首页 > 最新文献

Green Energy & Environment最新文献

英文 中文
Tailor-made microstructures lead to high-performance robust PEO membrane for CO2 capture via green fabrication technique 量身定制的微观结构通过绿色制造技术生产出用于CO2捕获的高性能坚固PEO膜
IF 13.3 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-10-01 DOI: 10.1016/j.gee.2022.01.016
Wei-Shi Sun, Ming-Jie Yin, Wen-Hai Zhang, Shuo Li, Naixin Wang, Quan-Fu An

Emerging excessive greenhouse gas emissions pose great threats to the ecosystem, which thus requires efficient CO2 capture to mitigate the disastrous issue. In this report, large molecular size bisphenol A ethoxylate diacrylate (BPA) was employed to crosslink poly (ethylene glycol) methyl ether acrylate (PEGMEA) via the green and rapid UV polymerization strategy. The microstructure of such-prepared membrane could be conveniently tailored by tuning the ratio of the two prepolymers, aiming at obtaining the optimized microstructures with suitable mesh size and PEO sol content, which was approved by a novel low-field nuclear magnetic resonance technique. The optimum membrane overcomes the trade-off challenge: dense microstructures lower the gas permeability while loose microstructures lower high-pressure-resistance capacity, realizing a high CO2 permeability of 1711 Barrer and 100-h long-term running stability under 15 atm. The proposed membrane fabrication approach, hence, opens a novel gate for developing high-performance robust membranes for CO2 capture.

新出现的过量温室气体排放对生态系统构成了巨大威胁,因此需要有效捕获二氧化碳来缓解这一灾难性问题。本文采用大分子量双酚A乙氧基化二丙烯酸酯(BPA),采用绿色快速紫外聚合策略交联聚乙二醇甲基醚丙烯酸酯(PEGMEA)。通过调节两种预聚物的比例,可以方便地调整这种膜的微观结构,旨在获得具有合适网孔尺寸和PEO溶胶含量的优化微观结构,这已被一种新的低场核磁共振技术所证实。最佳膜克服了权衡挑战:致密的微观结构降低了气体渗透率,而疏松的微观结构则降低了高压耐受能力,实现了1711 Barrer的高CO2渗透率和在15个大气压下100小时的长期运行稳定性。因此,所提出的膜制造方法为开发用于CO2捕获的高性能坚固膜打开了一扇新的大门。
{"title":"Tailor-made microstructures lead to high-performance robust PEO membrane for CO2 capture via green fabrication technique","authors":"Wei-Shi Sun,&nbsp;Ming-Jie Yin,&nbsp;Wen-Hai Zhang,&nbsp;Shuo Li,&nbsp;Naixin Wang,&nbsp;Quan-Fu An","doi":"10.1016/j.gee.2022.01.016","DOIUrl":"https://doi.org/10.1016/j.gee.2022.01.016","url":null,"abstract":"<div><p>Emerging excessive greenhouse gas emissions pose great threats to the ecosystem, which thus requires efficient CO<sub>2</sub> capture to mitigate the disastrous issue. In this report, large molecular size bisphenol A ethoxylate diacrylate (BPA) was employed to crosslink poly (ethylene glycol) methyl ether acrylate (PEGMEA) via the green and rapid UV polymerization strategy. The microstructure of such-prepared membrane could be conveniently tailored by tuning the ratio of the two prepolymers, aiming at obtaining the optimized microstructures with suitable mesh size and PEO sol content, which was approved by a novel low-field nuclear magnetic resonance technique. The optimum membrane overcomes the trade-off challenge: dense microstructures lower the gas permeability while loose microstructures lower high-pressure-resistance capacity, realizing a high CO<sub>2</sub> permeability of 1711 Barrer and 100-h long-term running stability under 15 atm. The proposed membrane fabrication approach, hence, opens a novel gate for developing high-performance robust membranes for CO<sub>2</sub> capture.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 5","pages":"Pages 1389-1397"},"PeriodicalIF":13.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries 晶面诱导的锰基阴极原位电化学活化实现了长期水性锌离子电池
IF 13.3 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-10-01 DOI: 10.1016/j.gee.2022.02.009
Yuxin Gao , Jiang Zhou , Liping Qin , Zhenming Xu , Zhexuan Liu , Liangbing Wang , Xinxin Cao , Guozhao Fang , Shuquan Liang

Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries. Herein, the effects of crystal plane on the in-situ transformation behavior and electrochemical performance of manganese-based cathode is discussed. A comprehensive discussion manifests that the exposed (100) crystal plane is beneficial to the phase transformation from tunnel-structured MnO2 to layer-structured ZnMn3O7·3H2O, which plays a critical role for the high reactivity, high capacity, fast diffusion kinetics and long cycling stability. Additionally, a two-stage zinc storage mechanism can be demonstrated, involving continuous activation reaction and phase transition reaction. As expected, it exhibits a high capacity of 275 mAh g−1 at 100 mA g−1, a superior durability over 1000 cycles and good rate capability. This study may open new windows toward developing advanced cathodes for ZIBs, and facilitate the applications of ZIBs in large-scale energy storage system.

