首页 > 最新文献

GigaScience最新文献

英文 中文
Exploring the role of polymorphic interspecies structural variants in reproductive isolation and adaptive divergence in Eucalyptus. 探索多态种间结构变异在桉树生殖隔离和适应性分化中的作用。
IF 3.5 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-01-02 DOI: 10.1093/gigascience/giae029
Scott Ferguson, Ashley Jones, Kevin Murray, Rose L Andrew, Benjamin Schwessinger, Helen Bothwell, Justin Borevitz

Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the prevalence and impact of different categories of SVs. We conducted a comparative analysis of long-read assembled reference genomes of closely related Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon, along with recent high-quality genome assemblies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon, respectively. Focusing on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural divergences, 2,623 structural polymorphisms, and 928 shared structural polymorphisms. We assessed the functional significance of fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, revealing a complex history of natural selection. Shared structural polymorphisms displayed enrichment of potentially adaptive genes. Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between populations.

结构变异(SVs)在许多物种的物种分化和适应过程中发挥着重要作用,但很少有研究探讨不同类别 SVs 的流行程度和影响。我们对亲缘关系密切的桉树物种的长读组装参考基因组进行了比较分析,以确定可能影响物种分化和适应的候选 SVs。种间 SV 在一个或两个物种中既可以是固定差异,也可以是多态差异。为了描述 SV 模式,我们采用了短读程全基因组测序技术,对 600 多个桉树个体和最近的高质量基因组组装进行了测序。我们对读数进行了比对,并对物种参考基因组之间预测的物种间 SV 进行了基因分型。我们的结果显示,在 E. melliodora 和 E. sideroxylon 中,58,025 个种间 SV 中的 49,756 个和 47,064 个种间 SV 中的 39,536 个分别可以用短文本进行分型。我们重点研究了倒位和易位这些容易在两个种群中进行基因分型的对称 SV,发现了 24 个结构分歧、2,623 个结构多态性和 928 个共享结构多态性。我们通过研究物种间估计重组率和遗传分化的差异,评估了种间固定 SV 的功能意义,揭示了自然选择的复杂历史。共享结构多态性富集了潜在的适应性基因。了解不同类别的基因突变是如何导致遗传多样性和繁殖障碍的,对于理解生物是如何提高适存性、适应不断变化的环境和实现多样化至关重要。我们的研究结果揭示了种间 SV 的普遍性,并阐明了它们在种群内部和种群之间的遗传分化、适应性进化和物种分化中的作用。
{"title":"Exploring the role of polymorphic interspecies structural variants in reproductive isolation and adaptive divergence in Eucalyptus.","authors":"Scott Ferguson, Ashley Jones, Kevin Murray, Rose L Andrew, Benjamin Schwessinger, Helen Bothwell, Justin Borevitz","doi":"10.1093/gigascience/giae029","DOIUrl":"10.1093/gigascience/giae029","url":null,"abstract":"<p><p>Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the prevalence and impact of different categories of SVs. We conducted a comparative analysis of long-read assembled reference genomes of closely related Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon, along with recent high-quality genome assemblies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon, respectively. Focusing on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural divergences, 2,623 structural polymorphisms, and 928 shared structural polymorphisms. We assessed the functional significance of fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, revealing a complex history of natural selection. Shared structural polymorphisms displayed enrichment of potentially adaptive genes. Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between populations.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized open-source workflows for atomistic molecular dynamics simulations of viral helicases. 用于病毒螺旋酶原子分子动力学模拟的通用开源工作流程。
IF 3.5 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-01-02 DOI: 10.1093/gigascience/giae026
Bryan Raubenolt, Daniel Blankenberg

Viral helicases are promising targets for the development of antiviral therapies. Given their vital function of unwinding double-stranded nucleic acids, inhibiting them blocks the viral replication cycle. Previous studies have elucidated key structural details of these helicases, including the location of substrate binding sites, flexible domains, and the discovery of potential inhibitors. Here we present a series of new Galaxy tools and workflows for performing and analyzing molecular dynamics simulations of viral helicases. We first validate them by demonstrating recapitulation of data from previous simulations of Zika (NS3) and SARS-CoV-2 (NSP13) helicases in apo and complex with inhibitors. We further demonstrate the utility and generalizability of these Galaxy workflows by applying them to new cases, proving their usefulness as a widely accessible method for exploring antiviral activity.

