首页 > 最新文献

Angewandte Chemie International Edition最新文献

英文 中文
Hydroxyl Radicals Unlock Strong C( sp 3 )─Si Bonds: Photocatalytic Alkylation and Silacycle Engineering 羟基自由基解锁强C(sp3)─Si键:光催化烷基化和硅环工程
IF 16.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/anie.202523587
Bo Li, Xingyi He, Yizhi Zhang, Kang Li, Yingmo Zhang, Shanshan Liu, Yu‐Cheng Gu, Xiao Shen
Organosilicon reagents play a significant role in the preparation of molecules essential to synthetic chemistry, materials science, and medicinal chemistry. However, selectively transforming strong C( sp 3 )─Si bonds in unactivated organosilicon reagents remains a significant challenge due to their high stability and low reactivity. Herein, we report that hydroxyl radical generated from water (H 2 O) can effectively drive the homolysis of strong C( sp 3 )─Si bonds, enabling radical alkylation with electron‐deficient alkenes. We reveal that H 2 O facilitates the generation of alkyl radicals, including tertiary, secondary, and primary radicals. Even the inert Et 4 Si can be activated and used in radical alkylation under our methodology. Moreover, we show that this strategy can be applied to the radical difunctionalization of silacycles, leading to the synthesis of organosilicon compounds not previously achievable through other methods. We anticipate that this approach will serve as a foundation for the development of more advanced radical reactions with unactivated organosilicon reagents, thereby facilitating the synthesis of a wide range of valuable molecules.
有机硅试剂在合成化学、材料科学和药物化学必不可少的分子制备中起着重要作用。然而,在未活化的有机硅试剂中选择性地转化强C(sp 3)─Si键仍然是一个重大挑战,因为它们具有高稳定性和低反应性。本文中,我们报道了由水(h2o)生成的羟基自由基可以有效地驱动强C(sp 3)─Si键的均裂,从而实现与缺电子烯烃的自由基烷基化。我们发现h2o促进了烷基自由基的生成,包括叔自由基、仲自由基和伯自由基。在我们的方法下,即使是惰性的Et 4si也可以被激活并用于自由基烷基化。此外,我们表明这种策略可以应用于硅环的自由基双官能化,从而合成以前通过其他方法无法实现的有机硅化合物。我们预计,这种方法将为开发更先进的与非活化有机硅试剂的自由基反应奠定基础,从而促进各种有价值分子的合成。
{"title":"Hydroxyl Radicals Unlock Strong C( sp 3 )─Si Bonds: Photocatalytic Alkylation and Silacycle Engineering","authors":"Bo Li, Xingyi He, Yizhi Zhang, Kang Li, Yingmo Zhang, Shanshan Liu, Yu‐Cheng Gu, Xiao Shen","doi":"10.1002/anie.202523587","DOIUrl":"https://doi.org/10.1002/anie.202523587","url":null,"abstract":"Organosilicon reagents play a significant role in the preparation of molecules essential to synthetic chemistry, materials science, and medicinal chemistry. However, selectively transforming strong C( <jats:italic> sp <jats:sup>3</jats:sup> </jats:italic> )─Si bonds in unactivated organosilicon reagents remains a significant challenge due to their high stability and low reactivity. Herein, we report that hydroxyl radical generated from water (H <jats:sub>2</jats:sub> O) can effectively drive the homolysis of strong C( <jats:italic> sp <jats:sup>3</jats:sup> </jats:italic> )─Si bonds, enabling radical alkylation with electron‐deficient alkenes. We reveal that H <jats:sub>2</jats:sub> O facilitates the generation of alkyl radicals, including tertiary, secondary, and primary radicals. Even the inert Et <jats:sub>4</jats:sub> Si can be activated and used in radical alkylation under our methodology. Moreover, we show that this strategy can be applied to the radical difunctionalization of silacycles, leading to the synthesis of organosilicon compounds not previously achievable through other methods. We anticipate that this approach will serve as a foundation for the development of more advanced radical reactions with unactivated organosilicon reagents, thereby facilitating the synthesis of a wide range of valuable molecules.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"10 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating Electron‐Transfer via Covalent Assembly Polyoxometalate with Photosensitizer for Efficient H 2 Evolution and Tandem Hydrogenation 通过光敏剂和多金属氧酸盐共价组装调控电子转移以实现高效的h2演化和串联氢化
IF 16.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/anie.202523472
Shen‐Yue Xu, Ping Wang, Song Guo, Shuang Yao, Cheng Wang, Tong‐Bu Lu, Zhi‐Ming Zhang
Photocatalytic hydrogen evolution efficiency is critically dependent on electron transfer between photosensitizers (PSs) and catalysts. Herein, covalent assembly of Ir‐PSs with Co 7 polyoxometalate was achieved via Schiff‐base condensation to adjust electron transfer pathways, the resulting Ir‐2@Co 7 assembly exhibits a turnover number of 2280 for H 2 evolution, ∼18 and ∼253 times higher than that of its physically mixture and Ir‐1@Co 7 , respectively. Moreover, the generated H 2 can drive tandem styrene hydrogenation under ambient conditions, achieving 99.9% ethylbenzene yield. Spectroscopic and thermodynamic analyses reveal that covalent linkage switches dominant quenching mechanism from reductive to oxidative, and dramatically enhances electron quenching rate constant by over two orders of magnitude from 2.54 × 10 9 M −1 s −1 in physical‐mixed system to 5.87 × 10 11 M −1 s −1 in the assembly. This work highlights the key role of covalent integration in promoting electron transfer, providing a general design principle for developing high‐performance H 2 evolution and tandem hydrogenation systems.