快速的容量衰减和缓慢的反应动力学是阻碍锰基阴极材料在水性锌离子电池中应用的主要障碍。本文讨论了晶面对锰基阴极原位转化行为和电化学性能的影响。综合讨论表明,暴露的(100)晶面有利于从隧道结构的MnO2向层结构的ZnMn3O7·3H2O的相变,这对高反应性、高容量、快速扩散动力学和长循环稳定性起着关键作用。此外,还可以证明锌的两阶段储存机制,包括连续活化反应和相变反应。正如预期的那样,它在100 mA g−1下表现出275 mAh g−1的高容量,在1000次循环中具有卓越的耐用性和良好的倍率性能。这项研究可能为开发先进的ZIBs阴极打开新的窗口,并促进ZIBs在大规模储能系统中的应用。
{"title":"Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries","authors":"Yuxin Gao ,&nbsp;Jiang Zhou ,&nbsp;Liping Qin ,&nbsp;Zhenming Xu ,&nbsp;Zhexuan Liu ,&nbsp;Liangbing Wang ,&nbsp;Xinxin Cao ,&nbsp;Guozhao Fang ,&nbsp;Shuquan Liang","doi":"10.1016/j.gee.2022.02.009","DOIUrl":"https://doi.org/10.1016/j.gee.2022.02.009","url":null,"abstract":"<div><p>Rapid capacity decay and sluggish reaction kinetics are major barriers hindering the applications of manganese-based cathode materials for aqueous zinc-ion batteries. Herein, the effects of crystal plane on the <em>in-situ</em> transformation behavior and electrochemical performance of manganese-based cathode is discussed. A comprehensive discussion manifests that the exposed (100) crystal plane is beneficial to the phase transformation from tunnel-structured MnO<sub>2</sub> to layer-structured ZnMn<sub>3</sub>O<sub>7</sub>·3H<sub>2</sub>O, which plays a critical role for the high reactivity, high capacity, fast diffusion kinetics and long cycling stability. Additionally, a two-stage zinc storage mechanism can be demonstrated, involving continuous activation reaction and phase transition reaction. As expected, it exhibits a high capacity of 275 mAh g<sup>−1</sup> at 100 mA g<sup>−1</sup>, a superior durability over 1000 cycles and good rate capability. This study may open new windows toward developing advanced cathodes for ZIBs, and facilitate the applications of ZIBs in large-scale energy storage system.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 5","pages":"Pages 1429-1436"},"PeriodicalIF":13.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient conversion of lignin waste and self-assembly synthesis of C@MnCo2O4 for asymmetric supercapacitors with high energy density 木质素废弃物的高效转化及高能量密度不对称超级电容器C@MnCo2O4的自组装合成
IF 13.3 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-10-01 DOI: 10.1016/j.gee.2022.09.010
Jiahui Mu, Cuihuan Li, Jiankang Zhang, Xianliang Song, Sheng Chen, Feng Xu

Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications, such as the electrodes of supercapacitors; however, the improvement of their energy density remains a challenge. Here, we design a green and universal approach to prepare the composite electrode material, which is composed of lignin-phenol-formaldehyde resins derived hierarchical porous carbon (LR-HPC) as conductive skeletons and the self-assembly manganese cobaltite (MnCo2O4) nanocrystals as active sites. The synthesized C@MnCo2O4 composite has an abundant porous structure and superior electronic conductivity, allowing for more charge/electron mass transfer channels and active sites for the redox reactions. The composite shows excellent electrochemical performance, such as the maximum specific capacitance of ∼726 mF cm−2 at 0.5 mV s−1, due to the significantly enhanced interactive interface between LR-HPC and MnCo2O4 crystals. The assembled all-solid-state asymmetric supercapacitor, with the LR-HPC and C@MnCo2O4 as cathode and anode, respectively, exhibits the highest volumetric energy density of 0.68 mWh cm−3 at a power density of 8.2 mW cm−3. Moreover, this device shows a high capacity retention ratio of ∼87.6% at 5 mA cm−2 after 5000 cycles.

