Pub Date : 2024-10-27DOI: 10.1038/s41434-024-00496-4
Bin Mei, Jiajie Chen, Yang Peng
SR-like CTD-associated factor 8 (SCAF8) can regulate transcriptional termination, but the function of circSCAF8 remains unclear. In our study, we observed a significant increase in circSCAF8 expression in gastric cancer, particularly in tissues with lymph node metastasis. The Kaplan-Meier curve revealed that high circSCAF8 expression was associated with a low overall survival time in gastric cancer patients. Moreover, circSCAF8 shRNA effectively decreased gastric cancer proliferation, invasion, and migration in vitro. Additionally, using bioluminescence imaging (BLI) technology in vivo, we found that circSCAF8 shRNA viruses inhibited the growth of xenograft tumors and gastric cancer lung metastasis. RNA immunoprecipitation (RIP) and circRNA pulldown assays confirmed the direct binding of circSCAF8 to miR-1293, but circSCAF8 could not regulate the expression of miR-1293 in gastric cancer. Interestingly, circSCAF8 regulated the downstream gene tissue inhibitor of metalloproteinases 1 (TIMP1) of miR-1293, and this observation was further verified in gastric cancer tissues. Moreover, we confirmed that miR-1293 directly suppressed TIMP1 expression. Subsequent rescue experiments revealed that TIMP1 overexpression reversed the impact of circSCAF8 shRNA viruses on gastric cancer. In conclusion, circSCAF8 expression was elevated in gastric cancer, and circSCAF8 shRNA viruses inhibited gastric cancer growth and metastasis by upregulating TIMP1 expression via miR-1293.
{"title":"The circRNA circSCAF8 promotes tumor growth and metastasis of gastric cancer via miR-1293/TIMP1signaling.","authors":"Bin Mei, Jiajie Chen, Yang Peng","doi":"10.1038/s41434-024-00496-4","DOIUrl":"https://doi.org/10.1038/s41434-024-00496-4","url":null,"abstract":"<p><p>SR-like CTD-associated factor 8 (SCAF8) can regulate transcriptional termination, but the function of circSCAF8 remains unclear. In our study, we observed a significant increase in circSCAF8 expression in gastric cancer, particularly in tissues with lymph node metastasis. The Kaplan-Meier curve revealed that high circSCAF8 expression was associated with a low overall survival time in gastric cancer patients. Moreover, circSCAF8 shRNA effectively decreased gastric cancer proliferation, invasion, and migration in vitro. Additionally, using bioluminescence imaging (BLI) technology in vivo, we found that circSCAF8 shRNA viruses inhibited the growth of xenograft tumors and gastric cancer lung metastasis. RNA immunoprecipitation (RIP) and circRNA pulldown assays confirmed the direct binding of circSCAF8 to miR-1293, but circSCAF8 could not regulate the expression of miR-1293 in gastric cancer. Interestingly, circSCAF8 regulated the downstream gene tissue inhibitor of metalloproteinases 1 (TIMP1) of miR-1293, and this observation was further verified in gastric cancer tissues. Moreover, we confirmed that miR-1293 directly suppressed TIMP1 expression. Subsequent rescue experiments revealed that TIMP1 overexpression reversed the impact of circSCAF8 shRNA viruses on gastric cancer. In conclusion, circSCAF8 expression was elevated in gastric cancer, and circSCAF8 shRNA viruses inhibited gastric cancer growth and metastasis by upregulating TIMP1 expression via miR-1293.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1038/s41434-024-00493-7
Ana Gonzalez-Ramos, Fredrik Berglind, Jan Kudláček, Elza R Rocha, Esbjörn Melin, Ana M Sebastião, Cláudia A Valente, Marco Ledri, My Andersson, Merab Kokaia
Despite the availability of new drugs on the clinics in recent years, drug-resistant epilepsy remains an unresolved challenge for healthcare, and one-third of epilepsy patients remain refractory to anti-seizure medications. Gene therapy in experimental models has emerged as effective treatment targeting specific neuronal populations in the epileptogenic focus. When combined with an external chemical activator using chemogenetics, it also becomes an "on-demand" treatment. Here, we evaluate a targeted and specific chemogenetic therapy, the PSAM/PSEM system, which holds promise as a potential candidate for clinical application in treating drug-resistant epilepsy. We show that the inert ligand uPSEM817, which selectively activates the chloride-permeable channel PSAM4-GlyR, effectively reduces the number of depolarization-induced action potentials in vitro. This effect is likely due to the shunting of depolarizing currents, as evidenced by decreased membrane resistance in these cells. In organotypic slices, uPSEM817 decreased the number of bursts and peak amplitude of events of spontaneous epileptiform activity. Although administration of uPSEM817 in vivo did not significantly alter electrographic seizures in a male mouse model of temporal lobe epilepsy, it did demonstrate a strong trend toward reducing the frequency of interictal epileptiform discharges. These findings indicate that PSAM4-GlyR-based chemogenetics holds potential as an anti-seizure strategy, although further refinement is necessary to enhance its efficacy.
{"title":"Chemogenetics with PSAM<sup>4</sup>-GlyR decreases excitability and epileptiform activity in epileptic hippocampus.","authors":"Ana Gonzalez-Ramos, Fredrik Berglind, Jan Kudláček, Elza R Rocha, Esbjörn Melin, Ana M Sebastião, Cláudia A Valente, Marco Ledri, My Andersson, Merab Kokaia","doi":"10.1038/s41434-024-00493-7","DOIUrl":"https://doi.org/10.1038/s41434-024-00493-7","url":null,"abstract":"<p><p>Despite the availability of new drugs on the clinics in recent years, drug-resistant epilepsy remains an unresolved challenge for healthcare, and one-third of epilepsy patients remain refractory to anti-seizure medications. Gene therapy in experimental models has emerged as effective treatment targeting specific neuronal populations in the epileptogenic focus. When combined with an external chemical activator using chemogenetics, it also becomes an \"on-demand\" treatment. Here, we evaluate a targeted and specific chemogenetic therapy, the PSAM/PSEM system, which holds promise as a potential candidate for clinical application in treating drug-resistant epilepsy. We show that the inert ligand uPSEM<sup>817</sup>, which selectively activates the chloride-permeable channel PSAM<sup>4</sup>-GlyR, effectively reduces the number of depolarization-induced action potentials in vitro. This effect is likely due to the shunting of depolarizing currents, as evidenced by decreased membrane resistance in these cells. In organotypic slices, uPSEM<sup>817</sup> decreased the number of bursts and peak amplitude of events of spontaneous epileptiform activity. Although administration of uPSEM<sup>817</sup> in vivo did not significantly alter electrographic seizures in a male mouse model of temporal lobe epilepsy, it did demonstrate a strong trend toward reducing the frequency of interictal epileptiform discharges. These findings indicate that PSAM<sup>4</sup>-GlyR-based chemogenetics holds potential as an anti-seizure strategy, although further refinement is necessary to enhance its efficacy.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L-3,4-dihydroxyphenylalanine (L-DOPA) is currently the preferred treatment for Parkinson’s Disease (PD) and is considered the gold standard. However, prolonged use of L-DOPA in patients can result in involuntary movements known as Levodopa-induced dyskinesia (LID), which includes uncontrollable dystonia affecting the trunk, limbs, and face. The role of ΔFosB protein, a truncated splice variant of the FosB gene, in LID has been acknowledged, but its underlying mechanism has remained elusive. Here, using a mouse model of Parkinson’s disease treated with chronic levodopa we demonstrate that serum response factor (SRF) binds to the FosB promoter, thereby activating FosB expression and levodopa induced-dyskinetic movements. Western blot analysis demonstrates a significant increase in SRF expression in the dyskinetic group compared to the control group. Knocking down SRF significantly reduced abnormal involuntary movements (AIMS) and ΔFosB expression compared to the control. Conversely, overexpression of SRF led to an increase in ΔFosB expression and worsened levodopa-induced dyskinesia. To shed light on the regulatory role of the Akt signaling pathway in this phenomenon, we administered the Akt agonist SC79 to PD mouse models via intraperitoneal injection, followed by L-DOPA administration. The expression of SRF, ΔFosB, and phosphorylated Akt (p-Akt) significantly increased in this group compared to the group receiving normal saline to signify that these happen through Akt signaling pathway. Collectively, our findings identify a promising therapeutic target for addressing levodopa-induced dyskinesia.
{"title":"Targeting serum response factor (SRF) deactivates ΔFosB and mitigates Levodopa-induced dyskinesia in a mouse model of Parkinson’s disease","authors":"Piniel Alphayo Kambey, Jiao Wu, WenYa Liu, Mingyu Su, Wokuheleza Buberwa, Chuanxi Tang","doi":"10.1038/s41434-024-00492-8","DOIUrl":"10.1038/s41434-024-00492-8","url":null,"abstract":"L-3,4-dihydroxyphenylalanine (L-DOPA) is currently the preferred treatment for Parkinson’s Disease (PD) and is considered the gold standard. However, prolonged use of L-DOPA in patients can result in involuntary movements known as Levodopa-induced dyskinesia (LID), which includes uncontrollable dystonia affecting the trunk, limbs, and face. The role of ΔFosB protein, a truncated splice variant of the FosB gene, in LID has been acknowledged, but its underlying mechanism has remained elusive. Here, using a mouse model of Parkinson’s disease treated with chronic levodopa we demonstrate that serum response factor (SRF) binds to the FosB promoter, thereby activating FosB expression and levodopa induced-dyskinetic movements. Western blot analysis demonstrates a significant increase in SRF expression in the dyskinetic group compared to the control group. Knocking down SRF significantly reduced abnormal involuntary movements (AIMS) and ΔFosB expression compared to the control. Conversely, overexpression of SRF led to an increase in ΔFosB expression and worsened levodopa-induced dyskinesia. To shed light on the regulatory role of the Akt signaling pathway in this phenomenon, we administered the Akt agonist SC79 to PD mouse models via intraperitoneal injection, followed by L-DOPA administration. The expression of SRF, ΔFosB, and phosphorylated Akt (p-Akt) significantly increased in this group compared to the group receiving normal saline to signify that these happen through Akt signaling pathway. Collectively, our findings identify a promising therapeutic target for addressing levodopa-induced dyskinesia.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"31 11-12","pages":"614-624"},"PeriodicalIF":4.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1038/s41434-024-00491-9
Chengchi Huang, Avinash Kaur, Liyang Ji, Hong Tian, Keith A. Webster, Wei Li
Efforts to develop gene therapy for long-term treatment of neovascular disease are hampered by ongoing concerns that biologics against vascular endothelial growth factor (VEGF) inhibit both physiological and pathological angiogenesis and are therefore at elevated risk of adverse side effects. A potential solution is to develop disease-targeted gene therapy. Secretogranin III (Scg3), a unique disease-restricted angiogenic factor described by our group, contributes significantly to ocular neovascular disease. We have shown that Scg3 blockade with a monoclonal antibody Fab fragment (Fab) stringently inhibits pathological angiogenesis without affecting healthy vessels. Here we tested the therapeutic efficacy of adeno-associated virus (AAV)-anti-Scg3Fab to block choroidal neovascularization (CNV) induced by subretinal injection of Matrigel in a mouse model. Intravitreal AAV-anti-Scg3Fab significantly reduced CNV and suppressed CNV-associated leukocyte infiltration and macrophage activation. The efficacy and anti-inflammatory effects were equivalent to those achieved by positive control AAV-aflibercept against VEGF. Efficacies of AAV-anti-Scg3Fab and AAV-aflibercept were sustained over 4 months post AAV delivery. The findings support development of AAV-anti-Scg3 as an alternative to AAV-anti-VEGF with equivalent efficacy and potentially safer mechanism of action.
{"title":"Suppression of matrigel-induced choroidal neovascularization by AAV delivery of a novel anti-Scg3 antibody","authors":"Chengchi Huang, Avinash Kaur, Liyang Ji, Hong Tian, Keith A. Webster, Wei Li","doi":"10.1038/s41434-024-00491-9","DOIUrl":"10.1038/s41434-024-00491-9","url":null,"abstract":"Efforts to develop gene therapy for long-term treatment of neovascular disease are hampered by ongoing concerns that biologics against vascular endothelial growth factor (VEGF) inhibit both physiological and pathological angiogenesis and are therefore at elevated risk of adverse side effects. A potential solution is to develop disease-targeted gene therapy. Secretogranin III (Scg3), a unique disease-restricted angiogenic factor described by our group, contributes significantly to ocular neovascular disease. We have shown that Scg3 blockade with a monoclonal antibody Fab fragment (Fab) stringently inhibits pathological angiogenesis without affecting healthy vessels. Here we tested the therapeutic efficacy of adeno-associated virus (AAV)-anti-Scg3Fab to block choroidal neovascularization (CNV) induced by subretinal injection of Matrigel in a mouse model. Intravitreal AAV-anti-Scg3Fab significantly reduced CNV and suppressed CNV-associated leukocyte infiltration and macrophage activation. The efficacy and anti-inflammatory effects were equivalent to those achieved by positive control AAV-aflibercept against VEGF. Efficacies of AAV-anti-Scg3Fab and AAV-aflibercept were sustained over 4 months post AAV delivery. The findings support development of AAV-anti-Scg3 as an alternative to AAV-anti-VEGF with equivalent efficacy and potentially safer mechanism of action.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"31 11-12","pages":"587-593"},"PeriodicalIF":4.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1038/s41434-024-00490-w
Pin Lyu, Manish Kumar Yadav, Kyung Whan Yoo, Cuili Jiang, Qingqi Li, Anthony Atala, Baisong Lu
Dent disease type 1 is caused by changes in the chloride voltage-gated channel 5 (CLCN5) gene on chromosome X, resulting in the lack or dysfunction of chloride channel ClC-5. Individuals affected by Dent disease type 1 show proteinuria and hypercalciuria. Previously we found that lentiviral vector-mediated hCLCN5 cDNA supplementary therapy in ClC-5 null mice was effective only for three months following gene delivery, and the therapeutic effects disappeared four months after treatment, most likely due to immune responses to the ClC-5 proteins expressed in the treated cells. Here we tried two strategies to reduce possible immune responses: 1) confining the expression of ClC-5 expression to the tubular cells with tubule-specific Npt2a and Sglt2 promoters, and 2) performing gene therapy in newborn mutant mice whose immune system has not fully developed. We found that although Npt2a and Sglt2 promoters successfully drove ClC-5 expression in the kidneys of the mutant mice, the treatment did not ameliorate the phenotypes. However, gene delivery to the kidneys of newborn Clcn5 mutant mice enabled long-term transgene expression and phenotype improvement. Our data suggest that performing gene therapy on Dent disease affected subjects soon after birth could be a promising strategy to attenuate immune responses in Dent disease type 1 gene therapy.
{"title":"Gene therapy of Dent disease type 1 in newborn ClC-5 null mice for sustained transgene expression and gene therapy effects","authors":"Pin Lyu, Manish Kumar Yadav, Kyung Whan Yoo, Cuili Jiang, Qingqi Li, Anthony Atala, Baisong Lu","doi":"10.1038/s41434-024-00490-w","DOIUrl":"10.1038/s41434-024-00490-w","url":null,"abstract":"Dent disease type 1 is caused by changes in the chloride voltage-gated channel 5 (CLCN5) gene on chromosome X, resulting in the lack or dysfunction of chloride channel ClC-5. Individuals affected by Dent disease type 1 show proteinuria and hypercalciuria. Previously we found that lentiviral vector-mediated hCLCN5 cDNA supplementary therapy in ClC-5 null mice was effective only for three months following gene delivery, and the therapeutic effects disappeared four months after treatment, most likely due to immune responses to the ClC-5 proteins expressed in the treated cells. Here we tried two strategies to reduce possible immune responses: 1) confining the expression of ClC-5 expression to the tubular cells with tubule-specific Npt2a and Sglt2 promoters, and 2) performing gene therapy in newborn mutant mice whose immune system has not fully developed. We found that although Npt2a and Sglt2 promoters successfully drove ClC-5 expression in the kidneys of the mutant mice, the treatment did not ameliorate the phenotypes. However, gene delivery to the kidneys of newborn Clcn5 mutant mice enabled long-term transgene expression and phenotype improvement. Our data suggest that performing gene therapy on Dent disease affected subjects soon after birth could be a promising strategy to attenuate immune responses in Dent disease type 1 gene therapy.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"31 11-12","pages":"563-571"},"PeriodicalIF":4.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41434-024-00490-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gallbladder cancer (GBC) is highly aggressive and has poor prognosis, with most patients only diagnosed at an advanced stage. Furthermore, treatment options are limited, and their effect is unsatisfactory. Bromodomain-containing protein (BRD) is an epigenetic regulator that plays a carcinogenic role in several tumors, including squamous cell lung cancer, acute myeloid leukemia, synovial sarcoma, and malignant rhabdomyosarcoma. However, the expression, biological function, and molecular mechanisms of action of BRD9 in GBC are still unknown. Kaplan–Meier analysis, qRT-PCR, and analysis of clinical features were used to assess the clinical significance of BRD9 in GBC. Cell Counting Kit-8 and colony formation assays were performed to determine the effects of BRD9 on cell growth. The functional role of BRD9 in GBC was explored using qRT-PCR, western blotting, siRNA, and CHIP-qPCR. mRNA sequencing was performed to explore the underlying mechanisms of BRD9, and a nude mouse model of GBC was established to explore the anti-tumor effects of the BRD9 inhibitor I-BRD9 in vivo. BRD9 expression was elevated in GBC tissues compared with adjacent non-tumor tissues, and high BRD9 expression was associated with poor prognosis in patients with GBC. BRD9 knockdown by siRNA significantly decreased cell growth. Targeting BRD9 with I-BRD9 inhibited the proliferation of GBC cells without significant toxic effects. Additionally, I-BRD9 treatment suppressed CST1 expression in GBC cell lines, thereby inhibiting the PI3K-AKT pathway. The transcription factor FOXP1 was found to interact with BRD9 to regulate CST1 expression. Collectively, these results suggest that BRD9 may be a promising biomarker and therapeutic target for GBC.
{"title":"BRD9 promotes the progression of gallbladder cancer via CST1 upregulation and interaction with FOXP1 through the PI3K/AKT pathway and represents a therapeutic target","authors":"Jing Qiang, Cheng Zhao, Liu-Qing Shi, Si-Rui Sun, Hua-Kai Wang, Shi-Lei Liu, Zi-Yi Yang, Ping Dong, Shan-Shan Xiang, Jian-Dong Wang, Yi-Jun Shu","doi":"10.1038/s41434-024-00488-4","DOIUrl":"10.1038/s41434-024-00488-4","url":null,"abstract":"Gallbladder cancer (GBC) is highly aggressive and has poor prognosis, with most patients only diagnosed at an advanced stage. Furthermore, treatment options are limited, and their effect is unsatisfactory. Bromodomain-containing protein (BRD) is an epigenetic regulator that plays a carcinogenic role in several tumors, including squamous cell lung cancer, acute myeloid leukemia, synovial sarcoma, and malignant rhabdomyosarcoma. However, the expression, biological function, and molecular mechanisms of action of BRD9 in GBC are still unknown. Kaplan–Meier analysis, qRT-PCR, and analysis of clinical features were used to assess the clinical significance of BRD9 in GBC. Cell Counting Kit-8 and colony formation assays were performed to determine the effects of BRD9 on cell growth. The functional role of BRD9 in GBC was explored using qRT-PCR, western blotting, siRNA, and CHIP-qPCR. mRNA sequencing was performed to explore the underlying mechanisms of BRD9, and a nude mouse model of GBC was established to explore the anti-tumor effects of the BRD9 inhibitor I-BRD9 in vivo. BRD9 expression was elevated in GBC tissues compared with adjacent non-tumor tissues, and high BRD9 expression was associated with poor prognosis in patients with GBC. BRD9 knockdown by siRNA significantly decreased cell growth. Targeting BRD9 with I-BRD9 inhibited the proliferation of GBC cells without significant toxic effects. Additionally, I-BRD9 treatment suppressed CST1 expression in GBC cell lines, thereby inhibiting the PI3K-AKT pathway. The transcription factor FOXP1 was found to interact with BRD9 to regulate CST1 expression. Collectively, these results suggest that BRD9 may be a promising biomarker and therapeutic target for GBC.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"31 11-12","pages":"594-606"},"PeriodicalIF":4.6,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41434-024-00488-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142284337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1038/s41434-024-00482-w
Sujun Li, Shyamtanu Datta, Emily Brabbit, Zoe Love, Victoria Woytowicz, Kyle Flattery, Jessica Capri, Katie Yao, Siqi Wu, Michael Imboden, Arun Upadhyay, Rasappa Arumugham, Wallace B. Thoreson, Margaret M. DeAngelis, Neena B. Haider
{"title":"Correction: Nr2e3 is a genetic modifier that rescues retinal degeneration and promotes homeostasis in multiple models of retinitis pigmentosa","authors":"Sujun Li, Shyamtanu Datta, Emily Brabbit, Zoe Love, Victoria Woytowicz, Kyle Flattery, Jessica Capri, Katie Yao, Siqi Wu, Michael Imboden, Arun Upadhyay, Rasappa Arumugham, Wallace B. Thoreson, Margaret M. DeAngelis, Neena B. Haider","doi":"10.1038/s41434-024-00482-w","DOIUrl":"10.1038/s41434-024-00482-w","url":null,"abstract":"","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"31 11-12","pages":"630-632"},"PeriodicalIF":4.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41434-024-00482-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142284338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In hemophilia, deficiency of factor VIII or IX prevents the activation of the common coagulation pathway, and inhibits the conversion of FX to activated FXa, which is required for thrombin generation. We hypothesized that the direct expressed FXa has the potential to activate the common pathway and restore coagulation in hemophilia patients. In this study, the cassettes that expressed FXa, FXaop and FXa-FVII were packaged into an engineered AAV capsid, AAV843, and were delivered into hemophilia A and B mice by intravenous injection. AAV-FXaop could be stably expressed in vivo and showed the best immediate and prolonged hemostatic effects, similar to those of commercial drugs (Xyntha and Benefix). AAV-FXaop also significantly inhibited bleeding in hemophilia A mice with inhibitors. In addition, FXa expression in joints significantly alleviated the occurrence of hemophilic synovitis. AAV-delivered FXa may be a novel target for treating hemophilic and hemophilic synovitis.
在血友病患者中,因子 VIII 或 IX 的缺乏会阻止共同凝血途径的激活,并抑制 FX 向活化的 FXa 的转化,而活化的 FXa 是凝血酶生成所必需的。我们假设,直接表达的 FXa 有可能激活血友病患者的共同凝血途径并恢复凝血功能。在这项研究中,我们将表达 FXa、FXaop 和 FXa-FVII 的基因盒打包到一个工程化的 AAV 胶囊 AAV843 中,并通过静脉注射将其输送到 A 型和 B 型血友病小鼠体内。AAV-FXaop 可在体内稳定表达,并显示出最佳的即时和持久止血效果,与商业药物(Xyntha 和 Benefix)的止血效果相似。AAV-FXaop还能显著抑制A型血友病小鼠在抑制剂作用下的出血。此外,在关节中表达 FXa 能明显缓解血友病滑膜炎的发生。AAV递送的FXa可能是治疗血友病和血友病滑膜炎的新靶点。
{"title":"Activated factor X delivered by adeno-associated virus significantly inhibited bleeding and alleviated hemophilic synovitis in hemophilic mice","authors":"Feixu Zhang, Xinyue Zhou, Baolai Hua, Xinyi He, Zhanao Li, Xiao Xiao, Xia Wu","doi":"10.1038/s41434-024-00479-5","DOIUrl":"10.1038/s41434-024-00479-5","url":null,"abstract":"In hemophilia, deficiency of factor VIII or IX prevents the activation of the common coagulation pathway, and inhibits the conversion of FX to activated FXa, which is required for thrombin generation. We hypothesized that the direct expressed FXa has the potential to activate the common pathway and restore coagulation in hemophilia patients. In this study, the cassettes that expressed FXa, FXaop and FXa-FVII were packaged into an engineered AAV capsid, AAV843, and were delivered into hemophilia A and B mice by intravenous injection. AAV-FXaop could be stably expressed in vivo and showed the best immediate and prolonged hemostatic effects, similar to those of commercial drugs (Xyntha and Benefix). AAV-FXaop also significantly inhibited bleeding in hemophilia A mice with inhibitors. In addition, FXa expression in joints significantly alleviated the occurrence of hemophilic synovitis. AAV-delivered FXa may be a novel target for treating hemophilic and hemophilic synovitis.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"31 11-12","pages":"544-552"},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41434-024-00479-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}