首页 > 最新文献

Angewandte Chemie International Edition最新文献

英文 中文
Sterically Controlled Lewis Acid-Base Interaction Toward para-Selective Borylation of Aromatic Aldimines and Benzylamines. 实现芳香族醛亚胺和苄胺对位选择性硼烷基化的受立体控制的路易斯酸碱相互作用。
IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-07 Epub Date: 2024-09-05 DOI: 10.1002/anie.202409010
Saikat Guria, Mirja Md Mahamudul Hassan, Sayan Dey, Krishna Nand Singh, Buddhadeb Chattopadhyay

Site-selective C-H bond functionalization of arenes at the para position remains extremely challenging primarily due to its relative inaccessibility from the catalytic site. As a consequence, it is significantly restricted to limited molecular scaffolds. Herein, we report a method for the para-C-H borylation of aromatic aldimines and benzylamines using commercially available ligands under iridium catalysis. The established method displays excellent para selectivity for variously substituted aromatic aldimines, benzylamines and bioactive molecules. Based on several control experiments, it is proposed that a Lewis acid-base interaction between the nitrogen and boron functionality guides the para selectivity via a steric shield for the aromatic aldimines, where Bpin acts as a transient directing group. However, the steric shield of the in situ generated N-Bpin moiety controlled the overall selectivity for the para borylation of benzylamines.

炔烃在对位的 C-H 键官能化仍然极具挑战性,这主要是由于炔烃在催化位点的相对不可接近性。因此,它在很大程度上受限于有限的分子支架。在此,我们报告了一种在铱催化下使用市售配体对芳香族醛亚胺和苄胺进行对位-C-H 硼烷基化的方法。所建立的方法对各种取代的芳香族醛亚胺、苄胺和生物活性分子具有极佳的对位选择性。根据多次对照实验,我们认识到氮和硼官能团之间的路易斯酸碱相互作用通过立体屏蔽引导了芳香族醛亚胺的对位选择性,其中 Bpin 起着瞬时引导基团的作用。然而,原位生成的 N-Bpin 分子的立体屏蔽控制了苄胺对位硼酰化的总体选择性。
{"title":"Sterically Controlled Lewis Acid-Base Interaction Toward para-Selective Borylation of Aromatic Aldimines and Benzylamines.","authors":"Saikat Guria, Mirja Md Mahamudul Hassan, Sayan Dey, Krishna Nand Singh, Buddhadeb Chattopadhyay","doi":"10.1002/anie.202409010","DOIUrl":"10.1002/anie.202409010","url":null,"abstract":"<p><p>Site-selective C-H bond functionalization of arenes at the para position remains extremely challenging primarily due to its relative inaccessibility from the catalytic site. As a consequence, it is significantly restricted to limited molecular scaffolds. Herein, we report a method for the para-C-H borylation of aromatic aldimines and benzylamines using commercially available ligands under iridium catalysis. The established method displays excellent para selectivity for variously substituted aromatic aldimines, benzylamines and bioactive molecules. Based on several control experiments, it is proposed that a Lewis acid-base interaction between the nitrogen and boron functionality guides the para selectivity via a steric shield for the aromatic aldimines, where Bpin acts as a transient directing group. However, the steric shield of the in situ generated N-Bpin moiety controlled the overall selectivity for the para borylation of benzylamines.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithiation Induced Hetero-Superlattice Zn/ZnLi as Stable Anode for Aqueous Zinc-Ion Batteries. 锂化诱导异质超晶格 Zn/ZnLi 作为水性锌离子电池的稳定阳极。
IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-07 Epub Date: 2024-09-05 DOI: 10.1002/anie.202409096
Chao Hu, Zefang Yang, Qi Zhang, Mingze Zhang, Tingqing Wu, Chunlin Xie, Hao Wang, Yougen Tang, Haiyan Wang

Three dimensional (3D) framework structure is one of the most effective ways to achieve uniform zinc deposition and thus inhibit the Zn dendrites growth in working Zn metallic anode. A major challenge facing for the most commonly used 3D zincophilic hosts is that the zincophilic layer tends to peel off during repeatedly cycling, making it less stable. Herein, for the first time, a hetero-superlattice Zn/ZnLi (HS-Zn/ZnLi) anode containing periodic arrangements of metallic Zn phase and zincophilic ZnLi phase at the nanoscale, is well designed and fabricated via electrochemical lithiation method. Based on binding energy and stripping energy calculation, and the operando optical observation of plating/stripping behaviors, the zincophilic ZnLi sites with a strong Zn adsorption ability in the interior of the 3D ZnLi framework structure can effectively guide uniform Zn nucleation and dendrite-free zinc deposition, which significantly improves the cycling stability of the HS-Zn/ZnLi alloy (over 2800 h without a short-circuit at 2 mA cm-2). More importantly, this strategy can be extended to HS-Zn/ZnNa and HS-Zn/ZnK anodes that are similar to the HS-Zn/ZnLi microstructure, also displaying significantly enhanced cycling performances in AZIBs. This study can provide a novel strategy to develop the dendrite-free metal anodes with stable cycling performance.

