Nanine de Groot, Marit van der Wiel, Ngoc Giang Le, Natasja G. de Groot, Jesse Bruijnesteijn, Ronald E. Bontrop
The regions in the genome that encode components of the immune system are often featured by polymorphism, copy number variation, and segmental duplications. There is a need to thoroughly characterize these complex regions to gain insight into the impact of genomic diversity on health and disease. Here we resolve the organization of complete major histocompatibility complex (MHC) class II regions in rhesus macaques by using a long-read sequencing strategy (Oxford Nanopore Technologies) in concert with adaptive sampling. In particular, the expansion and contraction of the primate DRB-region appear to be a dynamic process that involves the rearrangement of different cassettes of paralogous genes. These chromosomal recombination events are propagated by a conserved pseudogene, DRB6, which features the integration of two retroviral elements. In contrast, the DRA locus appears to be protected from rearrangements, which may be owing to the presence of an adjacently located truncated gene segment, DRB9. With our sequencing strategy, the annotation, evolutionary conservation, and potential function of pseudogenes can be reassessed, an aspect that was neglected by most genome studies in primates. Furthermore, our approach facilitates the characterization and refinement of an animal model essential to study human biology and disease.
{"title":"Unravelling the architecture of major histocompatibility complex class II haplotypes in rhesus macaques","authors":"Nanine de Groot, Marit van der Wiel, Ngoc Giang Le, Natasja G. de Groot, Jesse Bruijnesteijn, Ronald E. Bontrop","doi":"10.1101/gr.278968.124","DOIUrl":"https://doi.org/10.1101/gr.278968.124","url":null,"abstract":"The regions in the genome that encode components of the immune system are often featured by polymorphism, copy number variation, and segmental duplications. There is a need to thoroughly characterize these complex regions to gain insight into the impact of genomic diversity on health and disease. Here we resolve the organization of complete major histocompatibility complex (MHC) class II regions in rhesus macaques by using a long-read sequencing strategy (Oxford Nanopore Technologies) in concert with adaptive sampling. In particular, the expansion and contraction of the primate <em>DRB</em>-region appear to be a dynamic process that involves the rearrangement of different cassettes of paralogous genes. These chromosomal recombination events are propagated by a conserved pseudogene, <em>DRB6</em>, which features the integration of two retroviral elements. In contrast, the <em>DRA</em> locus appears to be protected from rearrangements, which may be owing to the presence of an adjacently located truncated gene segment, <em>DRB9</em>. With our sequencing strategy, the annotation, evolutionary conservation, and potential function of pseudogenes can be reassessed, an aspect that was neglected by most genome studies in primates. Furthermore, our approach facilitates the characterization and refinement of an animal model essential to study human biology and disease.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ursula Oggenfuss, Robert T Todd, Natthapon Soisangwan, Bailey Kemp, Alison Guyer, Annette Beach, Anna Selmecki
The human fungal pathogen Candida albicans poses a significant burden on global health, causing high rates of mortality and antifungal drug resistance. C. albicans is a heterozygous diploid organism that reproduces asexually. Structural variants (SVs) are an important source of genomic rearrangement, particularly in species that lack sexual recombination. To comprehensively investigate SVs across clinical isolates of C. albicans, we conducted long read sequencing and genome-wide SV analysis in three distantly related clinical isolates. Our work included a new, comprehensive analysis of transposable element (TE) composition, location and diversity. SVs and TEs are frequently close to coding sequences and many SVs are heterozygous, suggesting that SVs might impact gene and allele-specific expression. Most SVs are uniquely present in only one clinical isolate, indicating that SVs represent a significant source of intra-species genetic variation. We identified multiple, distinct SVs at the centromeres of Chromosome 4 and Chromosome 5, including inversions and transposon polymorphisms. These two chromosomes are often aneuploid in drug resistant clinical isolates, and can form isochromosome structures with breakpoints near the centromere. Further screening of 100 clinical isolates confirmed the widespread presence of centromeric SVs in C. albicans, often appearing in a heterozygous state, indicating that SVs are contributing to centromere evolution in C. albicans. Together, these findings highlight that SVs and TEs are common across diverse clinical isolates of C. albicans and that the centromeres of this organism are important sites of genome rearrangement.
