首页 > 最新文献

International Conference on Conceptual Structures最新文献

英文 中文
An Energy Aware Clustering Scheme for 5G-enabled Edge Computing based IoMT Framework 基于IoMT框架的支持5g边缘计算的能量感知聚类方案
Pub Date : 2022-04-14 DOI: 10.1007/978-3-031-08754-7_23
Jitendra Kumar Samriya, Mohit Kumar, M. Ganzha, M. Paprzycki, M. Bolanowski, A. Paszkiewicz
{"title":"An Energy Aware Clustering Scheme for 5G-enabled Edge Computing based IoMT Framework","authors":"Jitendra Kumar Samriya, Mohit Kumar, M. Ganzha, M. Paprzycki, M. Bolanowski, A. Paszkiewicz","doi":"10.1007/978-3-031-08754-7_23","DOIUrl":"https://doi.org/10.1007/978-3-031-08754-7_23","url":null,"abstract":"","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121803538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Survey on Sustainable Software Ecosystems to Support Experimental and Observational Science at Oak Ridge National Laboratory 支持橡树岭国家实验室实验和观测科学的可持续软件生态系统调查
Pub Date : 2022-04-12 DOI: 10.1007/978-3-031-08760-8_46
D. Bernholdt, M. Doucet, William F. Godoy, Addi Malviya-Thakur, G. R. Watson
{"title":"A Survey on Sustainable Software Ecosystems to Support Experimental and Observational Science at Oak Ridge National Laboratory","authors":"D. Bernholdt, M. Doucet, William F. Godoy, Addi Malviya-Thakur, G. R. Watson","doi":"10.1007/978-3-031-08760-8_46","DOIUrl":"https://doi.org/10.1007/978-3-031-08760-8_46","url":null,"abstract":"","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115133313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Calibration window selection based on change-point detection for forecasting electricity prices 基于变化点检测的电价预测校准窗口选择
Pub Date : 2022-04-02 DOI: 10.48550/arXiv.2204.00872
Julia Nasiadka, W. Nitka, R. Weron
We employ a recently proposed change-point detection algorithm, the Narrowest-Over-Threshold (NOT) method, to select subperiods of past observations that are similar to the currently recorded values. Then, contrarily to the traditional time series approach in which the most recent $tau$ observations are taken as the calibration sample, we estimate autoregressive models only for data in these subperiods. We illustrate our approach using a challenging dataset - day-ahead electricity prices in the German EPEX SPOT market - and observe a significant improvement in forecasting accuracy compared to commonly used approaches, including the Autoregressive Hybrid Nearest Neighbors (ARHNN) method.
我们采用最近提出的一种变化点检测算法,即最小阈值(NOT)方法,来选择与当前记录值相似的过去观测的子周期。然后,与以最近的$tau$观测值作为校准样本的传统时间序列方法相反,我们仅对这些子周期的数据估计自回归模型。我们使用具有挑战性的数据集(德国EPEX现货市场的日前电价)来说明我们的方法,并观察到与常用方法(包括自回归混合最近邻(ARHNN)方法)相比,预测精度有显着提高。
{"title":"Calibration window selection based on change-point detection for forecasting electricity prices","authors":"Julia Nasiadka, W. Nitka, R. Weron","doi":"10.48550/arXiv.2204.00872","DOIUrl":"https://doi.org/10.48550/arXiv.2204.00872","url":null,"abstract":"We employ a recently proposed change-point detection algorithm, the Narrowest-Over-Threshold (NOT) method, to select subperiods of past observations that are similar to the currently recorded values. Then, contrarily to the traditional time series approach in which the most recent $tau$ observations are taken as the calibration sample, we estimate autoregressive models only for data in these subperiods. We illustrate our approach using a challenging dataset - day-ahead electricity prices in the German EPEX SPOT market - and observe a significant improvement in forecasting accuracy compared to commonly used approaches, including the Autoregressive Hybrid Nearest Neighbors (ARHNN) method.","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116271939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Reducing Memory Requirements of Quantum Optimal Control 减少量子最优控制的内存需求
Pub Date : 2022-03-23 DOI: 10.1007/978-3-031-08760-8_11
S. Narayanan, T. Propson, Marcelo Bongarti, Jan Hueckelheim, P. Hovland
{"title":"Reducing Memory Requirements of Quantum Optimal Control","authors":"S. Narayanan, T. Propson, Marcelo Bongarti, Jan Hueckelheim, P. Hovland","doi":"10.1007/978-3-031-08760-8_11","DOIUrl":"https://doi.org/10.1007/978-3-031-08760-8_11","url":null,"abstract":"","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126136095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Adaptive Regularization of B-Spline Models for Scientific Data 科学数据b样条模型的自适应正则化
Pub Date : 2022-03-23 DOI: 10.48550/arXiv.2203.12730
David Lenz, Raine Yeh, V. Mahadevan, I. Grindeanu, T. Peterka
B-spline models are a powerful way to represent scientific data sets with a functional approximation. However, these models can suffer from spurious oscillations when the data to be approximated are not uniformly distributed. Model regularization (i.e., smoothing) has traditionally been used to minimize these oscillations; unfortunately, it is sometimes impossible to sufficiently remove unwanted artifacts without smoothing away key features of the data set. In this article, we present a method of model regularization that preserves significant features of a data set while minimizing artificial oscillations. Our method varies the strength of a smoothing parameter throughout the domain automatically, removing artifacts in poorly-constrained regions while leaving other regions unchanged. The behavior of our method is validated on a collection of two- and three-dimensional data sets produced by scientific simulations.