三维(3D)框架结构是实现均匀锌沉积,从而抑制锌金属阳极中锌枝晶生长的最有效方法之一。最常用的三维亲锌主结构面临的一个主要挑战是,亲锌层在反复循环过程中容易脱落,使其稳定性降低。本文首次设计并通过电化学光刻法制造了一种异质超晶格 Zn/ZnLi(HS-Zn/ZnLi)阳极,该阳极在纳米尺度上包含周期性排列的金属 Zn 相和亲锌 ZnLi 相。基于结合能和剥离能的计算,以及对电镀/剥离行为的操作光学观察,三维 ZnLi 框架结构内部具有较强锌吸附能力的亲锌 ZnLi 位点能有效引导均匀的锌成核和无枝晶锌沉积,从而显著提高 HS-Zn/ZnLi 合金的循环稳定性(在 2 mA cm-2 下超过 2800 小时无短路)。更重要的是,这一策略可扩展到与 HS-Zn/ZnLi 微观结构相似的 HS-Zn/ZnNa 和 HS-Zn/ZnK 阳极,同样能显著提高 AZIB 的循环性能。这项研究为开发具有稳定循环性能的无树枝晶金属阳极提供了一种新策略。
{"title":"Lithiation Induced Hetero-Superlattice Zn/ZnLi as Stable Anode for Aqueous Zinc-Ion Batteries.","authors":"Chao Hu, Zefang Yang, Qi Zhang, Mingze Zhang, Tingqing Wu, Chunlin Xie, Hao Wang, Yougen Tang, Haiyan Wang","doi":"10.1002/anie.202409096","DOIUrl":"10.1002/anie.202409096","url":null,"abstract":"<p><p>Three dimensional (3D) framework structure is one of the most effective ways to achieve uniform zinc deposition and thus inhibit the Zn dendrites growth in working Zn metallic anode. A major challenge facing for the most commonly used 3D zincophilic hosts is that the zincophilic layer tends to peel off during repeatedly cycling, making it less stable. Herein, for the first time, a hetero-superlattice Zn/ZnLi (HS-Zn/ZnLi) anode containing periodic arrangements of metallic Zn phase and zincophilic ZnLi phase at the nanoscale, is well designed and fabricated via electrochemical lithiation method. Based on binding energy and stripping energy calculation, and the operando optical observation of plating/stripping behaviors, the zincophilic ZnLi sites with a strong Zn adsorption ability in the interior of the 3D ZnLi framework structure can effectively guide uniform Zn nucleation and dendrite-free zinc deposition, which significantly improves the cycling stability of the HS-Zn/ZnLi alloy (over 2800 h without a short-circuit at 2 mA cm<sup>-2</sup>). More importantly, this strategy can be extended to HS-Zn/ZnNa and HS-Zn/ZnK anodes that are similar to the HS-Zn/ZnLi microstructure, also displaying significantly enhanced cycling performances in AZIBs. This study can provide a novel strategy to develop the dendrite-free metal anodes with stable cycling performance.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bismuth as a Z-Type Ligand: an Unsupported Pt-Bi Donor-Acceptor Interaction and its Umpolung by Reaction with H2. 作为 Z 型配体的铋:无支撑铂铋供体-受体相互作用及其与 H2 反应的 Umpolung。
IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-07 Epub Date: 2024-09-05 DOI: 10.1002/anie.202410291
Johannes Schwarzmann, Toni Eskelinen, Sascha Reith, Jacqueline Ramler, Antti J Karttunen, Jordi Poater, Crispin Lichtenberg

Establishing unprecedented types of bonding interactions is one of the fundamental challenges in synthetic chemistry, paving the way to new (electronic) structures, physicochemical properties, and reactivity. In this context, unsupported element-element interactions are particularly noteworthy since they offer pristine scientific information about the newly identified structural motif. Here we report the synthesis, isolation, and full characterization of the heterobimetallic Bi/Pt compound [Pt(PCy3)2(BiMe2)(SbF6)] (1), bearing the first unsupported transition metal→bismuth donor/acceptor interaction as its key structural motif. 1 is surprisingly robust, its electronic spectra are interpreted in a fully relativistic approach, and it reveals an unprecedented reactivity towards H2.

建立前所未有的键合相互作用类型是合成化学的基本挑战之一,它为新的(电子)结构、理化性质和反应性铺平了道路。在这种情况下,无支撑元素之间的相互作用尤其值得注意,因为它们提供了关于新发现结构基团的原始科学信息。在此,我们报告了杂多金属 Bi / Pt 化合物 [Pt(PCy3)2(BiMe2)(SbF6)](1)的合成、分离和全面表征。1 具有出人意料的稳健性,其电子能谱可以用完全相对论的方法进行解释,并显示出对 H2 的前所未有的反应活性。
{"title":"Bismuth as a Z-Type Ligand: an Unsupported Pt-Bi Donor-Acceptor Interaction and its Umpolung by Reaction with H<sub>2</sub>.","authors":"Johannes Schwarzmann, Toni Eskelinen, Sascha Reith, Jacqueline Ramler, Antti J Karttunen, Jordi Poater, Crispin Lichtenberg","doi":"10.1002/anie.202410291","DOIUrl":"10.1002/anie.202410291","url":null,"abstract":"<p><p>Establishing unprecedented types of bonding interactions is one of the fundamental challenges in synthetic chemistry, paving the way to new (electronic) structures, physicochemical properties, and reactivity. In this context, unsupported element-element interactions are particularly noteworthy since they offer pristine scientific information about the newly identified structural motif. Here we report the synthesis, isolation, and full characterization of the heterobimetallic Bi/Pt compound [Pt(PCy<sub>3</sub>)<sub>2</sub>(BiMe<sub>2</sub>)(SbF<sub>6</sub>)] (1), bearing the first unsupported transition metal→bismuth donor/acceptor interaction as its key structural motif. 1 is surprisingly robust, its electronic spectra are interpreted in a fully relativistic approach, and it reveals an unprecedented reactivity towards H<sub>2</sub>.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Withdrawal: Steering Sulfur Reduction Pathways via Cisplatin Enables High Performance in Lithium-Sulfur Batteries. 通过顺铂引导硫还原途径,实现锂硫电池的高性能。
IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-07 Epub Date: 2024-09-09 DOI: 10.1002/anie.202403618
{"title":"Withdrawal: Steering Sulfur Reduction Pathways via Cisplatin Enables High Performance in Lithium-Sulfur Batteries.","authors":"","doi":"10.1002/anie.202403618","DOIUrl":"10.1002/anie.202403618","url":null,"abstract":"","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Butadiene Sulfone Based Binary Deep Eutectic Electrolyte for High Performance Lithium Metal Batteries. 基于丁二烯砜的高性能锂金属电池二元深共晶电解液。
IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-07 Epub Date: 2024-09-05 DOI: 10.1002/anie.202408728
Tiankun Zhou, Chengjun Lei, Jinye Li, Huijian Wang, Tingting Liu, Xin He, Xiao Liang

Deep eutectic electrolytes (DEEs) have attracted significant interest due to the unique physiochemical properties, yet challenges persist in achieving satisfactory Li anode compatibility through a binary DEE formula. In this study, we introduce a nonflammable binary DEE electrolyte comprising of lithium bis(trifluoro-methane-sulfonyl)imide (LiTFSI) and solid butadiene sulfone (BdS), which demonstrates enhanced Li metal compatibility while exhibiting high Li+ ion migration number (0.52), ionic conductivity (1.48 mS ⋅ cm-1), wide electrochemical window (~4.5 V vs. Li/Li+) at room temperature. Experimental and theoretical results indicate that the Li compatibility derives from the formation of a LiF-rich SEI, attributed to the undesirable adsorption and deformation of BdS on Li surface that facilitates the preferential reactions between LiTFSI and Li metal. This stable SEI effectively suppresses dendrites growth and gas evolution reactions, ensuring a long lifespan and high coulombic efficiency in both the Li||Li symmetric cells, Li||LiCoO2 and Li||LiNi0.8Co0.1Mn0.1O2 full cells. Moreover, the BdS eutectic strategy exhibit universal applicability to other metal such as Na and Zn by pairing with the corresponding TFSI-based salts.