病毒螺旋酶是开发抗病毒疗法的理想靶点。鉴于它们具有解开双链核酸的重要功能,抑制它们就能阻止病毒的复制周期。以往的研究已经阐明了这些螺旋酶的关键结构细节,包括底物结合位点的位置、柔性结构域以及潜在抑制剂的发现。在这里,我们介绍了一系列新的银河工具和工作流程,用于执行和分析病毒螺旋酶的分子动力学模拟。我们首先验证了这些工具和工作流程,它们再现了之前模拟的寨卡(NS3)和 SARS-CoV-2 (NSP13)螺旋酶的原型和与抑制剂复合物的数据。通过将这些银河工作流程应用于新的案例,我们进一步证明了它们的实用性和通用性,证明了它们作为一种可广泛使用的探索抗病毒活性的方法的有用性。
{"title":"Generalized open-source workflows for atomistic molecular dynamics simulations of viral helicases.","authors":"Bryan Raubenolt, Daniel Blankenberg","doi":"10.1093/gigascience/giae026","DOIUrl":"10.1093/gigascience/giae026","url":null,"abstract":"<p><p>Viral helicases are promising targets for the development of antiviral therapies. Given their vital function of unwinding double-stranded nucleic acids, inhibiting them blocks the viral replication cycle. Previous studies have elucidated key structural details of these helicases, including the location of substrate binding sites, flexible domains, and the discovery of potential inhibitors. Here we present a series of new Galaxy tools and workflows for performing and analyzing molecular dynamics simulations of viral helicases. We first validate them by demonstrating recapitulation of data from previous simulations of Zika (NS3) and SARS-CoV-2 (NSP13) helicases in apo and complex with inhibitors. We further demonstrate the utility and generalizability of these Galaxy workflows by applying them to new cases, proving their usefulness as a widely accessible method for exploring antiviral activity.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Omada: robust clustering of transcriptomes through multiple testing. Omada:通过多重测试对转录组进行稳健聚类。
IF 3.5 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-01-02 DOI: 10.1093/gigascience/giae039
Sokratis Kariotis, Pei Fang Tan, Haiping Lu, Christopher J Rhodes, Martin R Wilkins, Allan Lawrie, Dennis Wang

Background: Cohort studies increasingly collect biosamples for molecular profiling and are observing molecular heterogeneity. High-throughput RNA sequencing is providing large datasets capable of reflecting disease mechanisms. Clustering approaches have produced a number of tools to help dissect complex heterogeneous datasets, but selecting the appropriate method and parameters to perform exploratory clustering analysis of transcriptomic data requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent. To address this, we have developed Omada, a suite of tools aiming to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning-based functions.

Findings: The efficiency of each tool was tested with 7 datasets characterized by different expression signal strengths to capture a wide spectrum of RNA expression datasets. Our toolkit's decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Within datasets with less clear biological distinctions, our tools either formed stable subgroups with different expression profiles and robust clinical associations or revealed signs of problematic data such as biased measurements.

Conclusions: In conclusion, Omada successfully automates the robust unsupervised clustering of transcriptomic data, making advanced analysis accessible and reliable even for those without extensive machine learning expertise. Implementation of Omada is available at http://bioconductor.org/packages/omada/.

背景:越来越多的队列研究收集生物样本进行分子分析,并观察到分子异质性。高通量 RNA 测序正在提供能够反映疾病机制的大型数据集。聚类方法产生了许多工具来帮助剖析复杂的异构数据集,但要选择适当的方法和参数来对转录组数据进行探索性聚类分析,需要对机器学习有深入的了解和大量的计算实验。目前还不存在无需事先了解领域知识就能协助做出此类决定的工具。为了解决这个问题,我们开发了 Omada,这是一套工具,旨在通过基于机器学习的自动功能实现这些过程的自动化,并使转录组数据的稳健无监督聚类变得更容易获得:我们用 7 个数据集测试了每个工具的效率,这些数据集的特点是表达信号强度不同,可以捕捉到广泛的 RNA 表达数据集。我们工具包的决策反映了数据集中稳定分区的实际数量,在这些数据集中,亚群是可以分辨的。在生物学区分不太明显的数据集中,我们的工具要么形成了具有不同表达谱和稳健临床关联的稳定亚组,要么揭示了有问题数据的迹象,如偏差测量:总之,Omada 成功地实现了转录组数据无监督聚类的自动化,使那些没有丰富机器学习专业知识的人也能进行可靠的高级分析。Omada的实现可在http://bioconductor.org/packages/omada/。
{"title":"Omada: robust clustering of transcriptomes through multiple testing.","authors":"Sokratis Kariotis, Pei Fang Tan, Haiping Lu, Christopher J Rhodes, Martin R Wilkins, Allan Lawrie, Dennis Wang","doi":"10.1093/gigascience/giae039","DOIUrl":"10.1093/gigascience/giae039","url":null,"abstract":"<p><strong>Background: </strong>Cohort studies increasingly collect biosamples for molecular profiling and are observing molecular heterogeneity. High-throughput RNA sequencing is providing large datasets capable of reflecting disease mechanisms. Clustering approaches have produced a number of tools to help dissect complex heterogeneous datasets, but selecting the appropriate method and parameters to perform exploratory clustering analysis of transcriptomic data requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent. To address this, we have developed Omada, a suite of tools aiming to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning-based functions.</p><p><strong>Findings: </strong>The efficiency of each tool was tested with 7 datasets characterized by different expression signal strengths to capture a wide spectrum of RNA expression datasets. Our toolkit's decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Within datasets with less clear biological distinctions, our tools either formed stable subgroups with different expression profiles and robust clinical associations or revealed signs of problematic data such as biased measurements.</p><p><strong>Conclusions: </strong>In conclusion, Omada successfully automates the robust unsupervised clustering of transcriptomic data, making advanced analysis accessible and reliable even for those without extensive machine learning expertise. Implementation of Omada is available at http://bioconductor.org/packages/omada/.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A ghost moth olfactory prototype of the lepidopteran sex communication. 鳞翅目性传播的鬼蛾嗅觉原型。
IF 3.5 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-01-02 DOI: 10.1093/gigascience/giae044
Rui Tang, Cong Huang, Jun Yang, Zhong-Chen Rao, Li Cao, Peng-Hua Bai, Xin-Cheng Zhao, Jun-Feng Dong, Xi-Zhong Yan, Fang-Hao Wan, Nan-Ji Jiang, Ri-Chou Han