{"title":"Candida albicans isolates contain frequent heterozygous structural variants and transposable elements within genes and centromeres","authors":"Ursula Oggenfuss, Robert T Todd, Natthapon Soisangwan, Bailey Kemp, Alison Guyer, Annette Beach, Anna Selmecki","doi":"10.1101/gr.279301.124","DOIUrl":"https://doi.org/10.1101/gr.279301.124","url":null,"abstract":"The human fungal pathogen <em>Candida albicans</em> poses a significant burden on global health, causing high rates of mortality and antifungal drug resistance. <em>C. albicans</em> is a heterozygous diploid organism that reproduces asexually. Structural variants (SVs) are an important source of genomic rearrangement, particularly in species that lack sexual recombination. To comprehensively investigate SVs across clinical isolates of <em>C. albicans</em>, we conducted long read sequencing and genome-wide SV analysis in three distantly related clinical isolates. Our work included a new, comprehensive analysis of transposable element (TE) composition, location and diversity. SVs and TEs are frequently close to coding sequences and many SVs are heterozygous, suggesting that SVs might impact gene and allele-specific expression. Most SVs are uniquely present in only one clinical isolate, indicating that SVs represent a significant source of intra-species genetic variation. We identified multiple, distinct SVs at the centromeres of Chromosome 4 and Chromosome 5, including inversions and transposon polymorphisms. These two chromosomes are often aneuploid in drug resistant clinical isolates, and can form isochromosome structures with breakpoints near the centromere. Further screening of 100 clinical isolates confirmed the widespread presence of centromeric SVs in <em>C. albicans</em>, often appearing in a heterozygous state, indicating that SVs are contributing to centromere evolution in <em>C. albicans</em>. Together, these findings highlight that SVs and TEs are common across diverse clinical isolates of <em>C. albicans</em> and that the centromeres of this organism are important sites of genome rearrangement.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eukaryotic genomes are replete with satellite DNAs (satDNAs), large stretches of tandemly repeated sequences that are mostly underrepresented in genome assemblies. Here we combined nanopore long-read sequencing with a reference-guided assembly approach to generate an improved, high-quality genome assembly, TcasONT, of the model beetle Tribolium castaneum. Enriched by 45 Mb in repetitive regions, the new assembly comprises almost the entire genome sequence. We use the enhanced assembly to conduct global and in-depth analyses of abundant euchromatic satDNAs. Unexpectedly, we show the extensive spread of satDNAs in gene-rich regions, including long arrays. The sequence similarity relationships between satDNA monomers and arrays indicate a recent exchange of satDNA arrays between different chromosomes. We propose a scenario of their genome dynamics characterized by repeated bursts of satDNAs spreading through euchromatin, followed by a process of elongation and homogenization of arrays. We find that suppressed recombination on the X Chromosome has no significant effect on the spread of satDNAs but the X rather tolerates the amplification of satDNAs into longer arrays. Analyses of arrays’ neighboring regions show a tendency of one satDNA to be associated with transposable-like elements. Using 2D electrophoresis followed by Southern blotting, we prove Cast satDNAs’ presence in the fraction of extrachromosomal circular DNA (eccDNA). We point to two mechanisms that enable this satDNA spread to occur: transposition by transposable elements and insertion mediated by eccDNA. The presence of such a large proportion of satDNA in gene-rich regions inevitably gives rise to speculation about their possible influence on gene expression.