造纸和生物炼制行业的木质素废物是一种非常有前途的可再生资源,可用于制备各种应用的先进碳材料,如超级电容器的电极;然而,提高它们的能量密度仍然是一个挑战。在这里,我们设计了一种绿色通用的方法来制备复合电极材料,该材料由木质素酚醛树脂衍生的分级多孔碳(LR-HPC)作为导电骨架和自组装的钴酸锰(MnCo2O4)纳米晶体作为活性位点组成。合成的C@MnCo2O4复合材料具有丰富的多孔结构和优异的电子导电性,为氧化还原反应提供了更多的电荷/电子传质通道和活性位点。由于LR-HPC和MnCo2O4晶体之间的交互界面显著增强,该复合材料显示出优异的电化学性能,例如在0.5 mV s−1时的最大比电容为~726 mF cm−2。组装的全固态不对称超级电容器,分别以LR-HPC和C@MnCo2O4为阴极和阳极,在8.2 mW cm−3的功率密度下,表现出0.68 mWh cm−3最高的体积能量密度。此外,该设备在5000次循环后,在5 mA cm−2下显示出高容量保持率~87.6%。
{"title":"Efficient conversion of lignin waste and self-assembly synthesis of C@MnCo2O4 for asymmetric supercapacitors with high energy density","authors":"Jiahui Mu,&nbsp;Cuihuan Li,&nbsp;Jiankang Zhang,&nbsp;Xianliang Song,&nbsp;Sheng Chen,&nbsp;Feng Xu","doi":"10.1016/j.gee.2022.09.010","DOIUrl":"https://doi.org/10.1016/j.gee.2022.09.010","url":null,"abstract":"<div><p>Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications, such as the electrodes of supercapacitors; however, the improvement of their energy density remains a challenge. Here, we design a green and universal approach to prepare the composite electrode material, which is composed of lignin-phenol-formaldehyde resins derived hierarchical porous carbon (LR-HPC) as conductive skeletons and the self-assembly manganese cobaltite (MnCo<sub>2</sub>O<sub>4</sub>) nanocrystals as active sites. The synthesized C@MnCo<sub>2</sub>O<sub>4</sub> composite has an abundant porous structure and superior electronic conductivity, allowing for more charge/electron mass transfer channels and active sites for the redox reactions. The composite shows excellent electrochemical performance, such as the maximum specific capacitance of ∼726 mF cm<sup>−2</sup> at 0.5 mV s<sup>−1</sup>, due to the significantly enhanced interactive interface between LR-HPC and MnCo<sub>2</sub>O<sub>4</sub> crystals. The assembled all-solid-state asymmetric supercapacitor, with the LR-HPC and C@MnCo<sub>2</sub>O<sub>4</sub> as cathode and anode, respectively, exhibits the highest volumetric energy density of 0.68 mWh cm<sup>−3</sup> at a power density of 8.2 mW cm<sup>−3</sup>. Moreover, this device shows a high capacity retention ratio of ∼87.6% at 5 mA cm<sup>−2</sup> after 5000 cycles.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 5","pages":"Pages 1479-1487"},"PeriodicalIF":13.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene-based electrocatalysts for advanced energy conversion 用于高级能量转换的石墨烯基电催化剂
IF 13.3 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-10-01 DOI: 10.1016/j.gee.2022.06.008
Pingping Yang , Xin Yang , Wenzhu Liu , Ruike Guo , Zufu Yao

Graphene-based nanocatalysts have appealed much interest as advanced electrocatalysts toward energy conversion reactions due to their outstanding electrocatalytic performance from the distinctive chemical composites and strong synergistic effects. Aiming to better understand the role of graphene played in enhancing the catalytic performance and offer guidance for fabricating more efficient graphene-based electrocatalysts, we herein summarize the remarkable achievements of graphene-based electrocatalysts for energy-conversion-related reactions. Started by discussing applications of graphene in the electrocatalytic reactions, we have manifested the crucial role of graphene played in promoting the catalytic performance. Subsequently, many representative graphene-based catalyst hybrids for electrocatalytic reactions are also overviewed, showing many effective strategies for the fabrication of more efficient graphene-related materials for the practical application. Finally, the perspective insights and challenging issues are also concluded to provide directions for the future development.