光催化析氢效率关键取决于光敏剂和催化剂之间的电子转移。本文通过希夫碱缩合来调节电子转移途径,实现了Ir‐ps与co7多金属氧酸盐的共价组装,得到的Ir‐2@Co 7组装的h2演化的周转率为2280,分别是其物理混合物和Ir‐1@Co 7的18倍和253倍。此外,生成的氢气可以在常温条件下驱动苯乙烯的串联加氢,乙苯收率达到99.9%。光谱和热力学分析表明,共价键将主要的猝灭机制从还原变为氧化,并显著提高了电子猝灭速率常数,从物理混合体系的2.54 × 10 9 M−1 s−1提高到组装体系的5.87 × 10 11 M−1 s−1,提高了两个数量级以上。这项工作强调了共价整合在促进电子转移中的关键作用,为开发高性能h2演化和串联氢化系统提供了一般设计原则。
{"title":"Modulating Electron‐Transfer via Covalent Assembly Polyoxometalate with Photosensitizer for Efficient H 2 Evolution and Tandem Hydrogenation","authors":"Shen‐Yue Xu, Ping Wang, Song Guo, Shuang Yao, Cheng Wang, Tong‐Bu Lu, Zhi‐Ming Zhang","doi":"10.1002/anie.202523472","DOIUrl":"https://doi.org/10.1002/anie.202523472","url":null,"abstract":"Photocatalytic hydrogen evolution efficiency is critically dependent on electron transfer between photosensitizers (PSs) and catalysts. Herein, covalent assembly of Ir‐PSs with Co <jats:sub>7</jats:sub> polyoxometalate was achieved via Schiff‐base condensation to adjust electron transfer pathways, the resulting Ir‐2@Co <jats:sub>7</jats:sub> assembly exhibits a turnover number of 2280 for H <jats:sub>2</jats:sub> evolution, ∼18 and ∼253 times higher than that of its physically mixture and Ir‐1@Co <jats:sub>7</jats:sub> , respectively. Moreover, the generated H <jats:sub>2</jats:sub> can drive tandem styrene hydrogenation under ambient conditions, achieving 99.9% ethylbenzene yield. Spectroscopic and thermodynamic analyses reveal that covalent linkage switches dominant quenching mechanism from reductive to oxidative, and dramatically enhances electron quenching rate constant by over two orders of magnitude from 2.54 × 10 <jats:sup>9</jats:sup> M <jats:sup>−1</jats:sup> s <jats:sup>−1</jats:sup> in physical‐mixed system to 5.87 × 10 <jats:sup>11</jats:sup> M <jats:sup>−1</jats:sup> s <jats:sup>−1</jats:sup> in the assembly. This work highlights the key role of covalent integration in promoting electron transfer, providing a general design principle for developing high‐performance H <jats:sub>2</jats:sub> evolution and tandem hydrogenation systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"29 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocluster‐Stabilized Sulfur‐Based Superradical with High Photothermal Performance and NIR‐II Emission 具有高光热性能和近红外辐射的纳米簇稳定硫基超自由基
IF 16.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/anie.202517738
Zhiyuan Hu, Shiyu Ji, Wenying Wang, Wanmiao Gu, Guowei Guan, Mingxing Chen, Qing You, Yue Zhou, Jian Cheng, Lingwen Liao, Nan Yan, Zhikun Wu
The stabilization and multifunctionalization of radicals constitute two major challenges. We introduce a “kill two birds with one stone” methodology and illustrate the production of Au 64 (CPT) 31 S· from the newly obtained precursor nanocluster Au 64 (CPT) 32 (CPT: cyclopentanethiolate). Despite the isolated Au 64 (CPT) 31 S· are ultrastable (maintain the majority under 100 °C for 2 h in an atmospheric solution environment), they can initiate the polymerization of pentaerythritol triacrylate in 3D printing. In addition, the superradicial(which means it is not a single (super)atom but a complex system with superstability) exhibited NIR‐II emission, as well as high photothermal conversion efficiencies of 82.9% and 65.1% under 532 and 980 nm laser irradiation, respectively. Therefore, this study can serve as a foundation for novel superradical studies and applications and the findings hold notable implications for radical stabilization, multifunctionalization, and structure–composition–property correlations.
自由基的稳定化和多功能化构成了两大挑战。我们介绍了一种“一石二鸟”的方法,并举例说明了由新获得的前驱体纳米簇Au 64 (CPT) 32 (CPT:环戊硫酸盐)生产Au 64 (CPT) 31s·。尽管分离的Au 64 (CPT) 31s·是超稳定的(大多数在大气溶液环境中在100°C下保持2小时),但它们可以在3D打印中引发季戊四醇三丙烯酸酯的聚合。此外,在532 nm和980 nm激光照射下,超表面(即不是单个(超)原子而是具有超稳定性的复杂体系)表现出近红外- II发射,光热转换效率分别为82.9%和65.1%。因此,本研究可以作为新型超自由基研究和应用的基础,研究结果对自由基稳定、多功能化和结构-组成-性质相关性具有重要意义。
{"title":"Nanocluster‐Stabilized Sulfur‐Based Superradical with High Photothermal Performance and NIR‐II Emission","authors":"Zhiyuan Hu, Shiyu Ji, Wenying Wang, Wanmiao Gu, Guowei Guan, Mingxing Chen, Qing You, Yue Zhou, Jian Cheng, Lingwen Liao, Nan Yan, Zhikun Wu","doi":"10.1002/anie.202517738","DOIUrl":"https://doi.org/10.1002/anie.202517738","url":null,"abstract":"The stabilization and multifunctionalization of radicals constitute two major challenges. We introduce a “kill two birds with one stone” methodology and illustrate the production of Au <jats:sub>64</jats:sub> (CPT) <jats:sub>31</jats:sub> S· from the newly obtained precursor nanocluster Au <jats:sub>64</jats:sub> (CPT) <jats:sub>32</jats:sub> (CPT: cyclopentanethiolate). Despite the isolated Au <jats:sub>64</jats:sub> (CPT) <jats:sub>31</jats:sub> S· are ultrastable (maintain the majority under 100 °C for 2 h in an atmospheric solution environment), they can initiate the polymerization of pentaerythritol triacrylate in 3D printing. In addition, the superradicial(which means it is not a single (super)atom but a complex system with superstability) exhibited NIR‐II emission, as well as high photothermal conversion efficiencies of 82.9% and 65.1% under 532 and 980 nm laser irradiation, respectively. Therefore, this study can serve as a foundation for novel superradical studies and applications and the findings hold notable implications for radical stabilization, multifunctionalization, and structure–composition–property correlations.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"164 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Front Cover: Regulating Promiscuous Catalysis via Substrate‐Induced Transient Assembly 外封面:通过底物诱导的瞬时组装调节混杂催化
IF 16.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/anie.2025-m0512055500
Ayan Chatterjee, Maximilian Schuler, Marius G. Braun, Christopher V. Synatschke, Qi Lu, Jiyao Yu, David Y.W. Ng, Tanja Weil
{"title":"Outside Front Cover: Regulating Promiscuous Catalysis via Substrate‐Induced Transient Assembly","authors":"Ayan Chatterjee, Maximilian Schuler, Marius G. Braun, Christopher V. Synatschke, Qi Lu, Jiyao Yu, David Y.W. Ng, Tanja Weil","doi":"10.1002/anie.2025-m0512055500","DOIUrl":"https://doi.org/10.1002/anie.2025-m0512055500","url":null,"abstract":"","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"66 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C ‐Glycosyl α‐Amino Acids as Structural Encoders of Peptide Conformation C‐糖基α‐氨基酸作为肽构象的结构编码器
IF 16.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/anie.202522704
Barbara Bogović, Ivana Colić, Ivana Nikšić‐Franjić, Vilko Smrečki, Ivanka Jerić
C ‐glycosylation is a well‐established strategy for improving the pharmacokinetic properties of peptides; however, the influence of chiral C ‐glycosyl amino acid incorporation on peptide conformation remains insufficiently explored. Most existing synthetic approaches restrict C ‐glycosyl amino acid placement to the N ‐terminus, C ‐terminus, or specific residues containing pre‐installed reactive groups. Here, we present a more versatile strategy based on the design and synthesis of customized C ‐glycosyl amino acids. Four variants bearing protected galactopyranose, ribofuranose, sorbofuranose, or allofuranose side chains were synthesized and incorporated into peptides using a solid‐phase methodology, enabling substitution at diverse sequence positions. Detailed NMR analyses revealed that each C ‐glycosyl α‐amino acid promotes distinct conformational preferences, primarily stabilized by hydrogen‐bonding networks between backbone amides and carbohydrate side chains. These findings uncover conformational information encoded within four non‐canonical C ‐glycosyl α‐amino acids, offering new molecular tools for catalysis, materials development and drug discovery.