b样条模型是用函数近似表示科学数据集的一种强大方法。然而,当拟合数据不均匀分布时,这些模型可能会出现伪振荡。模型正则化(即平滑)传统上被用来最小化这些振荡;不幸的是,如果不平滑数据集的关键特征,有时不可能充分去除不需要的工件。在本文中,我们提出了一种模型正则化方法,该方法保留了数据集的重要特征,同时最小化了人为振荡。我们的方法在整个域内自动改变平滑参数的强度,去除约束较差区域的伪影,同时保持其他区域不变。我们的方法的行为在科学模拟产生的二维和三维数据集的集合上得到了验证。
{"title":"Adaptive Regularization of B-Spline Models for Scientific Data","authors":"David Lenz, Raine Yeh, V. Mahadevan, I. Grindeanu, T. Peterka","doi":"10.48550/arXiv.2203.12730","DOIUrl":"https://doi.org/10.48550/arXiv.2203.12730","url":null,"abstract":"B-spline models are a powerful way to represent scientific data sets with a functional approximation. However, these models can suffer from spurious oscillations when the data to be approximated are not uniformly distributed. Model regularization (i.e., smoothing) has traditionally been used to minimize these oscillations; unfortunately, it is sometimes impossible to sufficiently remove unwanted artifacts without smoothing away key features of the data set. In this article, we present a method of model regularization that preserves significant features of a data set while minimizing artificial oscillations. Our method varies the strength of a smoothing parameter throughout the domain automatically, removing artifacts in poorly-constrained regions while leaving other regions unchanged. The behavior of our method is validated on a collection of two- and three-dimensional data sets produced by scientific simulations.","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130109425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Post-error Correction for Quantum Annealing Processor Using Reinforcement Learning 基于强化学习的量子退火处理器后误差校正
Pub Date : 2022-03-03 DOI: 10.1007/978-3-031-08760-8_22
Tomasz 'Smierzchalski, Lukasz Pawela, Z. Puchała, Tomasz Trzci'nski, Bartłomiej Gardas
{"title":"Post-error Correction for Quantum Annealing Processor Using Reinforcement Learning","authors":"Tomasz 'Smierzchalski, Lukasz Pawela, Z. Puchała, Tomasz Trzci'nski, Bartłomiej Gardas","doi":"10.1007/978-3-031-08760-8_22","DOIUrl":"https://doi.org/10.1007/978-3-031-08760-8_22","url":null,"abstract":"","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"173 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123010702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Boosted Ensemble Learning based on Randomized NNs for Time Series Forecasting 基于随机神经网络的增强集成学习用于时间序列预测
Pub Date : 2022-03-02 DOI: 10.48550/arXiv.2203.00980
Grzegorz Dudek
Time series forecasting is a challenging problem particularly when a time series expresses multiple seasonality, nonlinear trend and varying variance. In this work, to forecast complex time series, we propose ensemble learning which is based on randomized neural networks, and boosted in three ways. These comprise ensemble learning based on residuals, corrected targets and opposed response. The latter two methods are employed to ensure similar forecasting tasks are solved by all ensemble members, which justifies the use of exactly the same base models at all stages of ensembling. Unification of the tasks for all members simplifies ensemble learning and leads to increased forecasting accuracy. This was confirmed in an experimental study involving forecasting time series with triple seasonality, in which we compare our three variants of ensemble boosting. The strong points of the proposed ensembles based on RandNNs are extremely rapid training and pattern-based time series representation, which extracts relevant information from time series.
