg-andesitic/dioritic rock- (MA-) like tonalite–trondhjemite–granodiorites (TTGs). Chemical analyses show that all rocks are enriched in large-ion lithophile elements (Rb, Th, and U) and light rare earth elements, with weak negative Eu anomalies (Eu/Eu<sup>∗</sup> = 0.27–0.67), and Ta, Nb, and Ti depletion, with typical arc-like affinity. The zircon Hf isotopic results show zircon <sub><i>Ɛ</i>Hf</sub>(<i>t</i>) values ranging from -18.2 to -7.4 and the <i>T</i><sub>DM2</sub> model ages 1.74–2.41 Ga. The petrogeochemistry and zircon Hf isotopic signatures indicate the magma generation of the Darongshan granitoid with fluid/melt released from the subducted slab and the fluid/melt assimilated and mixed with the mantle peridotite during ascent. Combining previous extant information on Permo–Triassic subduction/collision-related magmatism in the Bangxi–Chenxing with that of the Jinshajiang–Ailaoshan–Song Ma suture zones, the Darongshan granitoid is interpreted as a magmatic formation that was generated in an active continental margin arc environment during the subduction of the Early Indosinian eastern Paleo-Tethys Ocean and the South China Block, further supporting the idea that closure occurred during the Middle–Late Triassic.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139559599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiuying Du, Mingzhong Li, Chenwei Liu, Zhifeng Bai, Chenru Zhou, Xiangyu Wang
Superheated steam flow during multipoint steam injection technology has a good effect on improving the steam absorption profile of heavy oil thermal recovery wells, enhancing the production degree of horizontal section of thermal recovery wells, and enhancing oil recovery. Based on the structure of multipoint steam injection horizontal string, considering the characteristics of variable mass flow, pressure drop of steam-liquid two-phase flow, and throttling pressure difference of steam injection valve in the process of steam injection, this paper establishes the calculation model of various parameters of multipoint steam injection horizontal wellbore and calculates the distribution of steam injection rate, temperature, pressure gradient, and dryness along the section of multipoint steam injection in horizontal wellbore. The results show that the temperature and pressure decrease gradually from heel to toe, and the steam dryness decreases gradually. Considering the influence of throttle pressure difference of steam injection valve and pressure drop of gas-liquid two-phase flow in the wellbore, the traditional calculation model of steam injection thermodynamic parameters is optimized, and the optimization of wellbore structure and steam injection parameters is an effective method to achieve uniform steam injection in horizontal wells. The steam injection uniformity of horizontal wells can be effectively improved by adjusting the steam injection valve spacing and steam injection parameters. When the steam injection volume is 200 m3/d and the steam injection valve spacing is 20 m, a more stable steam injection effect can be obtained. The findings of this study can help for better understanding of improving the uniformity of steam injection and enhancing the recovery factor.
{"title":"A Numerical Simulation Approach for Superheated Steam Flow during Multipoint Steam Injection in Horizontal Well","authors":"Qiuying Du, Mingzhong Li, Chenwei Liu, Zhifeng Bai, Chenru Zhou, Xiangyu Wang","doi":"10.1155/2024/4572483","DOIUrl":"10.1155/2024/4572483","url":null,"abstract":"<p>Superheated steam flow during multipoint steam injection technology has a good effect on improving the steam absorption profile of heavy oil thermal recovery wells, enhancing the production degree of horizontal section of thermal recovery wells, and enhancing oil recovery. Based on the structure of multipoint steam injection horizontal string, considering the characteristics of variable mass flow, pressure drop of steam-liquid two-phase flow, and throttling pressure difference of steam injection valve in the process of steam injection, this paper establishes the calculation model of various parameters of multipoint steam injection horizontal wellbore and calculates the distribution of steam injection rate, temperature, pressure gradient, and dryness along the section of multipoint steam injection in horizontal wellbore. The results show that the temperature and pressure decrease gradually from heel to toe, and the steam dryness decreases gradually. Considering the influence of throttle pressure difference of steam injection valve and pressure drop of gas-liquid two-phase flow in the wellbore, the traditional calculation model of steam injection thermodynamic parameters is optimized, and the optimization of wellbore structure and steam injection parameters is an effective method to achieve uniform steam injection in horizontal wells. The steam injection uniformity of horizontal wells can be effectively improved by adjusting the steam injection valve spacing and steam injection parameters. When the steam injection volume is 200 m<sup>3</sup>/d and the steam injection valve spacing is 20 m, a more stable steam injection effect can be obtained. The findings of this study can help for better understanding of improving the uniformity of steam injection and enhancing the recovery factor.