石墨烯基纳米催化剂由于其独特的化学复合材料的卓越电催化性能和强大的协同效应,作为能量转换反应的先进电催化剂,引起了人们的极大兴趣。为了更好地理解石墨烯在提高催化性能方面的作用,并为制备更高效的石墨烯基电催化剂提供指导,我们在此总结了石墨烯基电催化剂在能量转换相关反应中的显著成就。从讨论石墨烯在电催化反应中的应用开始,我们已经证明了石墨烯在促进催化性能方面发挥的关键作用。随后,还综述了许多具有代表性的用于电催化反应的石墨烯基催化剂杂化物,显示了许多制造更高效的石墨烯相关材料的有效策略,以供实际应用。最后,总结了展望性的见解和具有挑战性的问题,为未来的发展提供了方向。
{"title":"Graphene-based electrocatalysts for advanced energy conversion","authors":"Pingping Yang ,&nbsp;Xin Yang ,&nbsp;Wenzhu Liu ,&nbsp;Ruike Guo ,&nbsp;Zufu Yao","doi":"10.1016/j.gee.2022.06.008","DOIUrl":"https://doi.org/10.1016/j.gee.2022.06.008","url":null,"abstract":"<div><p>Graphene-based nanocatalysts have appealed much interest as advanced electrocatalysts toward energy conversion reactions due to their outstanding electrocatalytic performance from the distinctive chemical composites and strong synergistic effects. Aiming to better understand the role of graphene played in enhancing the catalytic performance and offer guidance for fabricating more efficient graphene-based electrocatalysts, we herein summarize the remarkable achievements of graphene-based electrocatalysts for energy-conversion-related reactions. Started by discussing applications of graphene in the electrocatalytic reactions, we have manifested the crucial role of graphene played in promoting the catalytic performance. Subsequently, many representative graphene-based catalyst hybrids for electrocatalytic reactions are also overviewed, showing many effective strategies for the fabrication of more efficient graphene-related materials for the practical application. Finally, the perspective insights and challenging issues are also concluded to provide directions for the future development.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 5","pages":"Pages 1265-1278"},"PeriodicalIF":13.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
3D inner-outer asymmetric sponge for enormous-volume emulsion wastewater treatment based on a new “demulsification-transport” mechanism 基于新型“破乳-转运”机理的三维内外不对称海绵处理大体积乳化废水
IF 13.3 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-10-01 DOI: 10.1016/j.gee.2022.02.001
Ruixiang Qu , Shuaiheng Zhao , Na Liu , Xiangyu Li , Huajun Zhai , Ya'nan Liu , Yen Wei , Lin Feng

Although oily wastewater treatment realized by superwetting materials has attracted heightened attention in recent years, how to treat enormous-volume emulsion wastewater is still a tough problem, which is ascribed to the emulsion accumulation. Herein, to address this problem, a material is presented by subtly integrating chemical demulsification and 3D inner-outer asymmetric wettability to a sponge substrate, and thus wettability gradient-driven oil directional transport for achieving unprecedented enormous-volume emulsion wastewater treatment is realized based on a “demulsification-transport” mechanism. The maximum treatment volume realized by the sponge is as large as 3 L (2.08 × 104 L per cubic meter of the sponge) in one cycle, which is about 100 times of the reported materials. Besides, owing to the large pore size of the sponge, 9000 L m2 h−1 (LMH) separation flux and 99.5% separation efficiency are realized simultaneously, which overcomes the trade-off dilemma. Such a 3D inner-outer asymmetric sponge displaying unprecedented advantage in the treatment volume can promote the development of the oily wastewater treatment field, as well as expand the application prospects of superwetting materials, especially in continuous water treatment.

尽管近年来超润湿材料处理含油废水引起了人们的高度重视,但如何处理大体积乳化废水仍然是一个难题,这归因于乳化液的积累。在此,为了解决这个问题,提出了一种将化学破乳和三维内外不对称润湿性巧妙地结合到海绵基底上的材料,从而基于“破乳传输”机制实现了润湿性梯度驱动的油定向传输,以实现前所未有的大体积乳化废水处理。海绵在一个循环中实现的最大处理量高达3L(每立方米海绵2.08×104L),约为报道材料的100倍。此外,由于海绵的孔径较大,同时实现了9000 L m2 h−1(LMH)的分离通量和99.5%的分离效率,克服了折衷的困境。这种三维内外不对称海绵在处理体积上显示出前所未有的优势,可以促进含油废水处理领域的发展,并拓展超润湿材料的应用前景,特别是在连续水处理中。
{"title":"3D inner-outer asymmetric sponge for enormous-volume emulsion wastewater treatment based on a new “demulsification-transport” mechanism","authors":"Ruixiang Qu ,&nbsp;Shuaiheng Zhao ,&nbsp;Na Liu ,&nbsp;Xiangyu Li ,&nbsp;Huajun Zhai ,&nbsp;Ya'nan Liu ,&nbsp;Yen Wei ,&nbsp;Lin Feng","doi":"10.1016/j.gee.2022.02.001","DOIUrl":"https://doi.org/10.1016/j.gee.2022.02.001","url":null,"abstract":"<div><p>Although oily wastewater treatment realized by superwetting materials has attracted heightened attention in recent years, how to treat enormous-volume emulsion wastewater is still a tough problem, which is ascribed to the emulsion accumulation. Herein, to address this problem, a material is presented by subtly integrating chemical demulsification and 3D inner-outer asymmetric wettability to a sponge substrate, and thus wettability gradient-driven oil directional transport for achieving unprecedented enormous-volume emulsion wastewater treatment is realized based on a “demulsification-transport” mechanism. The maximum treatment volume realized by the sponge is as large as 3 L (2.08 × 10<sup>4</sup> L per cubic meter of the sponge) in one cycle, which is about 100 times of the reported materials. Besides, owing to the large pore size of the sponge, 9000 L m<sup>2</sup> h<sup>−1</sup> (LMH) separation flux and 99.5% separation efficiency are realized simultaneously, which overcomes the trade-off dilemma. Such a 3D inner-outer asymmetric sponge displaying unprecedented advantage in the treatment volume can promote the development of the oily wastewater treatment field, as well as expand the application prospects of superwetting materials, especially in continuous water treatment.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 5","pages":"Pages 1398-1408"},"PeriodicalIF":13.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Accurate quantification of TiO2(B)'s phase purity via Raman spectroscopy 通过拉曼光谱准确定量TiO2(B)的相纯度
IF 13.3 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-10-01 DOI: 10.1016/j.gee.2022.02.008
Jiamiao Ran , Hui Liu , Hongliang Dong , Peng Gao , Haowei Cheng , Jianing Xu , Hailun Wang , Zixing Wang , Qingfeng Fu , Jiaxu Yan , Jilei Liu