时间序列预测是一个具有挑战性的问题,特别是当时间序列具有多季节性、非线性趋势和变方差时。在这项工作中,为了预测复杂的时间序列,我们提出了基于随机神经网络的集成学习,并从三种方式进行了增强。这包括基于残差、校正目标和相反响应的集成学习。后两种方法用于确保所有集成成员都解决类似的预测任务,这证明在集成的所有阶段使用完全相同的基础模型是合理的。所有成员任务的统一简化了集成学习,提高了预测的准确性。这在一项涉及预测具有三重季节性的时间序列的实验研究中得到了证实,其中我们比较了集合增强的三种变体。基于随机神经网络的集成系统的优点是非常快速的训练和基于模式的时间序列表示,它从时间序列中提取相关信息。
{"title":"Boosted Ensemble Learning based on Randomized NNs for Time Series Forecasting","authors":"Grzegorz Dudek","doi":"10.48550/arXiv.2203.00980","DOIUrl":"https://doi.org/10.48550/arXiv.2203.00980","url":null,"abstract":"Time series forecasting is a challenging problem particularly when a time series expresses multiple seasonality, nonlinear trend and varying variance. In this work, to forecast complex time series, we propose ensemble learning which is based on randomized neural networks, and boosted in three ways. These comprise ensemble learning based on residuals, corrected targets and opposed response. The latter two methods are employed to ensure similar forecasting tasks are solved by all ensemble members, which justifies the use of exactly the same base models at all stages of ensembling. Unification of the tasks for all members simplifies ensemble learning and leads to increased forecasting accuracy. This was confirmed in an experimental study involving forecasting time series with triple seasonality, in which we compare our three variants of ensemble boosting. The strong points of the proposed ensembles based on RandNNs are extremely rapid training and pattern-based time series representation, which extracts relevant information from time series.","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132372928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
TROPHY: Trust Region Optimization Using a Precision Hierarchy TROPHY:使用精度层次结构的信任域优化
Pub Date : 2022-02-17 DOI: 10.1007/978-3-031-08751-6_32
Richard J Clancy, M. Menickelly, J. Hückelheim, P. Hovland, Prani Nalluri, R. Gjini
{"title":"TROPHY: Trust Region Optimization Using a Precision Hierarchy","authors":"Richard J Clancy, M. Menickelly, J. Hückelheim, P. Hovland, Prani Nalluri, R. Gjini","doi":"10.1007/978-3-031-08751-6_32","DOIUrl":"https://doi.org/10.1007/978-3-031-08751-6_32","url":null,"abstract":"","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128769810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic Generation of Individual Fuzzy Cognitive Maps from Longitudinal Data 从纵向数据自动生成个体模糊认知图
Pub Date : 2022-02-14 DOI: 10.1007/978-3-031-08757-8_27
M. Wozniak, Samvel Mkhitaryan, P. Giabbanelli
{"title":"Automatic Generation of Individual Fuzzy Cognitive Maps from Longitudinal Data","authors":"M. Wozniak, Samvel Mkhitaryan, P. Giabbanelli","doi":"10.1007/978-3-031-08757-8_27","DOIUrl":"https://doi.org/10.1007/978-3-031-08757-8_27","url":null,"abstract":"","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123176537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Multi-cell Cellular Automata Model of Traffic Flow with Emergency Vehicles: Effect of a Corridor of Life 紧急车辆交通流的多元胞自动机模型:生命走廊的影响
Pub Date : 2022-02-01 DOI: 10.1007/978-3-030-77961-0_4
K. Małecki, M. Kamiński, Jarosław Wąs
{"title":"A Multi-cell Cellular Automata Model of Traffic Flow with Emergency Vehicles: Effect of a Corridor of Life","authors":"K. Małecki, M. Kamiński, Jarosław Wąs","doi":"10.1007/978-3-030-77961-0_4","DOIUrl":"https://doi.org/10.1007/978-3-030-77961-0_4","url":null,"abstract":"","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123535876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
International Conference on Conceptual Structures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1