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A laboratory model of a single pile embedded in Nanyang expansive soil and subjected to water infiltration is applied in this study to examine the interaction between the expansive soil and pile foundation upon water infiltration. The soil matric suction decreases as a result of the rising soil-water content. The amount of soil ground heave reaches its peak of 10.7 mm after 200 hours of water infiltration. As matric suction decreases, pile shaft friction also declines, which causes more of the load at the pile head to be carried by the pile base resulting in more pile settlements. A new numerical simulation method is provided to simulate this issue by coupling the subsurface flow, soil deformation, and hygroscopic swelling to investigate the expansive soil-pile response upon water infiltration. From the numerical simulation model, hygroscopic strain arises as a result of elevated moisture levels resulting from the entry of water, and due to ground heave and the mobilization of lateral soil swelling, the shear stress at the interface between the soil and the pile gradually increases over time. It reaches its maximum value of 4420 Pa at upper depths around 200 hours after the infiltration. The comparison between the lab model testing data and the numerical model results demonstrates a good level of concurrence.
{"title":"Experimental and Numerical Simulation Study of Water Infiltration Impact on Soil-Pile Interaction in Expansive Soil","authors":"Waleed Awadalseed, Xingli Zhang, Yunpeng Ji, XiangJin Wang, Yuntian Bai, Honghua Zhao","doi":"10.1155/2024/6642676","DOIUrl":"10.1155/2024/6642676","url":null,"abstract":"<p>A laboratory model of a single pile embedded in Nanyang expansive soil and subjected to water infiltration is applied in this study to examine the interaction between the expansive soil and pile foundation upon water infiltration. The soil matric suction decreases as a result of the rising soil-water content. The amount of soil ground heave reaches its peak of 10.7 mm after 200 hours of water infiltration. As matric suction decreases, pile shaft friction also declines, which causes more of the load at the pile head to be carried by the pile base resulting in more pile settlements. A new numerical simulation method is provided to simulate this issue by coupling the subsurface flow, soil deformation, and hygroscopic swelling to investigate the expansive soil-pile response upon water infiltration. From the numerical simulation model, hygroscopic strain arises as a result of elevated moisture levels resulting from the entry of water, and due to ground heave and the mobilization of lateral soil swelling, the shear stress at the interface between the soil and the pile gradually increases over time. It reaches its maximum value of 4420 Pa at upper depths around 200 hours after the infiltration. The comparison between the lab model testing data and the numerical model results demonstrates a good level of concurrence.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139483866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liu Xiangjun, Zhuang Dalin, Xiong Jian, Zhou Yishan, Liu Junjie, Deng Chong, Liang Lixi, Ding Yi, Jian Xuemei
To obtain the influence of anisotropy and energy evolution characteristics on wellbore stability, the acoustic and mechanical anisotropy characteristics of shales are studied through various experiments, including scanning electron microscopy, ultrasonic pulse transmission, and uniaxial compression experiments, with the Longmaxi Formation shale in the southern area of the Sichuan Basin as the research object. The energy evolution characteristics of the Longmaxi Formation shale under different bedding angles are analyzed. The influence of anisotropy on the wellbore stability of shale formation is discussed on this basis. The results show that the acoustic and mechanical parameters, failure mode, and energy evolution characteristics of shale have significant anisotropy. Furthermore, the P-wave and S-wave time differences decrease with an increase in bedding angle. The compressive strength and Poisson’s ratio decrease first and then increase with an increase in bedding angle. Meanwhile, the elastic modulus gradually increases with an increase in bedding angle. Rock samples with different bedding angles show diverse failure modes in mechanical tests, including splitting, shear, and shear-splitting failure. The total energy and elastic energy decrease first and then increase with an increase in bedding angle. Finally, the formation anisotropy affects the wellbore stability: the higher the formation anisotropy, the more vulnerable is the wellbore to instability.
