Reliable visual perception is essential for autonomous driving test scenario generation, yet adverse weather and lighting variations pose significant challenges to simulation robustness and generalization. Traditional unpaired image-to-image translation methods primarily rely on RGB-based transformations, often resulting in geometric distortions and loss of structural consistency, which can negatively impact the realism and accuracy of generated test scenarios. To address these limitations, we propose a Depth-Aware Dual-Branch Generative Adversarial Network (DAB-GAN) that explicitly incorporates depth information to preserve spatial structures during scenario generation. The dual-branch generator processes both RGB and depth inputs, ensuring geometric fidelity, while a self-attention mechanism enhances spatial dependencies and local detail refinement. This enables the creation of realistic and structure-preserving test environments that are crucial for evaluating autonomous driving perception systems, especially under adverse weather conditions. Experimental results demonstrate that DAB-GAN outperforms existing unpaired image-to-image translation methods, achieving superior visual fidelity and maintaining depth-aware structural integrity. This approach provides a robust framework for generating diverse and challenging test scenarios, enhancing the development and validation of autonomous driving systems under various real-world conditions.
扫码关注我们
求助内容:
应助结果提醒方式:
