首页 > 最新文献

Geochemical Journal最新文献

英文 中文
Characteristics in trace elements compositions of tephras (B-Tm and To-a) for identification tools 用于鉴定工具的麻黄微量元素组成特征(B-Tm和To-a)
IF 0.8 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2021-01-01 DOI: 10.2343/geochemj.2.0619
Fumiko Watanabe Nara, T. Yokoyama, S. Yamasaki, M. Minami, Y. Asahara, Takahiro Watanabe, Kazuyoshi Yamada, N. Tsuchiya, Y. Yasuda
Copyright © 2021 by The Geochemical Society of Japan. lacustrine and marine sediments can be preserved well when undisturbed by postdeposition erosion. Multiple dating studies using tephrochronology have been performed on lacustrine and marine sediments (Hopkins et al., 2015; Matsu’ura and Komatsubara, 2017; Sirocko et al., 2013). In order to establish the tephra layer as a robust chronological tool, it is essential to characterize each tephra using multiple approaches, such as morphology, mineralogy and geochemistry. The absolute date of the Millennium Eruption (ME) of Changbaishan Volcano (also referred to as Mt. Paektu, Baekdusan or Tianchi), located at the border between China and North Korea (Fig. 1a), has been defined as AD 946 analyzed by dendrochronological approaches (Hakozaki et al., 2018; Oppenheimer et al., 2017). This date is based on 14C contents in tree rings collected at the foot of Changbaishan Volcano by matching the observed 14C variations against the AD 774–775 14C spike (Miyake Characteristics in trace elements compositions of tephras (B-Tm and To-a) for identification tools
日本地球化学学会版权所有©2021。湖泊和海洋沉积物如果不受沉积后侵蚀的干扰,可以很好地保存下来。利用地表年代学对湖泊和海洋沉积物进行了多次测年研究(Hopkins et al., 2015;Matsu 'ura and Komatsubara, 2017;Sirocko et al., 2013)。为了将麻风层建立为可靠的年代工具,必须使用多种方法(如形态学,矿物学和地球化学)表征每个麻风层。位于中朝边境的长白山火山(也被称为白头山、白头山或天池)千年喷发(ME)的绝对日期(图1a)被定义为公元946年,通过树木年代学方法进行了分析(Hakozaki et al., 2018;Oppenheimer et al., 2017)。根据在长白山火山脚下采集的树木年轮中14C的含量,将观测到的14C变化与公元774-775年的14C峰值(tephras微量元素组成(B-Tm和To-a)的Miyake特征进行比对,作为鉴定工具
{"title":"Characteristics in trace elements compositions of tephras (B-Tm and To-a) for identification tools","authors":"Fumiko Watanabe Nara, T. Yokoyama, S. Yamasaki, M. Minami, Y. Asahara, Takahiro Watanabe, Kazuyoshi Yamada, N. Tsuchiya, Y. Yasuda","doi":"10.2343/geochemj.2.0619","DOIUrl":"https://doi.org/10.2343/geochemj.2.0619","url":null,"abstract":"Copyright © 2021 by The Geochemical Society of Japan. lacustrine and marine sediments can be preserved well when undisturbed by postdeposition erosion. Multiple dating studies using tephrochronology have been performed on lacustrine and marine sediments (Hopkins et al., 2015; Matsu’ura and Komatsubara, 2017; Sirocko et al., 2013). In order to establish the tephra layer as a robust chronological tool, it is essential to characterize each tephra using multiple approaches, such as morphology, mineralogy and geochemistry. The absolute date of the Millennium Eruption (ME) of Changbaishan Volcano (also referred to as Mt. Paektu, Baekdusan or Tianchi), located at the border between China and North Korea (Fig. 1a), has been defined as AD 946 analyzed by dendrochronological approaches (Hakozaki et al., 2018; Oppenheimer et al., 2017). This date is based on 14C contents in tree rings collected at the foot of Changbaishan Volcano by matching the observed 14C variations against the AD 774–775 14C spike (Miyake Characteristics in trace elements compositions of tephras (B-Tm and To-a) for identification tools","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84588628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Assessing the debris generated by the small carry-on impactor operated from the Hayabusa2 mission 评估隼鸟2号任务中携带的小型撞击器产生的碎片
IF 0.8 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2021-01-01 DOI: 10.2343/geochemj.2.0632