C -糖基化是一种完善的策略,用于改善肽的药代动力学特性;然而,手性C -糖基氨基酸掺入对肽构象的影响仍未得到充分探讨。大多数现有的合成方法将C -糖基氨基酸的位置限制在N端、C端或含有预先安装的反应基团的特定残基上。在这里,我们提出了一种基于定制C -糖基氨基酸的设计和合成的更通用的策略。采用固相方法合成了四种带有受保护的半乳糖醛酸糖、核糖呋喃糖、山梨呋喃糖或己醛呋喃糖侧链的变体,并将其整合到肽中,实现了不同序列位置的取代。详细的核磁共振分析表明,每个C -糖基α -氨基酸促进不同的构象偏好,主要是通过主链酰胺和碳水化合物侧链之间的氢键网络来稳定。这些发现揭示了编码在四种非规范C -糖基α -氨基酸中的构象信息,为催化、材料开发和药物发现提供了新的分子工具。
{"title":"C ‐Glycosyl α‐Amino Acids as Structural Encoders of Peptide Conformation","authors":"Barbara Bogović, Ivana Colić, Ivana Nikšić‐Franjić, Vilko Smrečki, Ivanka Jerić","doi":"10.1002/anie.202522704","DOIUrl":"https://doi.org/10.1002/anie.202522704","url":null,"abstract":"<jats:italic>C</jats:italic> ‐glycosylation is a well‐established strategy for improving the pharmacokinetic properties of peptides; however, the influence of chiral <jats:italic>C</jats:italic> ‐glycosyl amino acid incorporation on peptide conformation remains insufficiently explored. Most existing synthetic approaches restrict <jats:italic>C</jats:italic> ‐glycosyl amino acid placement to the <jats:italic>N</jats:italic> ‐terminus, <jats:italic>C</jats:italic> ‐terminus, or specific residues containing pre‐installed reactive groups. Here, we present a more versatile strategy based on the design and synthesis of customized <jats:italic>C</jats:italic> ‐glycosyl amino acids. Four variants bearing protected galactopyranose, ribofuranose, sorbofuranose, or allofuranose side chains were synthesized and incorporated into peptides using a solid‐phase methodology, enabling substitution at diverse sequence positions. Detailed NMR analyses revealed that each <jats:italic>C</jats:italic> ‐glycosyl α‐amino acid promotes distinct conformational preferences, primarily stabilized by hydrogen‐bonding networks between backbone amides and carbohydrate side chains. These findings uncover conformational information encoded within four non‐canonical <jats:italic>C</jats:italic> ‐glycosyl α‐amino acids, offering new molecular tools for catalysis, materials development and drug discovery.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"111 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Industrial-Grade H2O2 Electrosynthesis via N/O-Doped Hierarchically Porous Carbon Nanoreactors with Remarkable Yield and Stability 采用N/ o掺杂分层多孔碳纳米反应器电合成工业级H2O2,收率高,稳定性好
IF 16.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-12 DOI: 10.1002/anie.202519013
Hongnan Du, Haitao Li, Huijuan Jing, Tianyi Liu, Zichen Xu, Chenyang Li, Yunyun Xu, Zijian Tan, Xiaolu Tang, Cheng Tang, Jian Liu, Zhong-Shuai Wu
The two-electron oxygen reduction reaction (2e ORR) enables sustainable electrochemical production of hydrogen peroxide (H2O2), providing a green alternative to the traditional anthraquinone process. Herein, we report N/O dual-doped hierarchically porous carbon nanoreactors (N/O-HPCNs) derived from ZIF-8 via a facile one-step pyrolysis. The optimized catalyst achieves ∼90% H2O2 selectivity over a wide potential range in 0.10 M KOH. Crucially, in a flow cell, N/O-HPCNs deliver an industrial-grade current density of 200 mA cm−2 with 92.8% Faradaic efficiency and a remarkable H2O2 yield of 17.3 mol g−1 h−1, while maintaining > 80% Faraday efficiency for 100 h. Finite element simulations confirm that hierarchical pores enhance mass transfer and reduce H2O2 residence time, while DFT calculations elucidate the distinct roles of N doping for activity and oxygen functional groups in promoting 2e ORR selectivity. This work provides a scalable strategy for sustainable H2O2 production.