深共晶电解质(DEE)因其独特的物理化学特性而备受关注,但要通过二元 DEE 配方实现令人满意的锂阳极兼容性仍存在挑战。在本研究中,我们介绍了一种由双(三氟甲烷-磺酰基)亚胺锂(LiTFSI)和固体丁二烯砜(BdS)组成的不易燃二元 DEE 电解质,该电解质在室温下表现出较高的 Li+ 离子迁移数(0.52)、离子电导率(1.48 mS-cm-1)和较宽的电化学窗口(~4.5 V vs. Li/Li+),从而增强了锂金属的兼容性。实验和理论结果表明,锂的兼容性源于富含 LiF 的 SEI 的形成,这归因于 BdS 在锂表面的不良吸附和变形促进了 LiTFSI 与锂金属之间的优先反应。这种稳定的 SEI 有效抑制了枝晶的生长和气体演化反应,确保了 Li||Li 对称电池、Li||LiCoO2 和 Li||LiNi0.8Co0.1Mn0.1O2 全电池的长寿命和高库仑效率。此外,BdS 共晶策略通过与相应的基于 TFSI 的盐配对,显示出对 Na 和 Zn 等其他金属的普遍适用性。
{"title":"Butadiene Sulfone Based Binary Deep Eutectic Electrolyte for High Performance Lithium Metal Batteries.","authors":"Tiankun Zhou, Chengjun Lei, Jinye Li, Huijian Wang, Tingting Liu, Xin He, Xiao Liang","doi":"10.1002/anie.202408728","DOIUrl":"10.1002/anie.202408728","url":null,"abstract":"<p><p>Deep eutectic electrolytes (DEEs) have attracted significant interest due to the unique physiochemical properties, yet challenges persist in achieving satisfactory Li anode compatibility through a binary DEE formula. In this study, we introduce a nonflammable binary DEE electrolyte comprising of lithium bis(trifluoro-methane-sulfonyl)imide (LiTFSI) and solid butadiene sulfone (BdS), which demonstrates enhanced Li metal compatibility while exhibiting high Li<sup>+</sup> ion migration number (0.52), ionic conductivity (1.48 mS ⋅ cm<sup>-1</sup>), wide electrochemical window (~4.5 V vs. Li/Li<sup>+</sup>) at room temperature. Experimental and theoretical results indicate that the Li compatibility derives from the formation of a LiF-rich SEI, attributed to the undesirable adsorption and deformation of BdS on Li surface that facilitates the preferential reactions between LiTFSI and Li metal. This stable SEI effectively suppresses dendrites growth and gas evolution reactions, ensuring a long lifespan and high coulombic efficiency in both the Li||Li symmetric cells, Li||LiCoO<sub>2</sub> and Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> full cells. Moreover, the BdS eutectic strategy exhibit universal applicability to other metal such as Na and Zn by pairing with the corresponding TFSI-based salts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulating Atomic-Coupling in Dual-Cavity Boride Nanoreactor to Achieve Hierarchical Catalytic Engineering for Sulfur Cathode. 操纵双腔硼化物纳米反应器中的原子耦合实现硫阴极的分层催化工程
IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-07 Epub Date: 2024-07-09 DOI: 10.1002/anie.202406065
Bin Wang, Lu Wang, Muhammad Mamoor, Chang Wang, Yanjun Zhai, Fengbo Wang, Zhongxin Jing, Guangmeng Qu, Yueyue Kong, Liqiang Xu

The catalytic process of Li2S formation is considered a key pathway to enhance the kinetics of lithium-sulfur batteries. Due to the system's complexity, the catalytic behavior is uncertain, posing significant challenges for predicting activity. Herein, we report a novel cascaded dual-cavity nanoreactor (NiCo-B) by controlling reaction kinetics, providing an opportunity for achieving hierarchical catalytic behavior. Through experimental and theoretical analysis, the multilevel structure can effectively suppress polysulfides dissolution and accelerate sulfur conversion. Furthermore, we differentiate the adsorption (B-S) and catalytic effect (Co-S) in NiCo-B, avoiding catalyst deactivation caused by excessive adsorption. As a result, the as-prepared battery displays high reversible capacity, even with sulfur loading of 13.2 mg cm-2 (E/S=4 μl mg-1), the areal capacity can reach 18.7 mAh cm-2.