Sex role differentiation is a widespread phenomenon. Sex pheromones are often associated with sex roles and convey sex-specific information. In Lepidoptera, females release sex pheromones to attract males, which evolve sophisticated olfactory structures to relay pheromone signals. However, in some primitive moths, sex role differentiation becomes diverged. Here, we introduce the chromosome-level genome assembly from ancestral Himalaya ghost moths, revealing a unique olfactory evolution pattern and sex role parity among Lepidoptera. These olfactory structures of the ghost moths are characterized by a dense population of trichoid sensilla, both larger male and female antennal entry parts of brains, compared to the evolutionary later Lepidoptera. Furthermore, a unique tandem of 34 odorant receptor 19 homologs in Thitarodes xiaojinensis (TxiaOr19) has been identified, which presents overlapped motifs with pheromone receptors (PRs). Interestingly, the expanded TxiaOr19 was predicted to have unconventional tuning patterns compared to canonical PRs, with nonsexual dimorphic olfactory neuropils discovered, which contributes to the observed equal sex roles in Thitarodes adults. Additionally, transposable element activity bursts have provided traceable loci landscapes where parallel diversifications occurred between TxiaOr19 and PRs, indicating that the Or19 homolog expansions were diversified to PRs during evolution and thus established the classic sex roles in higher moths. This study elucidates an olfactory prototype of intermediate sex communication from Himalaya ghost moths.

性别角色分化是一种普遍现象。性信息素通常与性别角色相关,并传递特定性别的信息。在鳞翅目昆虫中,雌虫释放性信息素来吸引雄虫,雄虫进化出复杂的嗅觉结构来传递信息素信号。然而,在一些原始蛾类中,性别角色的分化变得不同。在这里,我们介绍了喜马拉雅鬼蛾祖先的染色体级基因组组装,揭示了鳞翅目昆虫中独特的嗅觉进化模式和性别角色均等性。与进化较晚的鳞翅目昆虫相比,鬼蛾的这些嗅觉结构具有密集的毛状感觉器、较大的雄性和雌性大脑触角入口部位等特征。此外,在小金蓟马中还发现了一个由 34 个气味受体 19 同源物组成的独特串联(TxiaOr19),它与信息素受体(PRs)呈现出重叠的基序。有趣的是,与典型的信息素受体相比,扩增的 TxiaOr19 预测具有非常规的调谐模式,并发现了非性别二态的嗅觉神经瞳孔,这有助于观察到的 Thitarodes 成虫的平等性别角色。此外,转座元件活动突变提供了 TxiaOr19 和 PRs 之间发生平行分化的可追踪位点景观,表明 Or19 同源物扩增在进化过程中分化为 PRs,从而在高等蛾类中建立了经典的性别角色。本研究阐明了喜马拉雅鬼蛾的中间性通讯的嗅觉原型。
{"title":"A ghost moth olfactory prototype of the lepidopteran sex communication.","authors":"Rui Tang, Cong Huang, Jun Yang, Zhong-Chen Rao, Li Cao, Peng-Hua Bai, Xin-Cheng Zhao, Jun-Feng Dong, Xi-Zhong Yan, Fang-Hao Wan, Nan-Ji Jiang, Ri-Chou Han","doi":"10.1093/gigascience/giae044","DOIUrl":"10.1093/gigascience/giae044","url":null,"abstract":"<p><p>Sex role differentiation is a widespread phenomenon. Sex pheromones are often associated with sex roles and convey sex-specific information. In Lepidoptera, females release sex pheromones to attract males, which evolve sophisticated olfactory structures to relay pheromone signals. However, in some primitive moths, sex role differentiation becomes diverged. Here, we introduce the chromosome-level genome assembly from ancestral Himalaya ghost moths, revealing a unique olfactory evolution pattern and sex role parity among Lepidoptera. These olfactory structures of the ghost moths are characterized by a dense population of trichoid sensilla, both larger male and female antennal entry parts of brains, compared to the evolutionary later Lepidoptera. Furthermore, a unique tandem of 34 odorant receptor 19 homologs in Thitarodes xiaojinensis (TxiaOr19) has been identified, which presents overlapped motifs with pheromone receptors (PRs). Interestingly, the expanded TxiaOr19 was predicted to have unconventional tuning patterns compared to canonical PRs, with nonsexual dimorphic olfactory neuropils discovered, which contributes to the observed equal sex roles in Thitarodes adults. Additionally, transposable element activity bursts have provided traceable loci landscapes where parallel diversifications occurred between TxiaOr19 and PRs, indicating that the Or19 homolog expansions were diversified to PRs during evolution and thus established the classic sex roles in higher moths. This study elucidates an olfactory prototype of intermediate sex communication from Himalaya ghost moths.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome-level genome assemblies of two littorinid marine snails indicate genetic basis of intertidal adaptation and ancient karyotype evolved from bilaterian ancestors. 两种海蜗牛的染色体级基因组组装表明了潮间带适应性的遗传基础以及从两栖类祖先演化而来的古老核型。
IF 3.5 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-01-02 DOI: 10.1093/gigascience/giae072
Yan-Shu Wang, Meng-Yu Li, Yu-Long Li, Yu-Qiang Li, Dong-Xiu Xue, Jin-Xian Liu