双电子氧还原反应(2e - ORR)实现了过氧化氢(H2O2)的可持续电化学生产,为传统的蒽醌工艺提供了一种绿色替代方案。在这里,我们报道了通过简单的一步热解从ZIF-8中获得N/O双掺杂分层多孔碳纳米反应器(N/O- hpcns)。优化后的催化剂在0.10 M KOH的宽电位范围内实现了~ 90%的H2O2选择性。最关键的是,在流动电池中,N/O-HPCNs具有200 mA cm−2的工业级电流密度,具有92.8%的法拉第效率和17.3 mol g−1 h−1的H2O2产率,同时在100小时内保持>; 80%的法拉第效率。有限单元模拟证实了层次化孔隙增强了传质和减少H2O2停留时间,而DFT计算阐明了N掺杂对活性和氧官能团在促进2e - ORR选择性中的独特作用。这项工作为可持续生产H2O2提供了一种可扩展的策略。
{"title":"Industrial-Grade H2O2 Electrosynthesis via N/O-Doped Hierarchically Porous Carbon Nanoreactors with Remarkable Yield and Stability","authors":"Hongnan Du, Haitao Li, Huijuan Jing, Tianyi Liu, Zichen Xu, Chenyang Li, Yunyun Xu, Zijian Tan, Xiaolu Tang, Cheng Tang, Jian Liu, Zhong-Shuai Wu","doi":"10.1002/anie.202519013","DOIUrl":"https://doi.org/10.1002/anie.202519013","url":null,"abstract":"The two-electron oxygen reduction reaction (2e<sup>–</sup> ORR) enables sustainable electrochemical production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), providing a green alternative to the traditional anthraquinone process. Herein, we report N/O dual-doped hierarchically porous carbon nanoreactors (N/O-HPCNs) derived from ZIF-8 via a facile one-step pyrolysis. The optimized catalyst achieves ∼90% H<sub>2</sub>O<sub>2</sub> selectivity over a wide potential range in 0.10 M KOH. Crucially, in a flow cell, N/O-HPCNs deliver an industrial-grade current density of 200 mA cm<sup>−2</sup> with 92.8% Faradaic efficiency and a remarkable H<sub>2</sub>O<sub>2</sub> yield of 17.3 mol g<sup>−1</sup> h<sup>−1</sup>, while maintaining &gt; 80% Faraday efficiency for 100 h. Finite element simulations confirm that hierarchical pores enhance mass transfer and reduce H<sub>2</sub>O<sub>2</sub> residence time, while DFT calculations elucidate the distinct roles of N doping for activity and oxygen functional groups in promoting 2e<sup>–</sup> ORR selectivity. This work provides a scalable strategy for sustainable H<sub>2</sub>O<sub>2</sub> production.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"143 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145729154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lewis Acid Adsorption Promotes CO2 Enrichment for Efficient Formic Acid Electrosynthesis on Reconstructed Bi2O2CO3 in Acidic Media Lewis酸吸附促进CO2富集,用于酸性介质中重组Bi2O2CO3高效甲酸电合成
IF 16.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-12 DOI: 10.1002/anie.202512476
Chuan Hu, Ying Wang, Kang-Shun Peng, Xubei Wang, Yu-Jhih Shen, Kuiwei Yang, Feng Hu, Sung-Fu Hung, Yuping Wu, Seeram Ramakrishna, Shengjie Peng
In acidic media, electrocatalytic CO2 reduction to formic acid (HCOOH) represents a promising strategy for producing value-added chemicals. However, a critical challenge persists in enhancing CO2 adsorption and activation to suppress hydrogen evolution and boost product selectivity. Here, a Lewis acidic Zr-oxo cluster-rich porous confined structure decorated Bi2O2CO3 catalyst (Bi2O2CO3@PCN) is constructed via in situ electroreconstruction, which effectively promotes surface CO2 enrichment and K+ confinement in acidic conditions. Spatially adjacent Zr-oxo clusters enhance CO2 adsorption at the interface through Lewis acid-base interactions, facilitating the *OCHO intermediate formation. The optimized Bi2O2CO3@PCN catalyst achieves a high HCOOH Faradaic efficiency (FE) of 95% across a broad potential window and demonstrates a 5.9-fold higher mass activity compared to Bi2O2CO3 in acidic media at ‒1.8 V versus reversible hydrogen electrode. Notably, Bi2O2CO3@PCN exhibits superior HCOOH FE compared to Bi2O2CO3 under low-concentration CO2 flow. Mechanistically, the strong binding of CO2 molecules at Bi–O–Zr interfacial sites significantly lowers the hydrogenation barrier, while K+ enrichment repels protons and suppresses the hydrogen evolution reaction. This work underscores the pivotal role of surface confinement and Lewis acidic sites in regulating interfacial microenvironments and CO2 adsorption, highlighting their potential for efficient conversion of low-concentration CO2.