Motoo Ito, Y. Takano, Y. Kebukawa, T. Ohigashi, M. Matsuoka, K. Kiryu, M. Uesugi, Tomoki Nakamura, H. Yuzawa, Keita Yamada, H. Naraoka, T. Yada, M. Abe, M. Hayakawa, T. Saiki, S. Tachibana, Hayabusa II Project Team
1Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), B200 Monobe, Nankoku, Kochi 783-8502, Japan 2Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka 237-0061, Japan 3Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan 4UVSOR Synchrotron Facility, Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki, Aichi 444-8585, Japan 5Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210, Japan 6Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan 7Department of Earth Science, Graduate School of Science, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan 8Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (TIT), Yokohama 226-8502, Japan 9Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan 10UTokyo Organization for Planetary and Space Science (UTOPS), University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
1日本海洋地球科学技术机构(JAMSTEC)高知岩心样品研究所,日本高知783-8502;2生物地球化学研究中心(BGC),日本海洋地球科学技术机构(JAMSTEC), 2-15,日本横须贺237-0061;3日本横滨国立大学工程科学研究生院,79-5,横滨豪狗谷tokiwdai79 -5,横滨240-8501;4UVSOR同步辐射设施,分子科学研究所;38日本爱知县西古中村Myodaiji冈崎市444-8585;5日本宇宙航空研究开发机构(JAXA)神奈川县相模原市252-5210;6日本同步辐射研究所(JASRI/ spring8),兵库县Sayo市1-1-1 Kouto市679-5198;7日本仙台市青叶市宫城县东北大学理科研究生院地球科学系980-8578;9九州大学地球与行星科学系,福冈西西区元冈744号,日本819-0395;10东京大学东京行星与空间科学组织,东京本乡7-3-1,日本113-0033
{"title":"Assessing the debris generated by the small carry-on impactor operated from the Hayabusa2 mission","authors":"Motoo Ito, Y. Takano, Y. Kebukawa, T. Ohigashi, M. Matsuoka, K. Kiryu, M. Uesugi, Tomoki Nakamura, H. Yuzawa, Keita Yamada, H. Naraoka, T. Yada, M. Abe, M. Hayakawa, T. Saiki, S. Tachibana, Hayabusa II Project Team","doi":"10.2343/geochemj.2.0632","DOIUrl":"https://doi.org/10.2343/geochemj.2.0632","url":null,"abstract":"1Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), B200 Monobe, Nankoku, Kochi 783-8502, Japan 2Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka 237-0061, Japan 3Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan 4UVSOR Synchrotron Facility, Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki, Aichi 444-8585, Japan 5Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210, Japan 6Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan 7Department of Earth Science, Graduate School of Science, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan 8Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (TIT), Yokohama 226-8502, Japan 9Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan 10UTokyo Organization for Planetary and Space Science (UTOPS), University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72634916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Holocene high-resolution monsoon climate fluctuations in the Mu Us desert, China 毛乌素沙漠全新世高分辨率季风气候波动
IF 0.8 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2021-01-01 DOI: 10.2343/geochemj.2.0636
Dongfeng Niu, Yuejun Si, Bao-sheng Li, Fengnian Wang, P. Shu, Xiaohao Wen, Yihua Guo, Chen Wang
{"title":"Holocene high-resolution monsoon climate fluctuations in the Mu Us desert, China","authors":"Dongfeng Niu, Yuejun Si, Bao-sheng Li, Fengnian Wang, P. Shu, Xiaohao Wen, Yihua Guo, Chen Wang","doi":"10.2343/geochemj.2.0636","DOIUrl":"https://doi.org/10.2343/geochemj.2.0636","url":null,"abstract":"","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90362936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of hypoxia on the distribution of dissolved bioactive trace metals in Mikawa Bay, central Japan 缺氧对日本中部三川湾溶解性生物活性微量金属分布的影响
IF 0.8 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2021-01-01 DOI: 10.2343/geochemj.2.0625
H. Kimoto, Koshi Yamamoto
{"title":"The influence of hypoxia on the distribution of dissolved bioactive trace metals in Mikawa Bay, central Japan","authors":"H. Kimoto, Koshi Yamamoto","doi":"10.2343/geochemj.2.0625","DOIUrl":"https://doi.org/10.2343/geochemj.2.0625","url":null,"abstract":"","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89752341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boron determinations of silicate reference rocks by the isotope dilution method in a high-background environment 用同位素稀释法测定高本底环境中硅酸盐参考岩中的硼
IF 0.8 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2021-01-01 DOI: 10.2343/geochemj.2.0614
S. Nakai
of rock samples (Yonezawa et al., 1999; Sano et al., 1998, 1999, 2001; Miyoshi et al., 2010; Shinjoe et al., 2013). Sano et al. (1998, 1999) reported that relative standard deviations (% RSD) of replicate analyses of standard rocks were better than 5% for the wide range of boron concentrations of 8–160 ppm. After the nuclear power plant accident in 2011, neutron radiation experiments were halted in Japan. Boron determination was attempted in a high background environment in this study. An ICP-MS used for boron determinations was installed in a laboratory where laser ablation ICP mass spectrometry analyses on glass bead samples fused with LiBO4 was conducted with another ICP-MS. The author investigated effective methods to reduce the influence of a high background on boron peaks. Three analytical methods were compared to improve the accuracy of boron determination. When the concentration of an element is measured using a sensitivity method that compares a signal intensity of an element in a sample solution with that in a standard solution, an internal standard element is often doped to the sample solution to correct the influence of the sample-derived matrix. The internal standard element is selected from elements that are not included in the sample solution and which have a similar mass number to that of the element to be analyzed. Finding a suitable internal standard element is difficult when light elements such as Li, Be, and B in silicate rock samples are determined. Gotan et al. Boron determinations of silicate reference rocks by the isotope dilution method in a high-background environment
岩石样本(Yonezawa et al., 1999;Sano et al., 1998,1999,2001;Miyoshi et al., 2010;Shinjoe et al., 2013)。Sano等人(1998,1999)报告说,在8-160 ppm的硼浓度范围内,对标准岩石的重复分析的相对标准偏差(% RSD)优于5%。2011年核电站事故发生后,日本停止了中子辐射实验。本研究尝试在高本底环境下测定硼。用于硼测定的ICP- ms安装在实验室中,激光烧蚀ICP质谱分析与LiBO4熔融的玻璃珠样品与另一台ICP- ms进行。探讨了降低高本底对硼峰影响的有效方法。对三种分析方法进行了比较,以提高硼的测定精度。当使用比较样品溶液中元素的信号强度与标准溶液中元素的信号强度的灵敏度方法测量一种元素的浓度时,通常在样品溶液中掺杂一种内部标准元素,以纠正样品衍生矩阵的影响。内标准元素从样品溶液中未包含的、与待分析元素具有相似质量数的元素中选择。在测定硅酸盐岩石样品中的Li、Be、B等轻元素时,很难找到合适的内标元素。Gotan等人。用同位素稀释法测定高本底环境中硅酸盐参考岩中的硼
{"title":"Boron determinations of silicate reference rocks by the isotope dilution method in a high-background environment","authors":"S. Nakai","doi":"10.2343/geochemj.2.0614","DOIUrl":"https://doi.org/10.2343/geochemj.2.0614","url":null,"abstract":"of rock samples (Yonezawa et al., 1999; Sano et al., 1998, 1999, 2001; Miyoshi et al., 2010; Shinjoe et al., 2013). Sano et al. (1998, 1999) reported that relative standard deviations (% RSD) of replicate analyses of standard rocks were better than 5% for the wide range of boron concentrations of 8–160 ppm. After the nuclear power plant accident in 2011, neutron radiation experiments were halted in Japan. Boron determination was attempted in a high background environment in this study. An ICP-MS used for boron determinations was installed in a laboratory where laser ablation ICP mass spectrometry analyses on glass bead samples fused with LiBO4 was conducted with another ICP-MS. The author investigated effective methods to reduce the influence of a high background on boron peaks. Three analytical methods were compared to improve the accuracy of boron determination. When the concentration of an element is measured using a sensitivity method that compares a signal intensity of an element in a sample solution with that in a standard solution, an internal standard element is often doped to the sample solution to correct the influence of the sample-derived matrix. The internal standard element is selected from elements that are not included in the sample solution and which have a similar mass number to that of the element to be analyzed. Finding a suitable internal standard element is difficult when light elements such as Li, Be, and B in silicate rock samples are determined. Gotan et al. Boron determinations of silicate reference rocks by the isotope dilution method in a high-background environment","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82489678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Watershed analysis for geochemical mapping in Japan based on a hydrologic model: The concentrations of 53 elements and the dominant lithology in a drainage basin 基于水文模型的日本流域地球化学填图分析:流域53种元素的浓度和优势岩性
IF 0.8 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2021-01-01 DOI: 10.2343/geochemj.2.0618
Atsuyuki Ohta, N. Imai, Takashi Okai, M. Manaka, Ran Kubota, A. Nakamura, Yoshiko Tachibana
Copyright © 2021 by The Geochemical Society of Japan. cross-boundary and sub-continental geochemical mapping projects have been actively pursued, with the main objective of environmental assessment (Bølviken et al., 1986; De Vos et al., 2006; Reimann et al., 1998; Salminen et al., 2005). In Japan, the Geological Survey of Japan, the National Institute of Advanced Industrial Science and Technology (AIST), has created country-scale land and sea geochemical maps using 3,024 stream sediment samples and 4,905 marine sediment samples, for 53 elements (Imai et al., 2004, 2010). Japanese geochemical mapping is designed for environmental assessment in mining areas, large-scale urban regions, and coastal sea zones, and for the investigation of migration processes of materials from the land to the sea. Sampling location, sample photographs, color maps, and elemental concentrations are available in the online database (https://gbank.gsj.jp/ geochemmap/). Furthermore, we are also in the process of creating a regional spatial distribution map of Sr isotopic ratios using stream sediments, collected for JapaWatershed analysis for geochemical mapping in Japan based on a hydrologic model: The concentrations of 53 elements and the dominant lithology in a drainage basin
日本地球化学学会版权所有©2021。积极开展跨界和次大陆地球化学制图项目,主要目的是进行环境评价(Bølviken等人,1986年;De Vos et al., 2006;Reimann et al., 1998;Salminen et al., 2005)。在日本,日本地质调查局、国家先进工业科学技术研究所(AIST)利用3024个水系沉积物样本和4905个海洋沉积物样本,绘制了53种元素的国家尺度陆地和海洋地球化学地图(Imai et al., 2004,2010)。日本的地球化学填图主要用于矿区、大型城市地区和沿海海域的环境评价,以及研究物质从陆地向海洋的迁移过程。采样地点、样品照片、彩色地图和元素浓度可在在线数据库(https://gbank.gsj.jp/ geochemmap/)中获得。此外,我们还在利用溪流沉积物创建Sr同位素比率的区域空间分布图,这些沉积物是为日本流域分析收集的,用于基于水文模型的日本地球化学制图:流域中53种元素的浓度和主要岩性
{"title":"Watershed analysis for geochemical mapping in Japan based on a hydrologic model: The concentrations of 53 elements and the dominant lithology in a drainage basin","authors":"Atsuyuki Ohta, N. Imai, Takashi Okai, M. Manaka, Ran Kubota, A. Nakamura, Yoshiko Tachibana","doi":"10.2343/geochemj.2.0618","DOIUrl":"https://doi.org/10.2343/geochemj.2.0618","url":null,"abstract":"Copyright © 2021 by The Geochemical Society of Japan. cross-boundary and sub-continental geochemical mapping projects have been actively pursued, with the main objective of environmental assessment (Bølviken et al., 1986; De Vos et al., 2006; Reimann et al., 1998; Salminen et al., 2005). In Japan, the Geological Survey of Japan, the National Institute of Advanced Industrial Science and Technology (AIST), has created country-scale land and sea geochemical maps using 3,024 stream sediment samples and 4,905 marine sediment samples, for 53 elements (Imai et al., 2004, 2010). Japanese geochemical mapping is designed for environmental assessment in mining areas, large-scale urban regions, and coastal sea zones, and for the investigation of migration processes of materials from the land to the sea. Sampling location, sample photographs, color maps, and elemental concentrations are available in the online database (https://gbank.gsj.jp/ geochemmap/). Furthermore, we are also in the process of creating a regional spatial distribution map of Sr isotopic ratios using stream sediments, collected for JapaWatershed analysis for geochemical mapping in Japan based on a hydrologic model: The concentrations of 53 elements and the dominant lithology in a drainage basin","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77631081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sedimentary record and risk assessment of polycyclic aromatic hydrocarbons in the northern Taihu Basin 太湖盆地北部多环芳烃沉积记录及风险评价
IF 0.8 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2021-01-01 DOI: 10.2343/geochemj.2.0635
T. Sun, Yanhua Wang, Yan Chen, X. Kong, Chun Ye
{"title":"Sedimentary record and risk assessment of polycyclic aromatic hydrocarbons in the northern Taihu Basin","authors":"T. Sun, Yanhua Wang, Yan Chen, X. Kong, Chun Ye","doi":"10.2343/geochemj.2.0635","DOIUrl":"https://doi.org/10.2343/geochemj.2.0635","url":null,"abstract":"","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88460068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Sorption and desorption of phenanthrene and fluorene in mangrove forest soils of the Morrocoy National Park, Venezuelan Caribbean 委内瑞拉加勒比地区莫罗伊国家公园红树林土壤中菲和芴的吸附和解吸
IF 0.8 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2021-01-01 DOI: 10.2343/geochemj.2.0621
Katya Reategui, R. Amaro, L. Rodríguez, Carelys Salazar, R. Fernández, Jochen Smuda
{"title":"Sorption and desorption of phenanthrene and fluorene in mangrove forest soils of the Morrocoy National Park, Venezuelan Caribbean","authors":"Katya Reategui, R. Amaro, L. Rodríguez, Carelys Salazar, R. Fernández, Jochen Smuda","doi":"10.2343/geochemj.2.0621","DOIUrl":"https://doi.org/10.2343/geochemj.2.0621","url":null,"abstract":"","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89335283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multielement quantification and Pb isotope analysis of the certified reference material ERM-CZ120 for fine particulate matter 细颗粒物标准物质ERM-CZ120的多元素定量及Pb同位素分析
IF 0.8 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2021-01-01 DOI: 10.2343/geochemj.2.0642
Masatoshi Honda
for the mass concentration of PM2.5: 35 μg/m 3 in 24 h or 12 μg/m3 in 1 year in the USA (USEPA, 2013), 25 μg/m3 in 1 year in Europe (EC, 2008), and 35 μg/m3 in 24 h or 15 μg/m3 in 1 year in Japan (Ministry of the Environment, Government of Japan (MOEJ), 2009). Chemical analysis of fine PM can provide information about its health hazard factors and generation mechanisms; this is important to effectively regulate and reduce hazardous fine PM emissions. Generally, PM includes ionic, organic, and metallic element components. Unlike the organic and ionic components, PM’s metallic elements do not change by reaction with gas or decomposition during transportation in the air. Many studies have taken advantage of this by using PM’s metallic elemental composition as a fingerprint of the source (e.g., Sudheer and Rengarajan, 2012). The metallic element analysis quality needs to be validated to guarantee the reliability of the PM source analysis. One Multielement quantification and Pb isotope analysis of the certified reference material ERM-CZ120 for fine particulate matter