Living in the intertidal environment, littorinid snails are excellent models for understanding genetic mechanisms underlying adaptation to harsh fluctuating environments. Furthermore, the karyotypes of littorinid snails, with the same chromosome number as the presumed bilaterian ancestor, make them valuable for investigating karyotype evolution from the bilaterian ancestor to mollusks. Here, we generated high-quality, chromosome-scale genome assemblies for 2 littorinid marine snails, Littorina brevicula (927.94 Mb) and Littoraria sinensis (882.51 Mb), with contig N50 of 3.43 Mb and 2.31 Mb, respectively. Comparative genomic analyses identified 92 expanded gene families and 85 positively selected genes as potential candidates possibly associated with intertidal adaptation in the littorinid lineage, which were functionally enriched in stimulus responses, innate immunity, and apoptosis process regulation and might be involved in cellular homeostasis maintenance in stressful intertidal environments. Genome macrosynteny analyses indicated that 4 fissions and 4 fusions led to the evolution from the 17 presumed bilaterian ancestral chromosomes to the 17 littorinid chromosomes, implying that the littorinid snails have a highly conserved karyotype with the bilaterian ancestor. Based on the most parsimonious reconstruction of the common ancestral karyotype of scallops and littorinid snails, 3 chromosomal fissions and 1 chromosomal fusion from the bilaterian ancient linkage groups were shared by the bivalve scallop and gastropoda littorinid snails, indicating that the chromosome-scale ancient gene linkages were generally preserved in the mollusk genomes for over 500 million years. The highly conserved karyotype makes the littorinid snail genomes valuable resources for understanding early bilaterian evolution and biology.