为了获得各向异性和能量演化特征对井筒稳定性的影响,以四川盆地南部地区龙马溪地层页岩为研究对象,通过扫描电镜、超声脉冲透射、单轴压缩实验等多种实验,研究了页岩的声学和力学各向异性特征。分析了龙马溪地层页岩在不同层理角度下的能量演化特征。在此基础上讨论了各向异性对页岩地层井筒稳定性的影响。结果表明,页岩的声学和力学参数、破坏模式和能量演化特征具有明显的各向异性。此外,P 波和 S 波的时差随着垫层角的增大而减小。抗压强度和泊松比随着铺层角度的增大先减小后增大。同时,弹性模量也随着包埋角的增大而逐渐增大。不同埋入角的岩石样本在力学测试中表现出不同的破坏模式,包括劈裂破坏、剪切破坏和剪切-劈裂破坏。总能量和弹性能量先减小后增大,随着层理角度的增大而增大。最后,地层各向异性会影响井筒稳定性:地层各向异性越大,井筒越容易失稳。
{"title":"Anisotropy and Energy Evolution Characteristics of Shales: A Case Study of the Longmaxi Formation in Southern Sichuan Basin, China","authors":"Liu Xiangjun, Zhuang Dalin, Xiong Jian, Zhou Yishan, Liu Junjie, Deng Chong, Liang Lixi, Ding Yi, Jian Xuemei","doi":"10.1155/2024/4186113","DOIUrl":"10.1155/2024/4186113","url":null,"abstract":"<p>To obtain the influence of anisotropy and energy evolution characteristics on wellbore stability, the acoustic and mechanical anisotropy characteristics of shales are studied through various experiments, including scanning electron microscopy, ultrasonic pulse transmission, and uniaxial compression experiments, with the Longmaxi Formation shale in the southern area of the Sichuan Basin as the research object. The energy evolution characteristics of the Longmaxi Formation shale under different bedding angles are analyzed. The influence of anisotropy on the wellbore stability of shale formation is discussed on this basis. The results show that the acoustic and mechanical parameters, failure mode, and energy evolution characteristics of shale have significant anisotropy. Furthermore, the P-wave and S-wave time differences decrease with an increase in bedding angle. The compressive strength and Poisson’s ratio decrease first and then increase with an increase in bedding angle. Meanwhile, the elastic modulus gradually increases with an increase in bedding angle. Rock samples with different bedding angles show diverse failure modes in mechanical tests, including splitting, shear, and shear-splitting failure. The total energy and elastic energy decrease first and then increase with an increase in bedding angle. Finally, the formation anisotropy affects the wellbore stability: the higher the formation anisotropy, the more vulnerable is the wellbore to instability.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139461377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Le Ngoc Son, Nguyen The Duc, Sumihiko Murata, Phan Ngoc Trung
Developing automatic history matching (AHM) methods to replace the traditional manual history matching (MHM) approach in adjusting the permeability distribution of the reservoir simulation model has been studied by many authors. Because permeability values need to be evaluated at hundreds of thousands of grid cells in a typical reservoir simulation model, it is necessary to apply a reparameterization technique to allow the optimization algorithms to be implemented with fewer variables. In basic reparameterization techniques including zonation and pilot point methods, the calibrations are usually based solely on the production data with no systematic link to the geological and geophysical data, and therefore, the obtained permeability distribution may be not geologically consistent. Several other reparameterization techniques have attempted to preserve geological consistency by incorporating 4D seismic data; however, these techniques cannot be applied to our fractured basement reservoirs (FBRs) as they do not have 4D seismic data. Taking into account these challenges, in this study, an AHM methodology and workflow have been developed using a new reparameterization technique. This approach attempts to minimize the potential for geological nonconsistency of the calibrated results by linking the permeability to geophysical data. The proposed methodology can be applied to fields with only traditional geophysical data (3D seismic and conventional well logs). In the proposed workflow, the spatial distributions of seismic attributes and geomechanical properties were calculated and estimated from 3D seismic data and well logs, respectively. After that, a feed-forward artificial neural network (ANN) model trained by the back-propagation algorithm of the relationship between initial permeability with seismic attributes and geomechanical properties of their grid cell values is developed. Then, the calibration of the permeability distribution is performed by adjustment of the ANN model. Modification of the ANN model is performed using the simultaneous perturbation stochastic approximation (SPSA) algorithm to calibrate transmission coefficients in the ANN model to minimize the discrepancy between the simulated results and observed data. The developed methodology is applied to calibrate the permeability distribution of a simulation model of Bach Ho FBR in Vietnam. The effectiveness of the methodology is evident by comparing the historical matches with an available manually history-matched simulation model. The application shows that the proposed methodology could be considered as a suitable practical approach for adjusting the permeability distribution for FBR reservoir simulation models.