{"title":"Long-read genome assembly of the insect model organism Tribolium castaneum reveals spread of satellite DNA in gene-rich regions by recurrent burst events","authors":"Marin Volarić, Evelin Despot-Slade, Damira Veseljak, Brankica Mravinac, Nevenka Meštrović","doi":"10.1101/gr.279225.124","DOIUrl":"https://doi.org/10.1101/gr.279225.124","url":null,"abstract":"Eukaryotic genomes are replete with satellite DNAs (satDNAs), large stretches of tandemly repeated sequences that are mostly underrepresented in genome assemblies. Here we combined nanopore long-read sequencing with a reference-guided assembly approach to generate an improved, high-quality genome assembly, TcasONT, of the model beetle <em>Tribolium castaneum</em>. Enriched by 45 Mb in repetitive regions, the new assembly comprises almost the entire genome sequence. We use the enhanced assembly to conduct global and in-depth analyses of abundant euchromatic satDNAs. Unexpectedly, we show the extensive spread of satDNAs in gene-rich regions, including long arrays. The sequence similarity relationships between satDNA monomers and arrays indicate a recent exchange of satDNA arrays between different chromosomes. We propose a scenario of their genome dynamics characterized by repeated bursts of satDNAs spreading through euchromatin, followed by a process of elongation and homogenization of arrays. We find that suppressed recombination on the X Chromosome has no significant effect on the spread of satDNAs but the X rather tolerates the amplification of satDNAs into longer arrays. Analyses of arrays’ neighboring regions show a tendency of one satDNA to be associated with transposable-like elements. Using 2D electrophoresis followed by Southern blotting, we prove Cast satDNAs’ presence in the fraction of extrachromosomal circular DNA (eccDNA). We point to two mechanisms that enable this satDNA spread to occur: transposition by transposable elements and insertion mediated by eccDNA. The presence of such a large proportion of satDNA in gene-rich regions inevitably gives rise to speculation about their possible influence on gene expression.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michelle Kudron, Louis Gewirtzman, Alec Victorsen, Bridget C Lear, Dionne Vafeados, Jiahao Gao, Jinrui Xu, Swapna Samanta, Emily Frink, Adri Tran-Pearson, Chau Hyunh, Ann Hammonds, William Fisher, Martha L Wall, Greg Wesseling, Vanessa Hernandez, Zhichun Lin, Mary Kasparian, Kevin P White, Ravi Allada, Mark Gerstein, LaDeana Hillier, Susan E Celniker, Valerie Reinke, Robert Waterston
A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here we present the culmination of the efforts of the Model Organism ENCyclopedia Of DNA Elements (modENCODE) and the model organism Encyclopedia of Regulatory Networks (modERN) consortia to systematically assay TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). These datasets comprise 605 TFs identifying 3.6M sites in the fly and 356 TFs identifying 0.9 M sites in the worm and represent the majority of the regulatory space in each genome. We demonstrate that TFs associate with chromatin in clusters termed "metapeaks", that larger metapeaks have characteristics of high occupancy target (HOT) regions, and that the importance of consensus sequence motifs bound by TFs depends on metapeak size and complexity. Combining ChIP-seq data with single cell RNA-seq data in a machine learning model identifies TFs with a prominent role in promoting target gene expression in specific cell types, even differentiating between parent-daughter cells during embryogenesis. These data are a rich resource for the community that should fuel and guide future investigations into TF function. To facilitate data accessibility and utility, all strains expressing GFP-tagged TFs are available at the stock centers for each organism. The chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center, GEO, and through a direct interface that provides rapid access to processed data sets and summary analyses, as well as widgets to probe the cell type-specific TF-target relationships.