滨螺生活在潮间带环境中,是了解适应严酷多变环境的遗传机制的极佳模型。此外,片脚类蜗牛的核型与假定的两翼祖先具有相同的染色体数目,这使它们在研究从两翼祖先到软体动物的核型进化方面具有重要价值。在这里,我们为两只海螺(Littorina brevicula (927.94 Mb)和Littoraria sinensis (882.51 Mb))生成了高质量的染色体级基因组组装,其等位基因N50分别为3.43 Mb和2.31 Mb。比较基因组分析发现了92个扩展基因家族和85个正选基因,这些基因家族和基因可能与中华裸鲤的潮间带适应有关,它们在刺激反应、先天免疫和细胞凋亡过程调控方面功能丰富,可能参与了潮间带应激环境下的细胞稳态维持。基因组巨合成分析表明,从 17 条推测的两栖类祖先染色体进化到 17 条脂鞘蜗牛染色体的过程中,有 4 次分裂和 4 次融合,这意味着脂鞘蜗牛与两栖类祖先具有高度保守的核型。根据对扇贝和薄壳螺共同祖先核型的最合理重建,双壳纲扇贝和腹足纲薄壳螺共用了双子叶古连接群中的3个染色体裂片和1个染色体融合,表明染色体尺度上的古基因连接在软体动物基因组中普遍保留了5亿多年。这种高度保守的核型使脂螺基因组成为了解早期双壳类进化和生物学的宝贵资源。
{"title":"Chromosome-level genome assemblies of two littorinid marine snails indicate genetic basis of intertidal adaptation and ancient karyotype evolved from bilaterian ancestors.","authors":"Yan-Shu Wang, Meng-Yu Li, Yu-Long Li, Yu-Qiang Li, Dong-Xiu Xue, Jin-Xian Liu","doi":"10.1093/gigascience/giae072","DOIUrl":"10.1093/gigascience/giae072","url":null,"abstract":"<p><p>Living in the intertidal environment, littorinid snails are excellent models for understanding genetic mechanisms underlying adaptation to harsh fluctuating environments. Furthermore, the karyotypes of littorinid snails, with the same chromosome number as the presumed bilaterian ancestor, make them valuable for investigating karyotype evolution from the bilaterian ancestor to mollusks. Here, we generated high-quality, chromosome-scale genome assemblies for 2 littorinid marine snails, Littorina brevicula (927.94 Mb) and Littoraria sinensis (882.51 Mb), with contig N50 of 3.43 Mb and 2.31 Mb, respectively. Comparative genomic analyses identified 92 expanded gene families and 85 positively selected genes as potential candidates possibly associated with intertidal adaptation in the littorinid lineage, which were functionally enriched in stimulus responses, innate immunity, and apoptosis process regulation and might be involved in cellular homeostasis maintenance in stressful intertidal environments. Genome macrosynteny analyses indicated that 4 fissions and 4 fusions led to the evolution from the 17 presumed bilaterian ancestral chromosomes to the 17 littorinid chromosomes, implying that the littorinid snails have a highly conserved karyotype with the bilaterian ancestor. Based on the most parsimonious reconstruction of the common ancestral karyotype of scallops and littorinid snails, 3 chromosomal fissions and 1 chromosomal fusion from the bilaterian ancient linkage groups were shared by the bivalve scallop and gastropoda littorinid snails, indicating that the chromosome-scale ancient gene linkages were generally preserved in the mollusk genomes for over 500 million years. The highly conserved karyotype makes the littorinid snail genomes valuable resources for understanding early bilaterian evolution and biology.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
V-pipe 3.0: a sustainable pipeline for within-sample viral genetic diversity estimation. V-pipe 3.0:用于样本内病毒遗传多样性估计的可持续管道。
IF 3.5 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-01-02 DOI: 10.1093/gigascience/giae065
Lara Fuhrmann, Kim Philipp Jablonski, Ivan Topolsky, Aashil A Batavia, Nico Borgsmüller, Pelin Icer Baykal, Matteo Carrara, Chaoran Chen, Arthur Dondi, Monica Dragan, David Dreifuss, Anika John, Benjamin Langer, Michal Okoniewski, Louis du Plessis, Uwe Schmitt, Franziska Singer, Tanja Stadler, Niko Beerenwinkel

The large amount and diversity of viral genomic datasets generated by next-generation sequencing technologies poses a set of challenges for computational data analysis workflows, including rigorous quality control, scaling to large sample sizes, and tailored steps for specific applications. Here, we present V-pipe 3.0, a computational pipeline designed for analyzing next-generation sequencing data of short viral genomes. It is developed to enable reproducible, scalable, adaptable, and transparent inference of genetic diversity of viral samples. By presenting 2 large-scale data analysis projects, we demonstrate the effectiveness of V-pipe 3.0 in supporting sustainable viral genomic data science.

下一代测序技术产生的病毒基因组数据集数量庞大、种类繁多,给计算数据分析工作流程带来了一系列挑战,包括严格的质量控制、扩展到大样本量以及针对特定应用的定制步骤。在此,我们介绍 V-pipe 3.0,这是一种专为分析短病毒基因组下一代测序数据而设计的计算管道。它的开发旨在实现病毒样本遗传多样性的可重复、可扩展、可调整和透明推断。通过介绍两个大型数据分析项目,我们展示了 V-pipe 3.0 在支持可持续病毒基因组数据科学方面的有效性。
{"title":"V-pipe 3.0: a sustainable pipeline for within-sample viral genetic diversity estimation.","authors":"Lara Fuhrmann, Kim Philipp Jablonski, Ivan Topolsky, Aashil A Batavia, Nico Borgsmüller, Pelin Icer Baykal, Matteo Carrara, Chaoran Chen, Arthur Dondi, Monica Dragan, David Dreifuss, Anika John, Benjamin Langer, Michal Okoniewski, Louis du Plessis, Uwe Schmitt, Franziska Singer, Tanja Stadler, Niko Beerenwinkel","doi":"10.1093/gigascience/giae065","DOIUrl":"10.1093/gigascience/giae065","url":null,"abstract":"<p><p>The large amount and diversity of viral genomic datasets generated by next-generation sequencing technologies poses a set of challenges for computational data analysis workflows, including rigorous quality control, scaling to large sample sizes, and tailored steps for specific applications. Here, we present V-pipe 3.0, a computational pipeline designed for analyzing next-generation sequencing data of short viral genomes. It is developed to enable reproducible, scalable, adaptable, and transparent inference of genetic diversity of viral samples. By presenting 2 large-scale data analysis projects, we demonstrate the effectiveness of V-pipe 3.0 in supporting sustainable viral genomic data science.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: A graph clustering algorithm for detection and genotyping of structural variants from long reads. Correction to:从长读数中检测结构变异并进行基因分型的图聚类算法。
IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-01-02 DOI: 10.1093/gigascience/giae077
{"title":"Correction to: A graph clustering algorithm for detection and genotyping of structural variants from long reads.","authors":"","doi":"10.1093/gigascience/giae077","DOIUrl":"10.1093/gigascience/giae077","url":null,"abstract":"","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A reference genome of Commelinales provides insights into the commelinids evolution and global spread of water hyacinth (Pontederia crassipes). 通过啮齿目参考基因组可以深入了解啮齿目动物的进化以及布袋莲(Pontederia crassipes)在全球的传播。
IF 3.5 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-01-02 DOI: 10.1093/gigascience/giae006
Yujie Huang, Longbiao Guo, Lingjuan Xie, Nianmin Shang, Dongya Wu, Chuyu Ye, Eduardo Carlos Rudell, Kazunori Okada, Qian-Hao Zhu, Beng-Kah Song, Daguang Cai, Aldo Merotto Junior, Lianyang Bai, Longjiang Fan

Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.

Commelinales属于commelinids支系,该支系还包括Poales支系,其中包括最重要的单子叶植物物种,如水稻、小麦和玉米。目前还没有荠属的参考基因组。布袋莲(Pontederia crassipes 或 Eichhornia crassipes)是荠属植物中的一种,是一种毁灭性的水生杂草,但也被作为观赏植物和药用植物种植。在这里,我们展示了四倍体布袋莲的染色体级参考基因组,其总长度为 1.22 Gb(超过估计大小的 95%),涉及 8 对假染色体。利用这些代表性基因组,我们重建了共生纲的系统发育,从而支持 Zingiberales 和 Commelinales 是 Arecales 的姊妹系,并揭示了这两个纲之间有争议的关系。我们还重建了共毛类的祖先核型,证实古代共毛类的基因组有 8 条染色体,而非之前报道的 5 条。基因家族分析表明,在布袋莲的多倍体化过程中,抗病基因发生了收缩,这可能是布袋莲作为杂草的适应性要求所致。利用来自三大洲(南美洲、亚洲和欧洲)的 9 个布袋莲品系进行的遗传多样性分析表明,这些材料的核基因组非常接近,叶绿体基因组几乎完全相同,这也为布袋莲的全球传播提供了线索。本文报告的十字花科(P. crassipes)基因组资源为纤毛虫类物种提供了重要的缺失环节,并为其系统发育提供了新的见解。
{"title":"A reference genome of Commelinales provides insights into the commelinids evolution and global spread of water hyacinth (Pontederia crassipes).","authors":"Yujie Huang, Longbiao Guo, Lingjuan Xie, Nianmin Shang, Dongya Wu, Chuyu Ye, Eduardo Carlos Rudell, Kazunori Okada, Qian-Hao Zhu, Beng-Kah Song, Daguang Cai, Aldo Merotto Junior, Lianyang Bai, Longjiang Fan","doi":"10.1093/gigascience/giae006","DOIUrl":"10.1093/gigascience/giae006","url":null,"abstract":"<p><p>Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the variability of dynamic functional connectivity assessment methods. 动态功能连通性评估方法的变异性。
IF 3.5 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-01-02 DOI: 10.1093/gigascience/giae009
Mohammad Torabi, Georgios D Mitsis, Jean-Baptiste Poline

Background: Dynamic functional connectivity (dFC) has become an important measure for understanding brain function and as a potential biomarker. However, various methodologies have been developed for assessing dFC, and it is unclear how the choice of method affects the results. In this work, we aimed to study the results variability of commonly used dFC methods.

Methods: We implemented 7 dFC assessment methods in Python and used them to analyze the functional magnetic resonance imaging data of 395 subjects from the Human Connectome Project. We measured the similarity of dFC results yielded by different methods using several metrics to quantify overall, temporal, spatial, and intersubject similarity.

Results: Our results showed a range of weak to strong similarity between the results of different methods, indicating considerable overall variability. Somewhat surprisingly, the observed variability in dFC estimates was found to be comparable to the expected functional connectivity variation over time, emphasizing the impact of methodological choices on the final results. Our findings revealed 3 distinct groups of methods with significant intergroup variability, each exhibiting distinct assumptions and advantages.