许多学者研究了开发自动历史匹配(AHM)方法,以取代传统的手动历史匹配(MHM)方法来调整储层模拟模型的渗透率分布。由于在典型的储层模拟模型中,需要对成百上千个网格单元的渗透率值进行评估,因此有必要采用重新参数化技术,以便用更少的变量实现优化算法。在基本的重新参数化技术(包括分区法和先导点法)中,校准通常仅基于生产数据,与地质和地球物理数据没有系统的联系,因此得到的渗透率分布可能与地质不一致。其他一些重新参数化技术试图通过结合四维地震数据来保持地质一致性;然而,这些技术无法应用于我们的断裂基底储层(FBRs),因为它们没有四维地震数据。考虑到这些挑战,本研究采用一种新的重新参数化技术,开发了一种 AHM 方法和工作流程。这种方法试图通过将渗透率与地球物理数据联系起来,将校准结果的地质不一致性降至最低。建议的方法可应用于只有传统地球物理数据(三维地震和常规测井)的油田。在建议的工作流程中,地震属性和地质力学属性的空间分布分别由三维地震数据和测井记录计算和估算。然后,根据初始渗透率与地震属性及其网格单元值的地质力学属性之间的关系,建立一个由反向传播算法训练的前馈人工神经网络(ANN)模型。然后,通过调整 ANN 模型对渗透率分布进行校准。利用同步扰动随机近似(SPSA)算法对 ANN 模型进行修改,以校准 ANN 模型中的传输系数,从而最大限度地减少模拟结果与观测数据之间的差异。所开发的方法被用于校准越南 Bach Ho FBR 模拟模型的渗透率分布。通过将历史匹配结果与现有的人工历史匹配模拟模型进行比较,可以明显看出该方法的有效性。应用结果表明,所提出的方法可被视为调整 FBR 储层模拟模型渗透率分布的一种合适的实用方法。
{"title":"Automatic History Matching for Adjusting Permeability Field of Fractured Basement Reservoir Simulation Model Using Seismic, Well Log, and Production Data","authors":"Le Ngoc Son, Nguyen The Duc, Sumihiko Murata, Phan Ngoc Trung","doi":"10.1155/2024/4097442","DOIUrl":"10.1155/2024/4097442","url":null,"abstract":"<p>Developing automatic history matching (AHM) methods to replace the traditional manual history matching (MHM) approach in adjusting the permeability distribution of the reservoir simulation model has been studied by many authors. Because permeability values need to be evaluated at hundreds of thousands of grid cells in a typical reservoir simulation model, it is necessary to apply a reparameterization technique to allow the optimization algorithms to be implemented with fewer variables. In basic reparameterization techniques including zonation and pilot point methods, the calibrations are usually based solely on the production data with no systematic link to the geological and geophysical data, and therefore, the obtained permeability distribution may be not geologically consistent. Several other reparameterization techniques have attempted to preserve geological consistency by incorporating 4D seismic data; however, these techniques cannot be applied to our fractured basement reservoirs (FBRs) as they do not have 4D seismic data. Taking into account these challenges, in this study, an AHM methodology and workflow have been developed using a new reparameterization technique. This approach attempts to minimize the potential for geological nonconsistency of the calibrated results by linking the permeability to geophysical data. The proposed methodology can be applied to fields with only traditional geophysical data (3D seismic and conventional well logs). In the proposed workflow, the spatial distributions of seismic attributes and geomechanical properties were calculated and estimated from 3D seismic data and well logs, respectively. After that, a feed-forward artificial neural network (ANN) model trained by the back-propagation algorithm of the relationship between initial permeability with seismic attributes and geomechanical