{"title":"Binding profiles for 961 Drosophila and C. elegans transcription factors reveal tissue-specific regulatory relationships","authors":"Michelle Kudron, Louis Gewirtzman, Alec Victorsen, Bridget C Lear, Dionne Vafeados, Jiahao Gao, Jinrui Xu, Swapna Samanta, Emily Frink, Adri Tran-Pearson, Chau Hyunh, Ann Hammonds, William Fisher, Martha L Wall, Greg Wesseling, Vanessa Hernandez, Zhichun Lin, Mary Kasparian, Kevin P White, Ravi Allada, Mark Gerstein, LaDeana Hillier, Susan E Celniker, Valerie Reinke, Robert Waterston","doi":"10.1101/gr.279037.124","DOIUrl":"https://doi.org/10.1101/gr.279037.124","url":null,"abstract":"A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here we present the culmination of the efforts of the Model Organism ENCyclopedia Of DNA Elements (modENCODE) and the model organism Encyclopedia of Regulatory Networks (modERN) consortia to systematically assay TF binding events in vivo in two major model organisms, <em>Drosophila melanogaster</em> (fly) and <em>Caenorhabditis elegans</em> (worm). These datasets comprise 605 TFs identifying 3.6M sites in the fly and 356 TFs identifying 0.9 M sites in the worm and represent the majority of the regulatory space in each genome. We demonstrate that TFs associate with chromatin in clusters termed \"metapeaks\", that larger metapeaks have characteristics of high occupancy target (HOT) regions, and that the importance of consensus sequence motifs bound by TFs depends on metapeak size and complexity. Combining ChIP-seq data with single cell RNA-seq data in a machine learning model identifies TFs with a prominent role in promoting target gene expression in specific cell types, even differentiating between parent-daughter cells during embryogenesis. These data are a rich resource for the community that should fuel and guide future investigations into TF function. To facilitate data accessibility and utility, all strains expressing GFP-tagged TFs are available at the stock centers for each organism. The chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center, GEO, and through a direct interface that provides rapid access to processed data sets and summary analyses, as well as widgets to probe the cell type-specific TF-target relationships.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Klara Elisabeth Burger, Solveig Klepper, Ulrike von Luxburg, Franz Baumdicker
Understanding the genetic ancestry of populations is central to numerous scientific and societal fields. It contributes to a better understanding of human evolutionary history, advances personalized medicine, aids in forensic identification, and allows individuals to connect to their genealogical roots. Existing methods, such as ADMIXTURE, have significantly improved our ability to infer ancestries. However, these methods typically work with a fixed number of independent ancestral populations. As a result, they provide insight into genetic admixture, but do not include a hierarchical interpretation. In particular, the intricate ancestral population structures remain difficult to unravel. Alternative methods with a consistent inheritance structure, such as hierarchical clustering, may offer benefits in terms of interpreting the inferred ancestries. Here, we present tangleGen, a soft clustering tool that transfers the hierarchical machine learning framework Tangles, which leverages graph theoretical concepts, to the field of population genetics. The hierarchical perspective of tangleGen on the composition and structure of populations improves the interpretability of the inferred ancestral relationships. Moreover, tangleGen adds a new layer of explainability, as it allows identifying the SNPs that are responsible for the clustering structure. We demonstrate the capabilities and benefits of tangleGen for the inference of ancestral relationships, using both simulated data and data from the 1000 Genomes Project.
{"title":"Inferring ancestry with the hierarchical soft clustering approach tangleGen.","authors":"Klara Elisabeth Burger, Solveig Klepper, Ulrike von Luxburg, Franz Baumdicker","doi":"10.1101/gr.279399.124","DOIUrl":"https://doi.org/10.1101/gr.279399.124","url":null,"abstract":"<p><p>Understanding the genetic ancestry of populations is central to numerous scientific and societal fields. It contributes to a better understanding of human evolutionary history, advances personalized medicine, aids in forensic identification, and allows individuals to connect to their genealogical roots. Existing methods, such as ADMIXTURE, have significantly improved our ability to infer ancestries. However, these methods typically work with a fixed number of independent ancestral populations. As a result, they provide insight into genetic admixture, but do not include a hierarchical interpretation. In particular, the intricate ancestral population structures remain difficult to unravel. Alternative methods with a consistent inheritance structure, such as hierarchical clustering, may offer benefits in terms of interpreting the inferred ancestries. Here, we present tangleGen, a soft clustering tool that transfers the hierarchical machine learning framework Tangles, which leverages graph theoretical concepts, to the field of population genetics. The hierarchical perspective of tangleGen on the composition and structure of populations improves the interpretability of the inferred ancestral relationships. Moreover, tangleGen adds a new layer of explainability, as it allows identifying the SNPs that are responsible for the clustering structure. We demonstrate the capabilities and benefits of tangleGen for the inference of ancestral relationships, using both simulated data and data from the 1000 Genomes Project.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artem Mikelov, George Nefedev, Aleksandr Tashkeev, Oscar L Rodriguez, Diego A Ortmans, Valeriia Skatova, Mark Izraelson, Alexey N Davydov, Stanislav Poslavsky, Souad Rahmouni, Corey T Watson, Dmitriy M Chudakov, Scott D Boyd, Dmitry A Bolotin