Li2S 形成的催化过程被认为是提高锂硫电池动力学的关键途径。由于系统的复杂性,催化行为并不确定,这给预测活性带来了巨大挑战。在此,我们报告了一种新型级联双腔纳米反应器(NiCo-B),通过控制反应动力学,为实现分层催化行为提供了机会。通过实验和理论分析,这种多级结构能有效抑制多硫化物溶解,加速硫转化。此外,我们还区分了 NiCo-B 中的吸附作用(B-S)和催化作用(Co-S),避免了因过度吸附而导致的催化剂失活。因此,所制备的电池具有很高的可逆容量,即使硫负载为 13.2 mg cm-2(E/S=4 μl mg-1),其等容量也能达到 18.7 mAh cm-2。
{"title":"Manipulating Atomic-Coupling in Dual-Cavity Boride Nanoreactor to Achieve Hierarchical Catalytic Engineering for Sulfur Cathode.","authors":"Bin Wang, Lu Wang, Muhammad Mamoor, Chang Wang, Yanjun Zhai, Fengbo Wang, Zhongxin Jing, Guangmeng Qu, Yueyue Kong, Liqiang Xu","doi":"10.1002/anie.202406065","DOIUrl":"10.1002/anie.202406065","url":null,"abstract":"<p><p>The catalytic process of Li<sub>2</sub>S formation is considered a key pathway to enhance the kinetics of lithium-sulfur batteries. Due to the system's complexity, the catalytic behavior is uncertain, posing significant challenges for predicting activity. Herein, we report a novel cascaded dual-cavity nanoreactor (NiCo-B) by controlling reaction kinetics, providing an opportunity for achieving hierarchical catalytic behavior. Through experimental and theoretical analysis, the multilevel structure can effectively suppress polysulfides dissolution and accelerate sulfur conversion. Furthermore, we differentiate the adsorption (B-S) and catalytic effect (Co-S) in NiCo-B, avoiding catalyst deactivation caused by excessive adsorption. As a result, the as-prepared battery displays high reversible capacity, even with sulfur loading of 13.2 mg cm<sup>-2</sup> (E/S=4 μl mg<sup>-1</sup>), the areal capacity can reach 18.7 mAh cm<sup>-2</sup>.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidation of Ammonia Catalyzed by a Molecular Iron Complex: Translating Chemical Catalysis to Mediated Electrocatalysis. 分子铁复合物催化的氨氧化:将化学催化转化为介导电催化。
IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-07 Epub Date: 2024-09-05 DOI: 10.1002/anie.202402635
Liang Liu, Samantha I Johnson, Aaron M Appel, R Morris Bullock

Ammonia is a promising candidate in the quest for sustainable, clean energy. With its capacity to serve as an energy carrier, the oxidation of ammonia opens avenues for carbon-neutral approaches to address worldwide growing energy needs. We report the catalytic chemical oxidation of ammonia by an Earth-abundant transition metal complex, trans-[LFeII(MeCN)2][PF6]2, where L is a macrocyclic ligand bearing four N-heterocyclic carbene (NHC) donors. Using triarylaminium radical cations in MeCN, up to 182 turnovers of N2 per Fe were obtained from chemical catalysis with an extremely low loading of the Fe catalyst (0.043 mM, 0.004 mol % catalyst). This chemical catalysis was successfully transitioned to mediated electrocatalysis for the oxidation of ammonia. Molecular electrocatalysis by the Fe catalyst and the mediator (p-MeOC6H4)3N exhibited a catalytic half-wave potential (Ecat/2) of 0.18 V vs [Cp2Fe]+/0 in MeCN, and achieved 9.3 turnovers of N2 at an applied potential of 0.20 V vs [Cp2Fe]+/0 at -20 °C in controlled-potential electrolysis, with a Faradaic efficiency of 75 %. Based on computational results, the catalyst undergoes sequential oxidation and deprotonation steps to form [LFeIV(NH2)2]2+, and thereafter bimetallic coupling to form an N-N bond.