在酸性介质中,电催化CO2还原为甲酸(HCOOH)是一种有前途的生产增值化学品的策略。然而,一个关键的挑战仍然存在,即加强二氧化碳的吸附和活化,以抑制氢的析出和提高产物的选择性。本研究通过原位电重构构建了一种Lewis酸性富Zr-oxo簇的多孔约束结构修饰Bi2O2CO3催化剂(Bi2O2CO3@PCN),该催化剂在酸性条件下有效地促进了表面CO2的富集和K+的约束。空间上相邻的Zr-oxo簇通过Lewis酸碱相互作用增强了CO2在界面上的吸附,促进了*OCHO中间体的形成。优化后的Bi2O2CO3@PCN催化剂在宽电位窗口内具有95%的高HCOOH法拉第效率(FE),与Bi2O2CO3在-1.8 V的酸性介质中的质量活性相比,比可逆氢电极高5.9倍。值得注意的是,Bi2O2CO3@PCN在低浓度CO2流动下比Bi2O2CO3表现出更好的HCOOH FE。在机理上,CO2分子在Bi-O-Zr界面位点的强结合显著降低了氢化势垒,而K+富集排斥质子并抑制析氢反应。这项工作强调了表面约束和刘易斯酸位点在调节界面微环境和二氧化碳吸附中的关键作用,强调了它们对低浓度二氧化碳的有效转化的潜力。
{"title":"Lewis Acid Adsorption Promotes CO2 Enrichment for Efficient Formic Acid Electrosynthesis on Reconstructed Bi2O2CO3 in Acidic Media","authors":"Chuan Hu, Ying Wang, Kang-Shun Peng, Xubei Wang, Yu-Jhih Shen, Kuiwei Yang, Feng Hu, Sung-Fu Hung, Yuping Wu, Seeram Ramakrishna, Shengjie Peng","doi":"10.1002/anie.202512476","DOIUrl":"https://doi.org/10.1002/anie.202512476","url":null,"abstract":"In acidic media, electrocatalytic CO<sub>2</sub> reduction to formic acid (HCOOH) represents a promising strategy for producing value-added chemicals. However, a critical challenge persists in enhancing CO<sub>2</sub> adsorption and activation to suppress hydrogen evolution and boost product selectivity. Here, a Lewis acidic Zr-oxo cluster-rich porous confined structure decorated Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> catalyst (Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>@PCN) is constructed via in situ electroreconstruction, which effectively promotes surface CO<sub>2</sub> enrichment and K<sup>+</sup> confinement in acidic conditions. Spatially adjacent Zr-oxo clusters enhance CO<sub>2</sub> adsorption at the interface through Lewis acid-base interactions, facilitating the *OCHO intermediate formation. The optimized Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>@PCN catalyst achieves a high HCOOH Faradaic efficiency (FE) of 95% across a broad potential window and demonstrates a 5.9-fold higher mass activity compared to Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> in acidic media at ‒1.8 V versus reversible hydrogen electrode. Notably, Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>@PCN exhibits superior HCOOH FE compared to Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> under low-concentration CO<sub>2</sub> flow. Mechanistically, the strong binding of CO<sub>2</sub> molecules at Bi–O–Zr interfacial sites significantly lowers the hydrogenation barrier, while K<sup>+</sup> enrichment repels protons and suppresses the hydrogen evolution reaction. This work underscores the pivotal role of surface confinement and Lewis acidic sites in regulating interfacial microenvironments and CO<sub>2</sub> adsorption, highlighting their potential for efficient conversion of low-concentration CO<sub>2</sub>.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"227 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145729148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional Covalent Thiazolo[5,4-d]thiazole Frameworks with sur-a Topology for Coupling Photoactivation of Oxygen and Biomass 具有sur-a拓扑的三维共价噻唑[5,4-d]噻唑框架用于氧与生物质的耦合光活化
IF 16.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-12 DOI: 10.1002/anie.202513616
Tao Yang, Fantao Kong, Min Li, Aiguo Kong, Xiangzhi Cui, Jianlin Shi
Developing new topological three-dimensional (3D) covalent organic framework (COF) structures with strong electron donor–acceptor (D–A) properties represents a promising approach for harvesting high-performance photocatalysts. In this study, we developed two unprecedented 3D COFs with sur-a topology by [3 + 2 + 4]-c strategy. The formation of sur-a topological structures relies on an elongated [3 + 2]-c tetrahedral thiazolo[5,4-d]thiazole (DTZ)-based building block (DTZ-CHO) with lower C2-symmetry. This unit is formed by inserting linear asymmetric DTZ subunit (2-c vertex) between two 3-c vertices. The incorporation of strong DTZ-pyrene/vinyl electron D–A structures efficiently promote exciton separation and charge transfer during photocatalysis, thereby demonstrating high-efficiency coupling photoactivation performance toward oxygen and biomass. It delivers a hydrogen peroxide photosynthesis rate of ∼12 092 µmol g−1 h−1 based on four-step direct Yeager-type oxygen photoreduction mechanism on DTZ active centers, pairing with efficient 5-hydroxymethylfurfural photooxidation (∼10 264 µmol g−1 h−1). This work highlights the potential of topologically unique 3D COFs with robust D-A structures as high-efficiency photocatalysts for artificial photosynthesis.