Bronze phase titanium dioxide (TiO2(B)) could be a promising high-power anode for lithium ion battery. However, TiO2(B) is a metastable material, so the as-synthesized samples are inevitably accompanied by the existence of anatase phases. It has been found that the TiO2(B)'s purity is positively correlated with its electrochemical performance. Herein, we have established an accurate quantification of the TiO2(B)/anatase ratio, by figuring out the function between the purity of TiO2(B) phase in the high purity range and its Raman spectra features in combination of the calibration by the synchrotron radiation X-ray diffraction (XRD). Compared with the time-consuming electrochemical method, the rapid, sensitive and non-destructive features of Raman spectroscopy have made it a promising candidate for determining the purity of TiO2(B). Further, the correlations developed in this work should be instructive in synthesizing pure TiO2(B) and furthermore optimizing its electrochemical charge storage properties.

青铜相二氧化钛(TiO2(B))是一种很有前途的锂离子电池大功率阳极。然而,TiO2(B)是一种亚稳材料,因此合成的样品不可避免地伴随着锐钛矿相的存在。已经发现TiO2(B)的纯度与其电化学性能呈正相关。在此,我们通过计算高纯度范围内TiO2(B)相的纯度与其拉曼光谱特征之间的函数,并结合同步辐射X射线衍射(XRD)的校准,建立了TiO2(B。与耗时的电化学方法相比,拉曼光谱的快速、灵敏和无损特性使其成为测定TiO2(B)纯度的一种很有前途的候选者。此外,本工作中开发的相关性对于合成纯TiO2(B)并进一步优化其电化学电荷存储性能具有指导意义。
{"title":"Accurate quantification of TiO2(B)'s phase purity via Raman spectroscopy","authors":"Jiamiao Ran ,&nbsp;Hui Liu ,&nbsp;Hongliang Dong ,&nbsp;Peng Gao ,&nbsp;Haowei Cheng ,&nbsp;Jianing Xu ,&nbsp;Hailun Wang ,&nbsp;Zixing Wang ,&nbsp;Qingfeng Fu ,&nbsp;Jiaxu Yan ,&nbsp;Jilei Liu","doi":"10.1016/j.gee.2022.02.008","DOIUrl":"https://doi.org/10.1016/j.gee.2022.02.008","url":null,"abstract":"<div><p>Bronze phase titanium dioxide (TiO<sub>2</sub>(B)) could be a promising high-power anode for lithium ion battery. However, TiO<sub>2</sub>(B) is a metastable material, so the as-synthesized samples are inevitably accompanied by the existence of anatase phases. It has been found that the TiO<sub>2</sub>(B)'s purity is positively correlated with its electrochemical performance. Herein, we have established an accurate quantification of the TiO<sub>2</sub>(B)/anatase ratio, by figuring out the function between the purity of TiO<sub>2</sub>(B) phase in the high purity range and its Raman spectra features in combination of the calibration by the synchrotron radiation X-ray diffraction (XRD). Compared with the time-consuming electrochemical method, the rapid, sensitive and non-destructive features of Raman spectroscopy have made it a promising candidate for determining the purity of TiO<sub>2</sub>(B). Further, the correlations developed in this work should be instructive in synthesizing pure TiO<sub>2</sub>(B) and furthermore optimizing its electrochemical charge storage properties.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 5","pages":"Pages 1371-1379"},"PeriodicalIF":13.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Development of Sustainable and Efficient Recycling Technology for Spent Li-Ion Batteries: Traditional and Transformation Go Hand in Hand 废旧锂离子电池可持续高效回收技术的发展:传统与转型齐头并进
1区 工程技术 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-09-01 DOI: 10.1016/j.gee.2023.09.001
Zejian Liu, Gongqi Liu, Leilei Cheng, Jing Gu, Haoran Yuan, Yong Chen, Yufeng Wu
Clean and efficient recycling of spent lithium-ion batteries (LIBs) has become an urgent need to promote sustainable and rapid development of human society. Therefore, we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs, starting with lithium-ion power batteries. Recent research on raw material collection, metallurgical recovery, separation and purification is highlighted, particularly in terms of all aspects of economic efficiency, energy consumption, technology transformation and policy management. Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored, revealing a clean and efficient closed-loop recovery mechanism. Optimization methods are proposed for future recycling technologies, with a focus on how future research directions can be industrialized. Ultimately, based on life-cycle assessment, the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies. This work is designed to support the sustainable development of the new energy power industry, to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling.
