Transmembrane proteins known as hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control the movement of Na+ and K+ ions across cellular membranes. HCN channels are known to be involved in crucial physiological functions in regulating neuronal excitability and rhythmicity, and pacemaker activity in the heart. Although HCN channels have been relatively well investigated in the brain, their distribution and function in the retina have received less attention, remaining their physiological roles to be comprehensively understood. Also, because recent studies reported HCN channels have been somewhat linked with the dysfunction of photoreceptors which are affected by retinal diseases, investigating HCN channels in the retina may offer valuable insights into disease mechanisms and potentially contribute to identifying novel therapeutic targets for retinal degenerative disorders. This paper endeavors to summarize the existing literature on the distribution and function of HCN channels reported in the vertebrate retinas of various species and discuss the potential implications for the treatment of retinal diseases. Then, we recapitulate current knowledge regarding the function and regulation of HCN channels, as well as their relevance to various neurological disorders.
The aim of this study was the micromorphological analysis of the distribution of microvessels, mast cells and ganglionic neurons in two parts, proximal and distal of the human superior cervical sympathetic ganglions (SCSGs). Statistical analyses were applied to detect the possible metric regional differences in their densities. Five injected human SCSGs with colored India ink and gelatin were microdissected and examined. Second group of five human SCSGs was prepared and serially sliced for CD34 and mast cell tryptase immunostaining. The microscopic fields of two parts of the SCSGs were analyzed for the following quantifications: microvessel density (MVD), mast cell density (MCD), and ganglionic cell count and measurements. The mean number of CD34-positive microvessels in microscopic fields, the MVD, had a value of 83 for the upper parts, and 82.7 for the lower parts of SCSGs. The mean number of tryptase-positive mast cells in microscopic fields, the MCD, was 4.5 in the proximal parts, and 4.7 in the distal parts of SCSGs. The mean number of ganglionic neurons in microscopic fields was 19.5 in the proximal parts, and 19.8 in the distal parts of SCSGs. The density of CD34-positive microvessels, the density of tryptase-positive mast cells, and the density, mean diameters and mean areas of ganglionic neurons were not significantly different in two observed parts, upper and lower of the SCSGs. In conclusion, the distributions of microvessels, mast cells, and neurons in two parts of the SCSGs were uniform with no specific micromorphological variations, there is a homogenous vascular and cellular pattern within the SCSGs.
Normal brain development requires continuous communication between developing neurons and their environment filled by a complex network referred to as extracellular matrix (ECM). The ECM is divided into distinct families of molecules including hyaluronic acid, proteoglycans, glycoproteins such as tenascins, and link proteins. In this study, we characterize the temporal and spatial distribution of the extracellular matrix molecules in the embryonic and postnatal mouse hindbrain by using antibodies and lectin histochemistry. In the embryo, hyaluronan and neurocan were found in high amounts until the time of birth whereas versican and tenascin-R were detected in lower intensities during the whole embryonic period. After birth, both hyaluronic acid and neurocan still produced intense staining in almost all areas of the hindbrain, while tenascin-R labeling showed a continuous increase during postnatal development. The reaction with WFA and aggrecan was revealed first 4th postnatal day (P4) with low staining intensities, while HAPLN was detected two weeks after birth (P14). The perineuronal net appeared first around the facial and vestibular neurons at P4 with hyaluronic acid cytochemistry. One week after birth aggrecan, neurocan, tenascin-R, and WFA were also accumulated around the neurons located in several hindbrain nuclei, but HAPLN1 was detected on the second postnatal week. Our results provide further evidence that many extracellular macromolecules that will be incorporated into the perineuronal net are already expressed at embryonic and early postnatal stages of development to control differentiation, migration, and synaptogenesis of neurons. In late postnatal period, the experience-driven neuronal activity induces formation of perineuronal net to stabilize synaptic connections.