开发具有强电子给体-受体(D-A)性质的新型拓扑三维(3D)共价有机框架(COF)结构是收获高性能光催化剂的一种很有前途的方法。在本研究中,我们采用[3 + 2 + 4]-c策略开发了两个前所未有的具有sur-a拓扑的3D COFs。sura拓扑结构的形成依赖于具有较低c2对称性的细长[3 + 2]-c四面体噻唑[5,4-d]噻唑(DTZ)基构建块(DTZ- cho)。该单元通过在两个3-c顶点之间插入线性不对称DTZ亚单元(2-c顶点)而形成。强dtz -芘/乙烯基电子D-A结构的引入有效地促进了光催化过程中的激子分离和电荷转移,从而表现出对氧和生物质的高效耦合光活化性能。基于DTZ活性中心的四步直接yeager型氧光还原机制,它提供了约12092µmol g−1 h−1的过氧化氢光合速率,与高效的5-羟甲基糠醛光氧化(约10264µmol g−1 h−1)配对。这项工作强调了具有坚固的D-A结构的拓扑独特的3D COFs作为人工光合作用的高效光催化剂的潜力。
{"title":"Three-Dimensional Covalent Thiazolo[5,4-d]thiazole Frameworks with sur-a Topology for Coupling Photoactivation of Oxygen and Biomass","authors":"Tao Yang, Fantao Kong, Min Li, Aiguo Kong, Xiangzhi Cui, Jianlin Shi","doi":"10.1002/anie.202513616","DOIUrl":"https://doi.org/10.1002/anie.202513616","url":null,"abstract":"Developing new topological three-dimensional (3D) covalent organic framework (COF) structures with strong electron donor–acceptor (D–A) properties represents a promising approach for harvesting high-performance photocatalysts. In this study, we developed two unprecedented 3D COFs with <b>sur-a</b> topology by [3 + 2 + 4]-c strategy. The formation of <b>sur-a</b> topological structures relies on an elongated [3 + 2]-c tetrahedral thiazolo[5,4-d]thiazole (DTZ)-based building block (DTZ-CHO) with lower C<sub>2</sub>-symmetry. This unit is formed by inserting linear asymmetric DTZ subunit (2-c vertex) between two 3-c vertices. The incorporation of strong DTZ-pyrene/vinyl electron D–A structures efficiently promote exciton separation and charge transfer during photocatalysis, thereby demonstrating high-efficiency coupling photoactivation performance toward oxygen and biomass. It delivers a hydrogen peroxide photosynthesis rate of ∼12 092 µmol g<sup>−1</sup> h<sup>−1</sup> based on four-step direct Yeager-type oxygen photoreduction mechanism on DTZ active centers, pairing with efficient 5-hydroxymethylfurfural photooxidation (∼10 264 µmol g<sup>−1</sup> h<sup>−1</sup>). This work highlights the potential of topologically unique 3D COFs with robust D-A structures as high-efficiency photocatalysts for artificial photosynthesis.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"20 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145729147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caylobolide B: Structure Revision, Total Synthesis, Biological Characterization, and Discovery of New Analogues Caylobolide B:结构修正,全合成,生物学特性和新类似物的发现
IF 16.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-11 DOI: 10.1002/anie.202523117
Malcolm R. P. George, Lobna A. Elsadek, Max Deering, Larissa Costa de Almeida, Jasper L. Tyler, Adam Noble, Valerie J. Paul, Hendrik Luesch, Craig P. Butts, Varinder K. Aggarwal
The unique potential of marine polyhydroxylated macrolides in chemical biology and drug discovery has long been constrained by their structural complexity and limited material availability, frustrating efforts in stereochemical assignment, synthesis, and mechanism‐of‐action elucidation. Here, we establish an integrated workflow, combining chemogenomic profiling, ultra‐high‐resolution NMR, and modular total synthesis, for the comprehensive functional and structural interrogation of this challenging natural product class. Applying this approach to caylobolides, natural products isolated from scarce samples of Okeania sp., we performed structure‐activity relationship studies revealing that acetylation at C29 markedly reduces both cytotoxicity and antifungal activity, pinpointing a key pharmacophore. Mechanistic profiling suggests that these macrolides disrupt membrane integrity, similar to amantelide A. Using natural compound samples, we simultaneously revised the structure of caylobolide B through 1 H, 1D‐selective TOCSY and HSQC NMR, and developed a modular fragment‐based synthesis of these compounds. By providing a unified methodology for genetic sensitivity profiling, precise structure and stereochemistry determination, and modular total synthesis, this work unlocks new opportunities for the discovery and rational design of potent marine‐derived therapeutics.
海洋多羟基大环内酯在化学生物学和药物发现方面的独特潜力长期受到其结构复杂性和有限的材料可用性的限制,在立体化学分配,合成和作用机制阐明方面的努力令人沮丧。在这里,我们建立了一个集成的工作流程,结合化学基因组分析、超高分辨率核磁共振和模块化全合成,对这类具有挑战性的天然产物进行全面的功能和结构分析。将这种方法应用于从稀有的Okeania sp.样品中分离的天然产物caylobolides,我们进行了结构-活性关系研究,揭示了C29的乙酰化显著降低了细胞毒性和抗真菌活性,确定了一个关键的药效团。机制分析表明,这些大环内酯类物质破坏了膜的完整性,类似于amantelide a .使用天然化合物样品,我们同时通过1h, 1D选择性TOCSY和HSQC NMR修改了caylobolide B的结构,并开发了基于模块化片段的合成这些化合物。通过提供遗传敏感性分析、精确结构和立体化学测定以及模块化全合成的统一方法,这项工作为发现和合理设计有效的海洋衍生疗法开辟了新的机会。