Allelic variability in the adaptive immune receptor loci, which harbor the gene segments that encode B cell and T cell receptors (BCR/TCR), is of critical importance for immune responses to pathogens and vaccines. Adaptive immune receptor repertoire sequencing (AIRR-seq) has become widespread in immunology research making it the most readily available source of information about allelic diversity in immunoglobulin (IG) and T cell receptor (TR) loci. Here we present a novel algorithm for extra-sensitive and specific variable (V) and joining (J) gene allele inference, allowing reconstruction of individual high-quality gene segment libraries. The approach can be applied for inferring allelic variants from peripheral blood lymphocyte BCR and TCR repertoire sequencing data, including hypermutated isotype-switched BCR sequences, thus allowing high-throughput novel allele discovery from a wide variety of existing datasets. The developed algorithm is a part of the MiXCR software. We demonstrate the accuracy of this approach using AIRR-seq paired with long-read genomic sequencing data, comparing it to a widely used algorithm, TIgGER. We applied the algorithm to a large set of IG heavy chain (IGH) AIRR-seq data from 450 donors of ancestrally diverse population groups, and to the largest reported full-length TCR alpha and beta chain (TRA; TRB) AIRR-seq dataset, representing 134 individuals. This allowed us to assess the genetic diversity within the IGH, TRA and TRB loci in different populations and to establish a database of alleles of V and J genes inferred from AIRR-seq data and their population frequencies with free public access through an online database.
{"title":"Ultrasensitive allele inference from immune repertoire sequencing data with MiXCR.","authors":"Artem Mikelov, George Nefedev, Aleksandr Tashkeev, Oscar L Rodriguez, Diego A Ortmans, Valeriia Skatova, Mark Izraelson, Alexey N Davydov, Stanislav Poslavsky, Souad Rahmouni, Corey T Watson, Dmitriy M Chudakov, Scott D Boyd, Dmitry A Bolotin","doi":"10.1101/gr.278775.123","DOIUrl":"10.1101/gr.278775.123","url":null,"abstract":"<p><p>Allelic variability in the adaptive immune receptor loci, which harbor the gene segments that encode B cell and T cell receptors (BCR/TCR), is of critical importance for immune responses to pathogens and vaccines. Adaptive immune receptor repertoire sequencing (AIRR-seq) has become widespread in immunology research making it the most readily available source of information about allelic diversity in immunoglobulin (IG) and T cell receptor (TR) loci. Here we present a novel algorithm for extra-sensitive and specific variable (V) and joining (J) gene allele inference, allowing reconstruction of individual high-quality gene segment libraries. The approach can be applied for inferring allelic variants from peripheral blood lymphocyte BCR and TCR repertoire sequencing data, including hypermutated isotype-switched BCR sequences, thus allowing high-throughput novel allele discovery from a wide variety of existing datasets. The developed algorithm is a part of the MiXCR software. We demonstrate the accuracy of this approach using AIRR-seq paired with long-read genomic sequencing data, comparing it to a widely used algorithm, TIgGER. We applied the algorithm to a large set of IG heavy chain (<i>IGH</i>) AIRR-seq data from 450 donors of ancestrally diverse population groups, and to the largest reported full-length TCR alpha and beta chain (TRA; TRB) AIRR-seq dataset, representing 134 individuals. This allowed us to assess the genetic diversity within the <i>IGH</i>, <i>TRA</i> and <i>TRB</i> loci in different populations and to establish a database of alleles of V and J genes inferred from AIRR-seq data and their population frequencies with free public access through an online database.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Song Zhang, Chao Wang, Shenghua Qin, Choulin Chen, Yongzhou Bao, Yuanyuan Zhang, Lingna Xu, Qingyou Liu, Yunxiang Zhao, Kui Li, Zhonglin Tang, Yuwen Liu
Super-enhancers (SEs) govern the expression of genes defining cell identity. However, the dynamic landscape of SEs and their critical constituent enhancers involved in skeletal muscle development remains unclear. In this study, using pig as a model, we employed CUT&Tag to profile the enhancer-associated histone modification marker H3K27ac in skeletal muscle across two prenatal and three postnatal stages and investigated how SEs influence skeletal muscle development. We identified three SE families with distinct temporal dynamics: continuous (Con, 397), transient (TS, 434), and de novo (DN, 756). These SE families are associated with different temporal gene expression trajectories, biological functions, and DNA methylation levels. Notably, several lines of evidence suggest a potential prominent role of Con SEs in regulating porcine muscle development and meat traits. To pinpoint key cis-regulatory units in Con SEs, we developed an integrative approach that leverages information from eRNA annotation, GWAS signals and high-throughput capture STARR-seq experiments. Within Con SEs, we identified 20 candidate critical enhancers with meat and carcass-associated DNA variations that affect enhancer activity and inferred their upstream TFs and downstream target genes. As a proof of concept, we experimentally validated the role of one such enhancer and its potential target gene during myogenesis. Our findings reveal the dynamic regulatory features of SEs in skeletal muscle development and provide a general integrative framework for identifying critical enhancers underlying the formation of complex traits.
超级增强子(SE)控制着决定细胞特性的基因的表达。然而,参与骨骼肌发育的超级增强子及其关键组成增强子的动态图谱仍不清楚。在这项研究中,我们以猪为模型,利用 CUT&Tag 分析了骨骼肌中与增强子相关的组蛋白修饰标记 H3K27ac 在出生前两个阶段和出生后三个阶段的变化,并研究了增强子如何影响骨骼肌的发育。我们发现了三个具有不同时间动态的 SE 家族:连续 SE(Con,397 个)、瞬时 SE(TS,434 个)和新生 SE(DN,756 个)。这些 SE 家族与不同时间的基因表达轨迹、生物功能和 DNA 甲基化水平相关。值得注意的是,一些证据表明,Con SEs 在调节猪肌肉发育和肉质性状方面可能起着重要作用。为了精确定位 Con SEs 中的关键顺式调控单元,我们开发了一种综合方法,利用来自 eRNA 注释、GWAS 信号和高通量捕获 STARR-seq 实验的信息。在 Con SEs 中,我们发现了 20 个候选关键增强子,它们与肉类和胴体相关的 DNA 变异会影响增强子的活性,并推断出了它们的上游 TF 和下游靶基因。作为概念验证,我们通过实验验证了其中一个增强子及其潜在靶基因在肌形成过程中的作用。我们的研究结果揭示了骨骼肌发育过程中增强子的动态调控特征,并为确定复杂性状形成过程中的关键增强子提供了一个通用的综合框架。
{"title":"Analyzing super-enhancer temporal dynamics reveals potential critical enhancers and their gene regulatory networks underlying skeletal muscle development.","authors":"Song Zhang, Chao Wang, Shenghua Qin, Choulin Chen, Yongzhou Bao, Yuanyuan Zhang, Lingna Xu, Qingyou Liu, Yunxiang Zhao, Kui Li, Zhonglin Tang, Yuwen Liu","doi":"10.1101/gr.278344.123","DOIUrl":"https://doi.org/10.1101/gr.278344.123","url":null,"abstract":"<p><p>Super-enhancers (SEs) govern the expression of genes defining cell identity. However, the dynamic landscape of SEs and their critical constituent enhancers involved in skeletal muscle development remains unclear. In this study, using pig as a model, we employed CUT&Tag to profile the enhancer-associated histone modification marker H3K27ac in skeletal muscle across two prenatal and three postnatal stages and investigated how SEs influence skeletal muscle development. We identified three SE families with distinct temporal dynamics: continuous (Con, 397), transient (TS, 434), and de novo (DN, 756). These SE families are associated with different temporal gene expression trajectories, biological functions, and DNA methylation levels. Notably, several lines of evidence suggest a potential prominent role of Con SEs in regulating porcine muscle development and meat traits. To pinpoint key <i>cis</i>-regulatory units in Con SEs, we developed an integrative approach that leverages information from eRNA annotation, GWAS signals and high-throughput capture STARR-seq experiments. Within Con SEs, we identified 20 candidate critical enhancers with meat and carcass-associated DNA variations that affect enhancer activity and inferred their upstream TFs and downstream target genes. As a proof of concept, we experimentally validated the role of one such enhancer and its potential target gene during myogenesis. Our findings reveal the dynamic regulatory features of SEs in skeletal muscle development and provide a general integrative framework for identifying critical enhancers underlying the formation of complex traits.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":6.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yueqiang Song, Fuyuan Li, Shangzi Wang, Yuntong Wang, Cong Lai, Lian Chen, Ning Jiang, Jin Li, Xingdong Chen, Swneke D. Bailey, Xiaoyang Zhang
As a major type of structural variants, tandem duplication plays a critical role in tumorigenesis by increasing oncogene dosage. Recent work has revealed that noncoding enhancers are also affected by duplications leading to the activation of oncogenes that are inside or outside of the duplicated regions. However, the prevalence of enhancer duplication and the identity of their target genes remains largely unknown in the cancer genome. Here, by analyzing whole-genome sequencing data in a non-gene-centric manner, we identify 881 duplication hotspots in 13 major cancer types, most of which do not contain protein-coding genes. We show that the hotspots are enriched with distal enhancer elements and are highly lineage-specific. We develop a HiChIP-based methodology that navigates enhancer–promoter contact maps to prioritize the target genes for the duplication hotspots harboring enhancer elements. The methodology identifies many novel enhancer duplication events activating oncogenes such as ESR1, FOXA1, GATA3, GATA6, TP63, and VEGFA, as well as potentially novel oncogenes such as GRHL2, IRF2BP2, and CREB3L1. In particular, we identify a duplication hotspot on Chromosome 10p15 harboring a cluster of enhancers, which skips over two genes, through a long-range chromatin interaction, to activate an oncogenic isoform of the NET1 gene to promote migration of gastric cancer cells. Focusing on tandem duplications, our study substantially extends the catalog of noncoding driver alterations in multiple cancer types, revealing attractive targets for functional characterization and therapeutic intervention.