在寻求可持续清洁能源的过程中,氨是一种前景广阔的候选物质。由于氨具有作为能量载体的能力,氨的氧化为以碳中性方法解决全球日益增长的能源需求开辟了道路。我们报告了一种地球上丰富的过渡金属复合物--反式[LFeII(MeCN)2][PF6]2--对氨的催化化学氧化作用,其中 L 是一种大环配体,带有四个 N-杂环碳烯(NHC)供体。利用 MeCN 中的三芳基铵自由基阳离子,在铁催化剂负载量极低(0.043 mM,0.004 mol % 催化剂)的情况下,通过化学催化获得了每铁 182 次的 N2 转化。这种化学催化成功过渡到了氨氧化的介导电催化。铁催化剂和介质 (p-MeOC6H4)3N 的分子电催化在 MeCN 中的催化半波电位(Ecat/2)为 0.18 V vs [Cp2Fe]+/0,在 -20 °C 的受控电位电解中,应用 0.20 V vs [Cp2Fe]+/0的电位实现了 9.3 次 N2 转化,法拉第效率为 75%。根据计算结果,该催化剂依次经过氧化和去质子化步骤形成 [LFeIV(NH2)2]2+,然后经过双金属耦合形成 N-N 键。
{"title":"Oxidation of Ammonia Catalyzed by a Molecular Iron Complex: Translating Chemical Catalysis to Mediated Electrocatalysis.","authors":"Liang Liu, Samantha I Johnson, Aaron M Appel, R Morris Bullock","doi":"10.1002/anie.202402635","DOIUrl":"10.1002/anie.202402635","url":null,"abstract":"<p><p>Ammonia is a promising candidate in the quest for sustainable, clean energy. With its capacity to serve as an energy carrier, the oxidation of ammonia opens avenues for carbon-neutral approaches to address worldwide growing energy needs. We report the catalytic chemical oxidation of ammonia by an Earth-abundant transition metal complex, trans-[LFe<sup>II</sup>(MeCN)<sub>2</sub>][PF<sub>6</sub>]<sub>2</sub>, where L is a macrocyclic ligand bearing four N-heterocyclic carbene (NHC) donors. Using triarylaminium radical cations in MeCN, up to 182 turnovers of N<sub>2</sub> per Fe were obtained from chemical catalysis with an extremely low loading of the Fe catalyst (0.043 mM, 0.004 mol % catalyst). This chemical catalysis was successfully transitioned to mediated electrocatalysis for the oxidation of ammonia. Molecular electrocatalysis by the Fe catalyst and the mediator (p-MeOC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>N exhibited a catalytic half-wave potential (E<sub>cat/2</sub>) of 0.18 V vs [Cp<sub>2</sub>Fe]<sup>+/0</sup> in MeCN, and achieved 9.3 turnovers of N<sub>2</sub> at an applied potential of 0.20 V vs [Cp<sub>2</sub>Fe]<sup>+/0</sup> at -20 °C in controlled-potential electrolysis, with a Faradaic efficiency of 75 %. Based on computational results, the catalyst undergoes sequential oxidation and deprotonation steps to form [LFe<sup>IV</sup>(NH<sub>2</sub>)<sub>2</sub>]<sup>2+</sup>, and thereafter bimetallic coupling to form an N-N bond.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion-Specific Interactions Engender Dynamic and Tailorable Properties in Biomimetic Cationic Polyelectrolytes. 离子特异性相互作用激发仿生阳离子聚电解质的动态和可定制特性
IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-07 Epub Date: 2024-09-05 DOI: 10.1002/anie.202408673
Filip J Aubrecht, Kennalee Orme, Aiden Saul, Hongyi Cai, Tharindu A Ranathunge, Meredith N Silberstein, Benjamin R McDonald

Biomaterials such as spider silk and mussel byssi are fabricated by the dynamic manipulation of intra- and intermolecular biopolymer interactions. Organisms modulate solution parameters, such as pH and ion co-solute concentration, to effect these processes. These biofabrication schemes provide a conceptual framework to develop new dynamic and responsive abiotic soft material systems. Towards these ends, the chemical diversity of readily available ionic compounds offers a broad palette to manipulate the physicochemical properties of polyelectrolytes via ion-specific interactions. In this study, we show for the first time that the ion-specific interactions of biomimetic polyelectrolytes engenders a variety of phase separation behaviors, creating dynamic thermal- and ion-responsive soft matter that exhibits a spectrum of physical properties, spanning viscous fluids to viscoelastic and viscoplastic solids. These ion-dependent characteristics are further rendered general by the merger of lysine and phenylalanine into a single, amphiphilic vinyl monomer. The unprecedented breadth, precision, and dynamicity in the reported ion-dependent phase behaviors thus introduce a broad array of opportunities for the future development of responsive soft matter; properties that are poised to drive developments in critical areas such as chemical sensing, soft robotics, and additive manufacturing.

蜘蛛丝和贻贝贝丝等生物材料是通过对分子内和分子间生物聚合物相互作用的动态操控制造出来的。生物通过调节 pH 值和离子共溶液浓度等溶液参数来实现这些过程。这些生物制造方案为开发新的动态、反应灵敏的非生物软材料系统提供了一个概念框架。为了实现这些目标,现成离子化合物的化学多样性为通过离子特异性相互作用操纵聚电解质的物理化学特性提供了广阔的空间。在这项研究中,我们首次展示了仿生聚电解质的离子特异性相互作用产生的各种相分离行为,创造出动态、热和离子响应软物质,表现出从粘性流体到粘弹性和粘塑性固体的一系列物理特性。通过将赖氨酸和苯丙氨酸合并成单一的两亲乙烯基单体,这些依赖于离子的特性变得更加普遍。因此,所报道的离子依赖相行为具有前所未有的广泛性、精确性和动态性,为响应性软物质的未来发展提供了大量机会,这些特性有望推动化学传感、软机器人和增材制造等关键领域的发展。
{"title":"Ion-Specific Interactions Engender Dynamic and Tailorable Properties in Biomimetic Cationic Polyelectrolytes.","authors":"Filip J Aubrecht, Kennalee Orme, Aiden Saul, Hongyi Cai, Tharindu A Ranathunge, Meredith N Silberstein, Benjamin R McDonald","doi":"10.1002/anie.202408673","DOIUrl":"10.1002/anie.202408673","url":null,"abstract":"<p><p>Biomaterials such as spider silk and mussel byssi are fabricated by the dynamic manipulation of intra- and intermolecular biopolymer interactions. Organisms modulate solution parameters, such as pH and ion co-solute concentration, to effect these processes. These biofabrication schemes provide a conceptual framework to develop new dynamic and responsive abiotic soft material systems. Towards these ends, the chemical diversity of readily available ionic compounds offers a broad palette to manipulate the physicochemical properties of polyelectrolytes via ion-specific interactions. In this study, we show for the first time that the ion-specific interactions of biomimetic polyelectrolytes engenders a variety of phase separation behaviors, creating dynamic thermal- and ion-responsive soft matter that exhibits a spectrum of physical properties, spanning viscous fluids to viscoelastic and viscoplastic solids. These ion-dependent characteristics are further rendered general by the merger of lysine and phenylalanine into a single, amphiphilic vinyl monomer. The unprecedented breadth, precision, and dynamicity in the reported ion-dependent phase behaviors thus introduce a broad array of opportunities for the future development of responsive soft matter; properties that are poised to drive developments in critical areas such as chemical sensing, soft robotics, and additive manufacturing.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Customized Photoelectrochemical C-N and C-P Bond Formation Enabled by Tailored Deposition on Photoanodes. 通过在光阳极上定制沉积实现定制光电化学 C-N 和 C-P 形成。
IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-07 Epub Date: 2024-09-05 DOI: 10.1002/anie.202408901
Jinghao Wang, Caoyu Yang, Huiwen Gao, Lulu Zuo, Zhiyu Guo, Pengqi Yang, Siyang Li, Zhiyong Tang

Photoelectrochemistry (PEC) is burgeoning as an innovative solution to organic synthesis. However, the current PEC systems suffer from limited reaction types and unsatisfactory performances. Herein, we employ efficient BiVO4 photoanodes with tailored deposition layers for customizing two PEC approaches toward C-N and C-P bond formation. Our process proceeds under mild reaction conditions, deploying easily available substrates and ultra-low potentials. Beyond photocatalysis and electrocatalysis, customized PEC offers high efficiency, good functional group tolerance, and substantial applicability for decorating drug molecules, highlighting its promising potential to enrich the synthetic toolbox for broader organic chemistry of practical applications.

光电化学(PEC)作为一种创新的有机合成解决方案正在蓬勃发展。然而,目前的 PEC 系统存在反应类型有限、性能不尽人意等问题。在此,我们采用了高效的 BiVO4 光阳极和定制的沉积层,定制了两种 PEC 方法,用于 C-N 和 C-P 的形成。值得注意的是,我们的工艺在温和的反应条件、易于获得的基底和超低电位下进行。除了光催化和电催化之外,定制的 PEC 还具有高效率、良好的官能团耐受性以及装饰药物分子的巨大适用性,这凸显了它在丰富合成工具箱以实现更广泛的有机化学实际应用方面的巨大潜力。
{"title":"Customized Photoelectrochemical C-N and C-P Bond Formation Enabled by Tailored Deposition on Photoanodes.","authors":"Jinghao Wang, Caoyu Yang, Huiwen Gao, Lulu Zuo, Zhiyu Guo, Pengqi Yang, Siyang Li, Zhiyong Tang","doi":"10.1002/anie.202408901","DOIUrl":"10.1002/anie.202408901","url":null,"abstract":"<p><p>Photoelectrochemistry (PEC) is burgeoning as an innovative solution to organic synthesis. However, the current PEC systems suffer from limited reaction types and unsatisfactory performances. Herein, we employ efficient BiVO<sub>4</sub> photoanodes with tailored deposition layers for customizing two PEC approaches toward C-N and C-P bond formation. Our process proceeds under mild reaction conditions, deploying easily available substrates and ultra-low potentials. Beyond photocatalysis and electrocatalysis, customized PEC offers high efficiency, good functional group tolerance, and substantial applicability for decorating drug molecules, highlighting its promising potential to enrich the synthetic toolbox for broader organic chemistry of practical applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Reconstruction of Bi2Te4O11 Nanorods for Efficient and pH-universal Electrochemical CO2 Reduction. 重构 Bi 2 Te 4 O 11 纳米棒,实现高效且不受 pH 值影响的电化学 CO 2 还原。
IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-07 Epub Date: 2024-09-05 DOI: 10.1002/anie.202408849
Jiadong Chen, Tingjie Mao, Juan Wang, Jichang Wang, Shun Wang, Huile Jin