废旧锂离子电池的清洁高效回收利用已成为促进人类社会可持续快速发展的迫切需要。因此,我们从锂离子动力电池开始,对回收废旧锂电池的各种技术进行了关键而全面的概述。重点介绍了近年来在原料收集、冶金回收、分离和提纯等方面的研究,特别是在经济效率、能源消耗、技术改造和政策管理等各个方面的研究。探索了废lib变革性全组分回收的机制和途径,揭示了一种清洁高效的闭环回收机制。提出了未来回收技术的优化方法,重点是未来的研究方向如何产业化。最后,基于生命周期评估,从锂电池供应链和新能源电池产业供应链稳定性两方面揭示了未来回收面临的挑战,并对清洁高效的短流程回收技术进行了展望。这项工作旨在支持新能源电力产业的可持续发展,帮助满足全球脱碳战略的需求,并响应工业化回收的重大需求。
{"title":"Development of Sustainable and Efficient Recycling Technology for Spent Li-Ion Batteries: Traditional and Transformation Go Hand in Hand","authors":"Zejian Liu, Gongqi Liu, Leilei Cheng, Jing Gu, Haoran Yuan, Yong Chen, Yufeng Wu","doi":"10.1016/j.gee.2023.09.001","DOIUrl":"https://doi.org/10.1016/j.gee.2023.09.001","url":null,"abstract":"Clean and efficient recycling of spent lithium-ion batteries (LIBs) has become an urgent need to promote sustainable and rapid development of human society. Therefore, we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs, starting with lithium-ion power batteries. Recent research on raw material collection, metallurgical recovery, separation and purification is highlighted, particularly in terms of all aspects of economic efficiency, energy consumption, technology transformation and policy management. Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored, revealing a clean and efficient closed-loop recovery mechanism. Optimization methods are proposed for future recycling technologies, with a focus on how future research directions can be industrialized. Ultimately, based on life-cycle assessment, the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies. This work is designed to support the sustainable development of the new energy power industry, to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134995409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen-doping boosts *CO utilization and H2O activation on copper for improving CO2 reduction to C2+ products 氮掺杂提高了铜的CO利用率和H2O活化,从而改善了CO2还原为C2+产物
1区 工程技术 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-09-01 DOI: 10.1016/j.gee.2023.09.002
Yisen Yang, Zhonghao Tan, Jianling Zhang, Jie Yang, Renjie Zhang, Sha Wang, Yi Song, Zhuizhui Su
To improve the electrocatalytic transformation of carbon dioxide (CO2) to multi-carbon (C2+) products is of great importance. Here we developed a nitrogen-doped Cu catalyst, by which the maximum C2+ Faradaic efficiency can reach 72.7% in flow-cell system, with the partial current density reaching 0.62 A cm-2. The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst, thus promoting the *CO utilization in the subsequent C-C coupling step. Simultaneously, the water activation can be well enhanced by N doping on Cu catalyst. Owing to the synergystic effects, the selectivity and activity for C2+ products over the N-deoped Cu catalyst are much improved.
改进二氧化碳(CO2)电催化转化为多碳(C2+)产物具有重要意义。本文研制了一种氮掺杂Cu催化剂,该催化剂在流电池体系中C2+法拉第效率最高可达72.7%,分电流密度可达0.62 a cm-2。原位拉曼光谱表明,n掺杂Cu催化剂对*CO的吸附增强,从而促进了后续C-C耦合步骤中*CO的利用。同时,在Cu催化剂上掺杂N可以很好地增强水活化。由于协同作用,n - Cu催化剂对C2+产物的选择性和活性大大提高。
{"title":"Nitrogen-doping boosts *CO utilization and H2O activation on copper for improving CO2 reduction to C2+ products","authors":"Yisen Yang, Zhonghao Tan, Jianling Zhang, Jie Yang, Renjie Zhang, Sha Wang, Yi Song, Zhuizhui Su","doi":"10.1016/j.gee.2023.09.002","DOIUrl":"https://doi.org/10.1016/j.gee.2023.09.002","url":null,"abstract":"To improve the electrocatalytic transformation of carbon dioxide (CO2) to multi-carbon (C2+) products is of great importance. Here we developed a nitrogen-doped Cu catalyst, by which the maximum C2+ Faradaic efficiency can reach 72.7% in flow-cell system, with the partial current density reaching 0.62 A cm-2. The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst, thus promoting the *CO utilization in the subsequent C-C coupling step. Simultaneously, the water activation can be well enhanced by N doping on Cu catalyst. Owing to the synergystic effects, the selectivity and activity for C2+ products over the N-deoped Cu catalyst are much improved.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135588302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine 截断八面体LiMn2O4的构建用于从盐水中回收类电池电化学锂
IF 13.3 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-08-01 DOI: 10.1016/j.gee.2021.12.002
Guolang Zhou , Linlin Chen , Xiaowei Li , Guiling Luo , Zhendong Yu , Jingzhou Yin , Lei Fan , Yanhong Chao , Lei Jiang , Wenshuai Zhu