{"title":"Chromatin interaction maps identify oncogenic targets of enhancer duplications in cancer","authors":"Yueqiang Song, Fuyuan Li, Shangzi Wang, Yuntong Wang, Cong Lai, Lian Chen, Ning Jiang, Jin Li, Xingdong Chen, Swneke D. Bailey, Xiaoyang Zhang","doi":"10.1101/gr.278418.123","DOIUrl":"https://doi.org/10.1101/gr.278418.123","url":null,"abstract":"As a major type of structural variants, tandem duplication plays a critical role in tumorigenesis by increasing oncogene dosage. Recent work has revealed that noncoding enhancers are also affected by duplications leading to the activation of oncogenes that are inside or outside of the duplicated regions. However, the prevalence of enhancer duplication and the identity of their target genes remains largely unknown in the cancer genome. Here, by analyzing whole-genome sequencing data in a non-gene-centric manner, we identify 881 duplication hotspots in 13 major cancer types, most of which do not contain protein-coding genes. We show that the hotspots are enriched with distal enhancer elements and are highly lineage-specific. We develop a HiChIP-based methodology that navigates enhancer–promoter contact maps to prioritize the target genes for the duplication hotspots harboring enhancer elements. The methodology identifies many novel enhancer duplication events activating oncogenes such as <em>ESR1</em>, <em>FOXA1</em>, <em>GATA3, GATA6, TP63</em>, and <em>VEGFA</em>, as well as potentially novel oncogenes such as <em>GRHL2, IRF2BP2</em>, and <em>CREB3L1</em>. In particular, we identify a duplication hotspot on Chromosome 10p15 harboring a cluster of enhancers, which skips over two genes, through a long-range chromatin interaction, to activate an oncogenic isoform of the <em>NET1</em> gene to promote migration of gastric cancer cells. Focusing on tandem duplications, our study substantially extends the catalog of noncoding driver alterations in multiple cancer types, revealing attractive targets for functional characterization and therapeutic intervention.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Retrotransposable elements (RTEs) are common mobile genetic elements comprising ∼42% of the human genome. RTEs play critical roles in gene regulation and function, but how they are specifically involved in complex diseases is largely unknown. Here, we investigate the cellular heterogeneity of RTEs using 12 single-cell transcriptome profiles covering three neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease, and multiple sclerosis. We identify cell type marker RTEs in neurons, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells that are related to these diseases. The differential expression analysis reveals the landscape of dysregulated RTE expression, especially L1s, in excitatory neurons of multiple neurodegenerative diseases. Machine learning algorithms for predicting cell disease stage using a combination of RTE and gene expression features suggests dynamic regulation of RTEs in AD. Furthermore, we construct a single-cell atlas of retrotransposable elements in neurodegenerative disease (scARE) using these data sets and features. scARE has six feature analysis modules to explore RTE dynamics in a user-defined condition. To our knowledge, scARE represents the first systematic investigation of RTE dynamics at the single-cell level within the context of neurodegenerative diseases.