properties of their grid cell values is developed. Then, the calibration of the permeability distribution is performed by adjustment of the ANN model. Modification of the ANN model is performed using the simultaneous perturbation stochastic approximation (SPSA) algorithm to calibrate transmission coefficients in the ANN model to minimize the discrepancy between the simulated results and observed data. The developed methodology is applied to calibrate the permeability distribution of a simulation model of Bach Ho FBR in Vietnam. The effectiveness of the methodology is evident by comparing the historical matches with an available manually history-matched simulation model. The application shows that the proposed methodology could be considered as a suitable practical approach for adjusting the permeability distribution for FBR reservoir simulation models.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengling Jiang, Qinghua Zhou, Yanju Li, Rili Yang
The Niutitang Formation of the lower Cambrian (Є1n) is a target reservoir of shale gas widely developed in China’s Middle-Upper Yangtze region, with the characteristics of being widely distributed, having a big thickness and highly organic carbon abundance. However, the exploration and research degree are relatively low. Based on extensive core sample, experimental test results, drilling, and field outcrop surveying, the shale gas generation capacity, gas content, and gas composition are discussed. The preservation conditions of shale gas are then systematically analyzed from the aspects of tectonic movement, fault development, structural style, and thermal evolution degree. The results show that the organic-rich shale with a thickness ranging from 40 to 150 m developed in the mid-lower part of the Є1n Formation, with the TOC content values ranging from 0.4% to 14.64%. While it has unfavorable characteristics of a high thermal evolution, with Ro values ranging from 1.92% to 5.74%, a low gas content and a high nitrogen content (70% wells). The Є1n shale gas has complex preservation conditions. The Є1n Formation has good roof-to-floor conditions, but after the main gas generating peak of the Є1n shale during the Jurassic–Cretaceous, the most intensive tectonic activity of the Yanshan movement resulted in poor preservation conditions (faults developed and cap rock fractured). The huge faults extended to the surface are formed due to tectonic movement in an extensional environment, and the structural style and development are the main factors affecting the preservation conditions of the Є1n shale gas. Additionally, the high thermal evolution of the Є1n shales also has a certain impact on the preservation conditions. Therefore, the stable area far from large faults (>2.0 km), with weak local tectonic activity and tectonic deformation, is the favorable area for shale gas preservation in the Є1n Formation.
{"title":"A Case Study on Preservation Conditions and Influencing Factors of Shale Gas in the Lower Paleozoic Niutitang Formation, Western Hubei and Hunan, Middle Yangtze Region, China","authors":"Shengling Jiang, Qinghua Zhou, Yanju Li, Rili Yang","doi":"10.1155/2024/6637899","DOIUrl":"10.1155/2024/6637899","url":null,"abstract":"<p>The Niutitang Formation of the lower Cambrian (Є<sub>1</sub>n) is a target reservoir of shale gas widely developed in China’s Middle-Upper Yangtze region, with the characteristics of being widely distributed, having a big thickness and highly organic carbon abundance. However, the exploration and research degree are relatively low. Based on extensive core sample, experimental test results, drilling, and field outcrop surveying, the shale gas generation capacity, gas content, and gas composition are discussed. The preservation conditions of shale gas are then systematically analyzed from the aspects of tectonic movement, fault development, structural style, and thermal evolution degree. The results show that the organic-rich shale with a thickness ranging from 40 to 150 m developed in the mid-lower part of the Є<sub>1</sub>n Formation, with the TOC content values ranging from 0.4% to 14.64%. While it has unfavorable characteristics of a high thermal evolution, with Ro values ranging from 1.92% to 5.74%, a low gas content and a high nitrogen content (70% wells). The Є<sub>1</sub>n shale gas has complex preservation conditions. The Є<sub>1</sub>n Formation has good roof-to-floor conditions, but after the main gas generating peak of the Є<sub>1</sub>n shale during the Jurassic–Cretaceous, the most intensive tectonic activity of the Yanshan movement resulted in poor preservation conditions (faults developed and cap rock fractured). The huge faults extended to the surface are formed due to tectonic movement in an extensional environment, and the structural style and development are the main factors affecting the preservation conditions of the Є<sub>1</sub>n shale gas. Additionally, the high thermal evolution of the Є<sub>1</sub>n shales also has a certain impact on the preservation conditions. Therefore, the stable area far from large faults (>2.0 km), with weak local tectonic activity and tectonic deformation, is the favorable area for shale gas preservation in the Є<sub>1</sub>n Formation.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139397767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanjun Zhang, Dong Wu, Maojie Liao, Xuewen Shi, Feng Chen, Chengguang Zhang, Ming Cai, Jun Tang
Horizontal wells are extensively utilized in the development of unconventional reservoirs. However, the logging responses and formation evaluation in horizontal wells can be impacted by factors like anisotropy and tool eccentricity. To investigate the influence of tool eccentricity on acoustic logging response, physical simulation experiments of array acoustic logging were conducted in a scaled borehole formation model under different tool eccentricity conditions. The experimental data were analyzed, and the findings revealed that when the receiver array is parallel to the borehole axis, the P-wave slowness and S-wave slowness remain unaffected by tool eccentricity. However, the amplitudes of the P-wave and S-wave decrease significantly with increasing tool eccentricity, following an approximate negative exponential pattern. Additionally, when the transmitter is centered and the receiver array intersects the borehole axis at an angle, the wave velocities increase significantly with tool eccentricity, with the P-wave velocity showing a faster increase. Conversely, when the transmitter is eccentric and the receiver array intersects the borehole axis at an angle, the wave velocity decreases notably with tool eccentricity, and the P-wave velocity decreases even faster. These findings contribute to a better understanding of the impact of tool eccentricity on array acoustic logging response in horizontal wells and offer guidance for developing correction schemes to address this effect.
水平井被广泛应用于非常规储层的开发。然而,水平井的测井响应和地层评价会受到各向异性和工具偏心等因素的影响。为了研究工具偏心对声波测井响应的影响,我们在不同工具偏心条件下的缩放井眼地层模型中进行了阵列声波测井物理模拟实验。对实验数据进行分析后发现,当接收器阵列平行于井眼轴线时,P 波慢速和 S 波慢速不受工具偏心的影响。然而,P 波和 S 波的振幅会随着工具偏心率的增加而显著减小,呈现近似负指数模式。此外,当发射器位于中心,而接收器阵列与井眼轴线成一定角度相交时,波速会随着钻具偏心率的增加而显著增加,其中 P 波速度增加较快。相反,当发射器偏心,接收器阵列与井眼轴线成一定角度相交时,波速随工具偏心率的增加而明显减小,P 波速度减小得更快。这些发现有助于更好地理解工具偏心对水平井中阵列声波测井响应的影响,并为制定校正方案解决这一问题提供指导。