The extraction of lithium from salt lakes or seawater has attracted worldwide attention because of the explosive growth of global demand for lithium products. The LiMn2O4-based electrochemical lithium recovery system is one of the strongest candidates for commercial application due to its high inserted capacity and low energy consumption. However, the surface orientation of LiMn2O4 that facilitates Li diffusion happens to be prone to manganese dissolution making it a great challenge to obtain high lithium inserted capacity and long life simultaneously. Herein, we address this problem by designing a truncated octahedral LiMn2O4 (Tr-oh LMO) in which the dominant (111) facets minimize Mn dissolution while a small portion of (100) facets facilitate the Li diffusion. Thus, this Tr-oh LMO-based electrochemical lithium recovery system shows excellent Li recovery performance with high inserted capacity (20.25 mg g−1 per cycle) in simulated brine. In addition, the dissolution rate of manganese per 30 cycles is only 0.44% and the capacity maintained 85% of the initial after 30 cycles. These promising findings accelerate the practical application of LiMn2O4 in electrochemical lithium recovery.

由于全球对锂产品需求的爆炸性增长,从盐湖或海水中提取锂引起了全世界的关注。基于LiMn2O4的电化学锂回收系统由于其高插入容量和低能耗而成为商业应用的最有力的候选者之一。然而,促进Li扩散的LiMn2O4的表面取向恰好易于锰溶解,这使得同时获得高锂插入容量和长寿命成为一个巨大的挑战。在此,我们通过设计截头八面体LiMn2O4(Tr-oh-LMO)来解决这个问题,其中主要的(111)晶面最小化Mn的溶解,而(100)晶面的一小部分促进Li的扩散。因此,这种基于Tr-oh-LMO的电化学锂回收系统在模拟盐水中表现出优异的锂回收性能,具有高插入容量(每次循环20.25 mg g−1)。此外,锰每30次循环的溶解率仅为0.44%,并且在30次循环后容量保持初始容量的85%。这些有希望的发现加速了LiMn2O4在电化学锂回收中的实际应用。
{"title":"Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine","authors":"Guolang Zhou ,&nbsp;Linlin Chen ,&nbsp;Xiaowei Li ,&nbsp;Guiling Luo ,&nbsp;Zhendong Yu ,&nbsp;Jingzhou Yin ,&nbsp;Lei Fan ,&nbsp;Yanhong Chao ,&nbsp;Lei Jiang ,&nbsp;Wenshuai Zhu","doi":"10.1016/j.gee.2021.12.002","DOIUrl":"https://doi.org/10.1016/j.gee.2021.12.002","url":null,"abstract":"<div><p>The extraction of lithium from salt lakes or seawater has attracted worldwide attention because of the explosive growth of global demand for lithium products. The LiMn<sub>2</sub>O<sub>4</sub>-based electrochemical lithium recovery system is one of the strongest candidates for commercial application due to its high inserted capacity and low energy consumption. However, the surface orientation of LiMn<sub>2</sub>O<sub>4</sub> that facilitates Li diffusion happens to be prone to manganese dissolution making it a great challenge to obtain high lithium inserted capacity and long life simultaneously. Herein, we address this problem by designing a truncated octahedral LiMn<sub>2</sub>O<sub>4</sub> (Tr-oh LMO) in which the dominant (111) facets minimize Mn dissolution while a small portion of (100) facets facilitate the Li diffusion. Thus, this Tr-oh LMO-based electrochemical lithium recovery system shows excellent Li recovery performance with high inserted capacity (20.25 mg g<sup>−1</sup> per cycle) in simulated brine. In addition, the dissolution rate of manganese per 30 cycles is only 0.44% and the capacity maintained 85% of the initial after 30 cycles. These promising findings accelerate the practical application of LiMn<sub>2</sub>O<sub>4</sub> in electrochemical lithium recovery.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 4","pages":"Pages 1081-1090"},"PeriodicalIF":13.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Pd nanoparticles embedded in N-Enriched MOF-Derived architectures for efficient oxygen reduction reaction in alkaline media 包埋在富N MOF衍生结构中的Pd纳米颗粒用于碱性介质中的有效氧还原反应
IF 13.3 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-08-01 DOI: 10.1016/j.gee.2022.01.011
Daqiang Yan, Lin Zhang, Lei Shen, Runyu Hu, Weiping Xiao, Xiaofei Yang

Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction (ORR) is still challenging for alkaline membrane fuel cell, since the strong oxygen adsorption energy and easy agglomerative intrinsic properties. In order to simultaneously solve these problems, Pd/Co3O4–N–C multidimensional materials with porous structures is designed as the ORR catalysts. In details, the ZIF-67 with polyhedral structure was firstly synthesized and then annealed at high-temperature to prepare the N-doped Co3O4 carbon-based material, which was used to homogeneously confine Pd nanoparticles and obtained the Pd/Co3O4–N–C series catalysts. The formation of Co–N and C–N bond could provide efficient active sites for ORR. Simultaneously, the strong electronic interaction in the interface between the Pd and N-doped Co3O4 could disperse and avoid the agglomeration of Pd nanoparticles and ensure the exposure of active sites, which is crucial to lower the energy barrier toward ORR and substantially enhance the ORR kinetics. Hence, the Pd/Co3O4–N–C nanocompounds exhibited excellent ORR catalytic performance, ideal Pd mass activity, and durability in 0.1 mol L−1 KOH solution compared with Co3O4–N–C and Pd/C. The scalable synthesis method, relatively low cost, and excellent electrochemical ORR performance indicated that the obtained Pd/Co3O4–N–C electrocatalyst had the potential for application on fuel cells.

开发用于氧还原反应(ORR)的高效钯基电催化剂对于碱性膜燃料电池来说仍然是具有挑战性的,因为其具有强的氧吸附能和容易团聚的固有性质。为了同时解决这些问题,设计了具有多孔结构的Pd/Co3O4–N–C多维材料作为ORR催化剂。详细地说,首先合成了具有多面体结构的ZIF-67,然后在高温下退火以制备N掺杂的Co3O4碳基材料,该材料用于均匀地限制Pd纳米颗粒,并获得了Pd/Co3O4–N–C系列催化剂。Co–N和C–N键的形成可以为ORR提供有效的活性位点。同时,Pd和N掺杂的Co3O4之间界面的强电子相互作用可以分散和避免Pd纳米颗粒的团聚,并确保活性位点的暴露,这对于降低ORR的能垒和显著增强ORR动力学至关重要。因此,与Co3O4–N–C和Pd/C相比,Pd/Co3O4–N–C纳米化合物在0.1 mol L−1 KOH溶液中表现出优异的ORR催化性能、理想的Pd质量活性和耐久性。可扩展的合成方法、相对较低的成本和优异的电化学ORR性能表明,所获得的Pd/Co3O4–N–C电催化剂具有在燃料电池上应用的潜力。
{"title":"Pd nanoparticles embedded in N-Enriched MOF-Derived architectures for efficient oxygen reduction reaction in alkaline media","authors":"Daqiang Yan,&nbsp;Lin Zhang,&nbsp;Lei Shen,&nbsp;Runyu Hu,&nbsp;Weiping Xiao,&nbsp;Xiaofei Yang","doi":"10.1016/j.gee.2022.01.011","DOIUrl":"https://doi.org/10.1016/j.gee.2022.01.011","url":null,"abstract":"<div><p>Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction (ORR) is still challenging for alkaline membrane fuel cell, since the strong oxygen adsorption energy and easy agglomerative intrinsic properties. In order to simultaneously solve these problems, Pd/Co<sub>3</sub>O<sub>4</sub>–N–C multidimensional materials with porous structures is designed as the ORR catalysts. In details, the ZIF-67 with polyhedral structure was firstly synthesized and then annealed at high-temperature to prepare the N-doped Co<sub>3</sub>O<sub>4</sub> carbon-based material, which was used to homogeneously confine Pd nanoparticles and obtained the Pd/Co<sub>3</sub>O<sub>4</sub>–N–C series catalysts. The formation of Co–N and C–N bond could provide efficient active sites for ORR. Simultaneously, the strong electronic interaction in the interface between the Pd and N-doped Co<sub>3</sub>O<sub>4</sub> could disperse and avoid the agglomeration of Pd nanoparticles and ensure the exposure of active sites, which is crucial to lower the energy barrier toward ORR and substantially enhance the ORR kinetics. Hence, the Pd/Co<sub>3</sub>O<sub>4</sub>–N–C nanocompounds exhibited excellent ORR catalytic performance, ideal Pd mass activity, and durability in 0.1 mol L<sup>−1</sup> KOH solution compared with Co<sub>3</sub>O<sub>4</sub>–N–C and Pd/C. The scalable synthesis method, relatively low cost, and excellent electrochemical ORR performance indicated that the obtained Pd/Co<sub>3</sub>O<sub>4</sub>–N–C electrocatalyst had the potential for application on fuel cells.</p></div>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"8 4","pages":"Pages 1205-1215"},"PeriodicalIF":13.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50175398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Green Energy & Environment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1