{"title":"Dynamic dysregulation of retrotransposons in neurodegenerative diseases at the single-cell level","authors":"Wankun Deng, Citu Citu, Andi Liu, Zhongming Zhao","doi":"10.1101/gr.279363.124","DOIUrl":"https://doi.org/10.1101/gr.279363.124","url":null,"abstract":"Retrotransposable elements (RTEs) are common mobile genetic elements comprising ∼42% of the human genome. RTEs play critical roles in gene regulation and function, but how they are specifically involved in complex diseases is largely unknown. Here, we investigate the cellular heterogeneity of RTEs using 12 single-cell transcriptome profiles covering three neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease, and multiple sclerosis. We identify cell type marker RTEs in neurons, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells that are related to these diseases. The differential expression analysis reveals the landscape of dysregulated RTE expression, especially L1s, in excitatory neurons of multiple neurodegenerative diseases. Machine learning algorithms for predicting cell disease stage using a combination of RTE and gene expression features suggests dynamic regulation of RTEs in AD. Furthermore, we construct a single-cell atlas of retrotransposable elements in neurodegenerative disease (scARE) using these data sets and features. scARE has six feature analysis modules to explore RTE dynamics in a user-defined condition. To our knowledge, scARE represents the first systematic investigation of RTE dynamics at the single-cell level within the context of neurodegenerative diseases.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basanta Bista, Laura González-Rodelas, Lucía Álvarez-González, Zhi-qiang Wu, Eugenia E. Montiel, Ling Sze Lee, Daleen B. Badenhorst, Srihari Radhakrishnan, Robert Literman, Beatriz Navarro-Dominguez, John B. Iverson, Simon Orozco-Arias, Josefa González, Aurora Ruiz-Herrera, Nicole Valenzuela
Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: Apalone spinifera (ZZ/ZW, 2n = 66) and Staurotypus triporcatus (XX/XY, 2n = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in Apalone (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in Staurotypus (Kinosternidae) and Trachemys scripta (Emydidae). Furthermore, we identified a chromosome folding pattern that enables “centromere–telomere interactions” previously undetected in turtles. The combined turtle pattern of “centromere–telomere interactions” (discovered here) plus “centromere clustering” (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.
{"title":"De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes","authors":"Basanta Bista, Laura González-Rodelas, Lucía Álvarez-González, Zhi-qiang Wu, Eugenia E. Montiel, Ling Sze Lee, Daleen B. Badenhorst, Srihari Radhakrishnan, Robert Literman, Beatriz Navarro-Dominguez, John B. Iverson, Simon Orozco-Arias, Josefa González, Aurora Ruiz-Herrera, Nicole Valenzuela","doi":"10.1101/gr.279443.124","DOIUrl":"https://doi.org/10.1101/gr.279443.124","url":null,"abstract":"Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: <em>Apalone spinifera</em> (ZZ/ZW, 2<em>n</em> = 66) and <em>Staurotypus triporcatus</em> (XX/XY, 2<em>n</em> = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in <em>Apalone</em> (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in <em>Staurotypus</em> (Kinosternidae) and <em>Trachemys scripta</em> (Emydidae). Furthermore, we identified a chromosome folding pattern that enables “centromere–telomere interactions” previously undetected in turtles. The combined turtle pattern of “centromere–telomere interactions” (discovered here) plus “centromere clustering” (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}