{"title":"Caylobolide B: Structure Revision, Total Synthesis, Biological Characterization, and Discovery of New Analogues","authors":"Malcolm R. P. George, Lobna A. Elsadek, Max Deering, Larissa Costa de Almeida, Jasper L. Tyler, Adam Noble, Valerie J. Paul, Hendrik Luesch, Craig P. Butts, Varinder K. Aggarwal","doi":"10.1002/anie.202523117","DOIUrl":"https://doi.org/10.1002/anie.202523117","url":null,"abstract":"The unique potential of marine polyhydroxylated macrolides in chemical biology and drug discovery has long been constrained by their structural complexity and limited material availability, frustrating efforts in stereochemical assignment, synthesis, and mechanism‐of‐action elucidation. Here, we establish an integrated workflow, combining chemogenomic profiling, ultra‐high‐resolution NMR, and modular total synthesis, for the comprehensive functional and structural interrogation of this challenging natural product class. Applying this approach to caylobolides, natural products isolated from scarce samples of <jats:italic>Okeania</jats:italic> sp., we performed structure‐activity relationship studies revealing that acetylation at C29 markedly reduces both cytotoxicity and antifungal activity, pinpointing a key pharmacophore. Mechanistic profiling suggests that these macrolides disrupt membrane integrity, similar to amantelide A. Using natural compound samples, we simultaneously revised the structure of caylobolide B through <jats:sup>1</jats:sup> H, 1D‐selective TOCSY and HSQC NMR, and developed a modular fragment‐based synthesis of these compounds. By providing a unified methodology for genetic sensitivity profiling, precise structure and stereochemistry determination, and modular total synthesis, this work unlocks new opportunities for the discovery and rational design of potent marine‐derived therapeutics.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"30 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical Synthesis of X ‐Vinylbenziodoxol(on)es and One‐Pot Conversion to Complex Alkenes ** X -乙烯基苯并碘dodool (on)es的机械化学合成及一锅转化成配合烯烃**
IF 16.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-11 DOI: 10.1002/anie.202519049
Sayad Doobary, Judith Braunreuther, Andrew K. Inge, Berit Olofsson
Densely functionalized alkenes are often utilized as excellent tools for further functionalization of molecules. Recent progress in their synthesis includes nucleophilic addition to vinylbenziodoxolones (VBX) and vinylbenziodoxoles (VBO) to reach alkenes with complete regio‐ and stereocontrol. In this work, we leverage the inherent properties of mechanochemistry to enable an efficient transition metal‐free one‐pot route to 1,2‐heteroatom‐substituted ( Z )‐alkenes directly from ethynylbenziodoxol(on)es (EBX/EBO), avoiding the isolation of VBX/VBO. We demonstrate a high‐yielding synthesis of a large variety of N/O/S ‐VBX reagents, which, combined with a telescoped nucleophilic addition, delivers a wide range of novel, complex ( Z )‐alkenes. This one‐pot strategy would be challenging to develop in solution due to a mismatch in reaction solvents, and the unique mechanochemical activation offered by solventless, solid‐state mixing also enables formation of products whose synthesis is inefficient with solvent‐based methods.
密集功能化烯烃常被用作分子进一步功能化的良好工具。最近的合成进展包括在乙烯基苯并碘doxolones (VBX)和乙烯基苯并碘doxololes (VBO)上亲核加成,得到具有完全区域和立体控制的烯烃。在这项工作中,我们利用机械化学的固有特性,实现了从乙基苯并碘多酚(EBX/EBO)直接到1,2 -杂原子取代(Z) -烯烃的有效的无过渡金属一锅路线,避免了VBX/VBO的分离。我们展示了大量N/O/S - VBX试剂的高产合成,这些试剂与伸缩的亲核加成物结合,提供了广泛的新型复杂(Z) -烯烃。由于反应溶剂的不匹配,这种单罐策略在溶液中开发是具有挑战性的,并且无溶剂、固态混合提供的独特机械化学活化也使形成的产物在溶剂基方法中合成效率低下。
{"title":"Mechanochemical Synthesis of X ‐Vinylbenziodoxol(on)es and One‐Pot Conversion to Complex Alkenes **","authors":"Sayad Doobary, Judith Braunreuther, Andrew K. Inge, Berit Olofsson","doi":"10.1002/anie.202519049","DOIUrl":"https://doi.org/10.1002/anie.202519049","url":null,"abstract":"Densely functionalized alkenes are often utilized as excellent tools for further functionalization of molecules. Recent progress in their synthesis includes nucleophilic addition to vinylbenziodoxolones (VBX) and vinylbenziodoxoles (VBO) to reach alkenes with complete regio‐ and stereocontrol. In this work, we leverage the inherent properties of mechanochemistry to enable an efficient transition metal‐free one‐pot route to 1,2‐heteroatom‐substituted ( <jats:italic>Z</jats:italic> )‐alkenes directly from ethynylbenziodoxol(on)es (EBX/EBO), avoiding the isolation of VBX/VBO. We demonstrate a high‐yielding synthesis of a large variety of <jats:italic>N/O/S</jats:italic> ‐VBX reagents, which, combined with a telescoped nucleophilic addition, delivers a wide range of novel, complex ( <jats:italic>Z</jats:italic> )‐alkenes. This one‐pot strategy would be challenging to develop in solution due to a mismatch in reaction solvents, and the unique mechanochemical activation offered by solventless, solid‐state mixing also enables formation of products whose synthesis is inefficient with solvent‐based methods.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"20 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Angewandte Chemie International Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1