{"title":"Impact of Tool Eccentricity on Acoustic Logging Response in Horizontal Wells: Insights from Physical Simulation Experiments","authors":"Yuanjun Zhang, Dong Wu, Maojie Liao, Xuewen Shi, Feng Chen, Chengguang Zhang, Ming Cai, Jun Tang","doi":"10.1155/2024/8071443","DOIUrl":"10.1155/2024/8071443","url":null,"abstract":"<p>Horizontal wells are extensively utilized in the development of unconventional reservoirs. However, the logging responses and formation evaluation in horizontal wells can be impacted by factors like anisotropy and tool eccentricity. To investigate the influence of tool eccentricity on acoustic logging response, physical simulation experiments of array acoustic logging were conducted in a scaled borehole formation model under different tool eccentricity conditions. The experimental data were analyzed, and the findings revealed that when the receiver array is parallel to the borehole axis, the P-wave slowness and S-wave slowness remain unaffected by tool eccentricity. However, the amplitudes of the P-wave and S-wave decrease significantly with increasing tool eccentricity, following an approximate negative exponential pattern. Additionally, when the transmitter is centered and the receiver array intersects the borehole axis at an angle, the wave velocities increase significantly with tool eccentricity, with the P-wave velocity showing a faster increase. Conversely, when the transmitter is eccentric and the receiver array intersects the borehole axis at an angle, the wave velocity decreases notably with tool eccentricity, and the P-wave velocity decreases even faster. These findings contribute to a better understanding of the impact of tool eccentricity on array acoustic logging response in horizontal wells and offer guidance for developing correction schemes to address this effect.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139105377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reverse circulation impact drilling has the advantages of high drilling efficiency and less dust, which can effectively form holes in hard rock and gravel layer. As integral reverse circulation drill bits used in the conventional down-the-hole (DTH) hammers are only suitable for specific formations, the whole set of DTH hammer needs to be replaced when drilling different formations. In this paper, several types of split drill bits for different drilling technologies are designed. The flow field characteristics of one of the split drill bits is analyzed based on the computational fluid dynamics (CFD) method, with four technic parameters considered, which are input flow rate, number of inlet holes, angle of injection exhaust holes, and diameter of injection exhaust holes, respectively. Three parameters are selected as indicators to evaluate the rationality and performance of the split drill bit, which are injection exhaust hole outlet mass flow rate, ratio of the mass flow rate out of injection exhaust holes to the whole inlet mass flow rate, and maximum pressure at the upper end of the split drill bit. According to the CFD analysis results, the above four technic parameters influence the flow rate and pressure in different rules. Considering the injection capacity, pressure loss, and bit strength, inlet holes of 10, injection exhaust holes with an angle of 50°, and injection exhaust holes with a diameter of 12 mm are recommended to obtain ideal reverse circulation. Different types of split drill bits were manufactured, and drilling experiments were carried out in unconsolidated formations. The maximum drilling rate can reach 1.5 m/min in the drilling experiments. The split drill bit proposed in this paper exhibits excellent adaptability for reverse circulation drilling in loose formations.
{"title":"Simulation and Analysis of a Split Drill Bit for Pneumatic DTH Hammer Percussive Rotary Drilling","authors":"Yuanling Shi, Conghui Li","doi":"10.1155/2024/4614348","DOIUrl":"10.1155/2024/4614348","url":null,"abstract":"<p>Reverse circulation impact drilling has the advantages of high drilling efficiency and less dust, which can effectively form holes in hard rock and gravel layer. As integral reverse circulation drill bits used in the conventional down-the-hole (DTH) hammers are only suitable for specific formations, the whole set of DTH hammer needs to be replaced when drilling different formations. In this paper, several types of split drill bits for different drilling technologies are designed. The flow field characteristics of one of the split drill bits is analyzed based on the computational fluid dynamics (CFD) method, with four technic parameters considered, which are input flow rate, number of inlet holes, angle of injection exhaust holes, and diameter of injection exhaust holes, respectively. Three parameters are selected as indicators to evaluate the rationality and performance of the split drill bit, which are injection exhaust hole outlet mass flow rate, ratio of the mass flow rate out of injection exhaust holes to the whole inlet mass flow rate, and maximum pressure at the upper end of the split drill bit. According to the CFD analysis results, the above four technic parameters influence the flow rate and pressure in different rules. Considering the injection capacity, pressure loss, and bit strength, inlet holes of 10, injection exhaust holes with an angle of 50°, and injection exhaust holes with a diameter of 12 mm are recommended to obtain ideal reverse circulation. Different types of split drill bits were manufactured, and drilling experiments were carried out in unconsolidated formations. The maximum drilling rate can reach 1.5 m/min in the drilling experiments. The split drill bit proposed in this paper exhibits excellent adaptability for reverse circulation drilling in loose formations.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139083387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}