Conclusions: Overall, our findings shed light on the impact of dFC assessment analytical flexibility and highlight the need for multianalysis approaches and careful method selection to capture the full range of dFC variation. They also emphasize the importance of distinguishing neural-driven dFC variations from physiological confounds and developing validation frameworks under a known ground truth. To facilitate such investigations, we provide an open-source Python toolbox, PydFC, which facilitates multianalysis dFC assessment, with the goal of enhancing the reliability and interpretability of dFC studies.

背景:动态功能连通性(dFC)已成为了解大脑功能的一项重要指标,也是一种潜在的生物标记物。然而,评估 dFC 的方法多种多样,目前还不清楚方法的选择会如何影响评估结果。在这项工作中,我们旨在研究常用 dFC 方法的结果变异性:我们用 Python 实现了 7 种 dFC 评估方法,并用它们分析了人类连接组项目中 395 名受试者的功能磁共振成像数据。我们使用几种指标来量化总体、时间、空间和受试者间的相似性,测量了不同方法得出的 dFC 结果的相似性:我们的结果显示,不同方法得出的结果之间的相似性从弱到强不等,这表明总体变异性相当大。令人惊讶的是,观察到的 dFC 估计值的变异性与预期的随时间变化的功能连接变异性相当,这强调了方法选择对最终结果的影响。我们的研究结果表明,有三组不同的方法具有显著的组间变异性,每组方法都表现出不同的假设和优势:总之,我们的研究结果阐明了 dFC 评估分析灵活性的影响,并强调了采用多重分析方法和谨慎选择方法以捕捉 dFC 全面变化的必要性。研究结果还强调了将神经驱动的dFC变化与生理混杂因素区分开来并在已知基本事实的基础上制定验证框架的重要性。为了促进此类研究,我们提供了一个开源 Python 工具箱 PydFC,该工具箱可促进多分析 dFC 评估,目的是提高 dFC 研究的可靠性和可解释性。
{"title":"On the variability of dynamic functional connectivity assessment methods.","authors":"Mohammad Torabi, Georgios D Mitsis, Jean-Baptiste Poline","doi":"10.1093/gigascience/giae009","DOIUrl":"10.1093/gigascience/giae009","url":null,"abstract":"<p><strong>Background: </strong>Dynamic functional connectivity (dFC) has become an important measure for understanding brain function and as a potential biomarker. However, various methodologies have been developed for assessing dFC, and it is unclear how the choice of method affects the results. In this work, we aimed to study the results variability of commonly used dFC methods.</p><p><strong>Methods: </strong>We implemented 7 dFC assessment methods in Python and used them to analyze the functional magnetic resonance imaging data of 395 subjects from the Human Connectome Project. We measured the similarity of dFC results yielded by different methods using several metrics to quantify overall, temporal, spatial, and intersubject similarity.</p><p><strong>Results: </strong>Our results showed a range of weak to strong similarity between the results of different methods, indicating considerable overall variability. Somewhat surprisingly, the observed variability in dFC estimates was found to be comparable to the expected functional connectivity variation over time, emphasizing the impact of methodological choices on the final results. Our findings revealed 3 distinct groups of methods with significant intergroup variability, each exhibiting distinct assumptions and advantages.</p><p><strong>Conclusions: </strong>Overall, our findings shed light on the impact of dFC assessment analytical flexibility and highlight the need for multianalysis approaches and careful method selection to capture the full range of dFC variation. They also emphasize the importance of distinguishing neural-driven dFC variations from physiological confounds and developing validation frameworks under a known ground truth. To facilitate such investigations, we provide an open-source Python toolbox, PydFC, which facilitates multianalysis dFC assessment, with the goal of enhancing the reliability and interpretability of dFC studies.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic insights into endangerment and conservation of the garlic-fruit tree (Malania oleifera), a plant species with extremely small populations. 基因组学对蒜果树(Malania oleifera)--一种种群数量极少的植物物种--的濒危和保护的启示。
IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES Pub Date : 2024-01-02 DOI: 10.1093/gigascience/giae070
Yuanting Shen, Lidan Tao, Rengang Zhang, Gang Yao, Minjie Zhou, Weibang Sun, Yongpeng Ma

Background: Advanced whole-genome sequencing techniques enable covering nearly all genome nucleotide variations and thus can provide deep insights into protecting endangered species. However, the use of genomic data to make conservation strategies is still rare, particularly for endangered plants. Here we performed comprehensive conservation genomic analysis for Malania oleifera, an endangered tree species with a high amount of nervonic acid. We used whole-genome resequencing data of 165 samples, covering 16 populations across the entire distribution range, to investigate the formation reasons of its extremely small population sizes and to evaluate the possible genomic offsets and changes of ecology niche suitability under future climate change.