PM2.5的质量浓度:美国为24小时35 μg/m3或1年12 μg/m3 (USEPA, 2013),欧洲为1年25 μg/m3 (EC, 2008),日本为24小时35 μg/m3或1年15 μg/m3(日本政府(MOEJ), 2009)。细颗粒物的化学分析可以提供细颗粒物健康危害因素和产生机制的信息;这对于有效监管和减少有害细颗粒物排放至关重要。一般来说,PM包括离子、有机和金属元素成分。与有机和离子成分不同,PM的金属元素在空气中运输过程中不会因与气体反应或分解而发生变化。许多研究利用了这一点,使用PM的金属元素组成作为来源的指纹(例如,Sudheer和Rengarajan, 2012)。为了保证PM源分析的可靠性,需要对金属元素分析质量进行验证。细颗粒物标准物质ERM-CZ120的多元素定量及Pb同位素分析
{"title":"Multielement quantification and Pb isotope analysis of the certified reference material ERM-CZ120 for fine particulate matter","authors":"Masatoshi Honda","doi":"10.2343/geochemj.2.0642","DOIUrl":"https://doi.org/10.2343/geochemj.2.0642","url":null,"abstract":"for the mass concentration of PM2.5: 35 μg/m 3 in 24 h or 12 μg/m3 in 1 year in the USA (USEPA, 2013), 25 μg/m3 in 1 year in Europe (EC, 2008), and 35 μg/m3 in 24 h or 15 μg/m3 in 1 year in Japan (Ministry of the Environment, Government of Japan (MOEJ), 2009). Chemical analysis of fine PM can provide information about its health hazard factors and generation mechanisms; this is important to effectively regulate and reduce hazardous fine PM emissions. Generally, PM includes ionic, organic, and metallic element components. Unlike the organic and ionic components, PM’s metallic elements do not change by reaction with gas or decomposition during transportation in the air. Many studies have taken advantage of this by using PM’s metallic elemental composition as a fingerprint of the source (e.g., Sudheer and Rengarajan, 2012). The metallic element analysis quality needs to be validated to guarantee the reliability of the PM source analysis. One Multielement quantification and Pb isotope analysis of the certified reference material ERM-CZ120 for fine particulate matter","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84513505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Measurements, sources and sinks of photoformed reactive oxygen species in Japanese rivers 日本河流中光形成活性氧的测量、来源和汇
IF 0.8 4区 地球科学 Q3 Earth and Planetary Sciences Pub Date : 2021-01-01 DOI: 10.2343/geochemj.2.0620
Taiwo Tolulope Ayeni, W. Jadoon, A. Adesina, M. Sunday, A. J. Anifowose, K. Takeda, H. Sakugawa
Copyright © 2021 by The Geochemical Society of Japan. and are involved in biological and chemical processes that occur in natural water. They facilitate the photochemical degradation of natural organic matter and organic pollutants, biological reactions, and redox reactions (Takeda et al., 2004). In natural environmental systems, ROS are often generated by photolysis, energy transfer, or electron transfer reactions (Zafiriou et al., 1984; Lu et al., 2006) as shown in Eqs. (1)–(10) and are generally present in picomolar (10−12 M) to micromolar (10−6 M) concentrations.
日本地球化学学会版权所有©2021。参与了天然水中的生物和化学过程。它们促进天然有机物和有机污染物的光化学降解、生物反应和氧化还原反应(Takeda et al., 2004)。在自然环境系统中,ROS通常通过光解、能量转移或电子转移反应产生(Zafiriou et al., 1984;Lu et al., 2006),见式。(1) -(10),通常以皮摩尔(10−12 M)至微摩尔(10−6 M)的浓度存在。
{"title":"Measurements, sources and sinks of photoformed reactive oxygen species in Japanese rivers","authors":"Taiwo Tolulope Ayeni, W. Jadoon, A. Adesina, M. Sunday, A. J. Anifowose, K. Takeda, H. Sakugawa","doi":"10.2343/geochemj.2.0620","DOIUrl":"https://doi.org/10.2343/geochemj.2.0620","url":null,"abstract":"Copyright © 2021 by The Geochemical Society of Japan. and are involved in biological and chemical processes that occur in natural water. They facilitate the photochemical degradation of natural organic matter and organic pollutants, biological reactions, and redox reactions (Takeda et al., 2004). In natural environmental systems, ROS are often generated by photolysis, energy transfer, or electron transfer reactions (Zafiriou et al., 1984; Lu et al., 2006) as shown in Eqs. (1)–(10) and are generally present in picomolar (10−12 M) to micromolar (10−6 M) concentrations.","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82332299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geochemical Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1