The electrochemical CO2 reduction reaction (CO2RR) to generate chemical fuels such as formate presents a promising route to a carbon-neutral future. However, its practical application is hindered by the competing CO production and hydrogen evolution reaction (HER), as well as the lack of pH-universal catalysts. Here, Te-modified Bi nanorods (Te-Bi NRs) were synthesized through in situ reconstruction of Bi2Te4O11 NRs under the CO2RR condition. Our study illustrates that the complex reconstruction process of Bi2Te4O11 NRs during CO2RR could be decoupled into three distinct steps, i.e., the destruction of Bi2Te4O11, the formation of Te/Bi phases, and the dissolution of Te. The thus-obtained Te-Bi NRs exhibit remarkably high performance in CO2RR towards formate production, showing high activity, selectivity, and stability across all pH conditions (acidic, neutral, and alkaline). In a flow cell reactor under neutral, alkaline, or acidic conditions, the catalysts achieved HCOOH Faradaic efficiencies of up to 94.3 %, 96.4 %, and 91.0 %, respectively, at a high current density of 300 mA cm-2. Density functional theory calculations, along with operando spectral measurements, reveal that Te manipulates the Bi sites to an electron-deficient state, enhancing the adsorption strength of the *OCHO intermediate, and significantly suppressing the competing HER and CO production. This study highlights the substantial influence of catalyst reconstruction under operational conditions and offers insights into designing highly active and stable electrocatalysts towards CO2RR.

电化学二氧化碳还原反应(CO2RR)的实际应用受到二氧化碳生成、氢进化反应(HER)等竞争性反应以及缺乏 pH 值通用催化剂的阻碍。在此,我们在 CO2RR 条件下通过原位重构 Bi2Te4O11 NRs 合成了 Te 修饰的 Bi 纳米棒(Te-Bi NRs)。我们的研究表明,Bi2Te4O11 NRs 在 CO2RR 过程中的复杂重构过程可以分解为三个不同的步骤,即 Bi2Te4O11 的破坏、Te/Bi 相的形成和 Te 的溶解。由此获得的 Te-Bi NR 在 CO2RR 生产甲酸盐方面表现出显著的高性能,在所有 pH 条件(酸性、中性和碱性)下都具有高活性、高选择性和高稳定性。在中性、碱性或酸性条件下的流动池反应器中,催化剂在 300 mA cm-2 的高电流密度下的 HCOOH 法拉第效率分别高达 94.3%、96.4% 和 91.0%。DFT 计算和操作光谱测量结果表明,Te 可使铋位点处于缺电子状态,从而增强*OCHO 中间体的吸附强度,并显著抑制 HER 和 CO 的竞争生成。这项研究强调了催化剂重构在操作条件下的重大影响,并为设计高活性、高稳定性的 CO2RR 电催化剂提供了启示。
{"title":"The Reconstruction of Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub> Nanorods for Efficient and pH-universal Electrochemical CO<sub>2</sub> Reduction.","authors":"Jiadong Chen, Tingjie Mao, Juan Wang, Jichang Wang, Shun Wang, Huile Jin","doi":"10.1002/anie.202408849","DOIUrl":"10.1002/anie.202408849","url":null,"abstract":"<p><p>The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to generate chemical fuels such as formate presents a promising route to a carbon-neutral future. However, its practical application is hindered by the competing CO production and hydrogen evolution reaction (HER), as well as the lack of pH-universal catalysts. Here, Te-modified Bi nanorods (Te-Bi NRs) were synthesized through in situ reconstruction of Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub> NRs under the CO<sub>2</sub>RR condition. Our study illustrates that the complex reconstruction process of Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub> NRs during CO<sub>2</sub>RR could be decoupled into three distinct steps, i.e., the destruction of Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub>, the formation of Te/Bi phases, and the dissolution of Te. The thus-obtained Te-Bi NRs exhibit remarkably high performance in CO<sub>2</sub>RR towards formate production, showing high activity, selectivity, and stability across all pH conditions (acidic, neutral, and alkaline). In a flow cell reactor under neutral, alkaline, or acidic conditions, the catalysts achieved HCOOH Faradaic efficiencies of up to 94.3 %, 96.4 %, and 91.0 %, respectively, at a high current density of 300 mA cm<sup>-2</sup>. Density functional theory calculations, along with operando spectral measurements, reveal that Te manipulates the Bi sites to an electron-deficient state, enhancing the adsorption strength of the *OCHO intermediate, and significantly suppressing the competing HER and CO production. This study highlights the substantial influence of catalyst reconstruction under operational conditions and offers insights into designing highly active and stable electrocatalysts towards CO<sub>2</sub>RR.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Angewandte Chemie International Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1