Results: Although M. oleifera maintains relatively high genetic diversity among endangered woody plants (θπ = 3.87 × 10-3), high levels of inbreeding have been observed, which have reduced genetic diversity in 3 populations (JM, NP, and BM2) and caused the accumulation of deleterious mutations. Repeated bottleneck events, recent inbreeding (∼490 years ago), and anthropogenic disturbance to wild habitats have aggravated the fragmentation of M. oleifera and made it endangered. Due to the significant effect of higher average annual temperature, populations distributed in low altitude exhibit a greater genomic offset. Furthermore, ecological niche modeling shows the suitable habitats for M. oleifera will decrease by 71.15% and 98.79% in 2100 under scenarios SSP126 and SSP585, respectively.

Conclusions: The basic realizations concerning the threats to M. oleifera provide scientific foundation for defining management and adaptive units, as well as prioritizing populations for genetic rescue. Meanwhile, we highlight the importance of integrating genomic offset and ecological niche modeling to make targeted conservation actions under future climate change. Overall, our study provides a paradigm for genomics-directed conservation.

背景:先进的全基因组测序技术能够覆盖几乎所有的基因组核苷酸变异,因此能够为保护濒危物种提供深入的见解。然而,利用基因组数据制定保护策略的情况仍然很少见,尤其是对濒危植物而言。在这里,我们对含有大量神经酸的濒危树种油橄榄(Malania oleifera)进行了全面的保护基因组分析。我们使用了 165 个样本的全基因组重测序数据,涵盖了整个分布区的 16 个种群,以研究其种群规模极小的形成原因,并评估在未来气候变化下可能的基因组偏移和生态位适宜性的变化:结果:虽然油橄榄在濒危木本植物中保持着相对较高的遗传多样性(θπ = 3.87 × 10-3),但近亲繁殖水平很高,降低了 3 个种群(JM、NP 和 BM2)的遗传多样性,并导致有害突变的积累。反复的瓶颈事件、最近的近亲繁殖(距今 490 年)以及对野生栖息地的人为干扰加剧了油橄榄的破碎化,使其濒临灭绝。由于年平均气温较高的显著影响,分布在低海拔地区的种群表现出更大的基因组偏移。此外,生态位模型显示,在 SSP126 和 SSP585 两种情景下,油橄榄的适宜栖息地在 2100 年将分别减少 71.15% 和 98.79%:对油橄榄所面临威胁的基本认识为确定管理和适应单元以及优先遗传拯救种群提供了科学依据。同时,我们还强调了基因组补偿与生态位建模相结合的重要性,以便在未来气候变化的情况下采取有针对性的保护行动。总之,我们的研究为基因组学指导的保护提供了一个范例。
{"title":"Genomic insights into endangerment and conservation of the garlic-fruit tree (Malania oleifera), a plant species with extremely small populations.","authors":"Yuanting Shen, Lidan Tao, Rengang Zhang, Gang Yao, Minjie Zhou, Weibang Sun, Yongpeng Ma","doi":"10.1093/gigascience/giae070","DOIUrl":"10.1093/gigascience/giae070","url":null,"abstract":"<p><strong>Background: </strong>Advanced whole-genome sequencing techniques enable covering nearly all genome nucleotide variations and thus can provide deep insights into protecting endangered species. However, the use of genomic data to make conservation strategies is still rare, particularly for endangered plants. Here we performed comprehensive conservation genomic analysis for Malania oleifera, an endangered tree species with a high amount of nervonic acid. We used whole-genome resequencing data of 165 samples, covering 16 populations across the entire distribution range, to investigate the formation reasons of its extremely small population sizes and to evaluate the possible genomic offsets and changes of ecology niche suitability under future climate change.</p><p><strong>Results: </strong>Although M. oleifera maintains relatively high genetic diversity among endangered woody plants (θπ = 3.87 × 10-3), high levels of inbreeding have been observed, which have reduced genetic diversity in 3 populations (JM, NP, and BM2) and caused the accumulation of deleterious mutations. Repeated bottleneck events, recent inbreeding (∼490 years ago), and anthropogenic disturbance to wild habitats have aggravated the fragmentation of M. oleifera and made it endangered. Due to the significant effect of higher average annual temperature, populations distributed in low altitude exhibit a greater genomic offset. Furthermore, ecological niche modeling shows the suitable habitats for M. oleifera will decrease by 71.15% and 98.79% in 2100 under scenarios SSP126 and SSP585, respectively.</p><p><strong>Conclusions: </strong>The basic realizations concerning the threats to M. oleifera provide scientific foundation for defining management and adaptive units, as well as prioritizing populations for genetic rescue. Meanwhile, we highlight the importance of integrating genomic offset and ecological niche modeling to make targeted conservation actions under future climate change. Overall, our study provides a paradigm for genomics-directed conservation.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"13 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142283910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
GigaScience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1