Pub Date : 2023-01-02DOI: 10.1080/17518253.2022.2163192
Yumim Hu, X. Liu, Qi Rong
ABSTRACT A novel and highly efficient electro-catalytic protocol for the synthesis of cyclic carbonates from epoxides and CO2 using 1-aminopropyl-3-methylimidazolium dicyanamide ([APMIm]DCA) as the supporting electrolyte, graphite as the anode, and Ti/TiO2-CNT-Pt as the cathode has been developed. Based on the cooperative effect between active Ti/TiO2-CNT-Pt cathode and active sites of supporting ionic liquid electrolyte [APMIm]DCA, CO2 and epoxides could be effectively converted into the corresponding cyclic carbonates in high to excellent yields under mild conditions. Moreover, the electro-catalytic system could be easily recovered and reused for six successive cycles without a considerable decrease in catalytic activity. This work provides a sustainable and efficient cooperative strategy for the chemical fixation of carbon dioxide into valuable cyclic carbonates. GRAPHICAL ABSTRACT
{"title":"Novel and highly efficient electro-catalytic cycloaddition of CO2 and epoxides to cyclic carbonates over reusable ionic liquid-based cooperative catalytic system","authors":"Yumim Hu, X. Liu, Qi Rong","doi":"10.1080/17518253.2022.2163192","DOIUrl":"https://doi.org/10.1080/17518253.2022.2163192","url":null,"abstract":"ABSTRACT A novel and highly efficient electro-catalytic protocol for the synthesis of cyclic carbonates from epoxides and CO2 using 1-aminopropyl-3-methylimidazolium dicyanamide ([APMIm]DCA) as the supporting electrolyte, graphite as the anode, and Ti/TiO2-CNT-Pt as the cathode has been developed. Based on the cooperative effect between active Ti/TiO2-CNT-Pt cathode and active sites of supporting ionic liquid electrolyte [APMIm]DCA, CO2 and epoxides could be effectively converted into the corresponding cyclic carbonates in high to excellent yields under mild conditions. Moreover, the electro-catalytic system could be easily recovered and reused for six successive cycles without a considerable decrease in catalytic activity. This work provides a sustainable and efficient cooperative strategy for the chemical fixation of carbon dioxide into valuable cyclic carbonates. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"2 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76833302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1080/17518253.2023.2185109
Jessica C. D’eon, J. Silverman
ABSTRACT To help students address problems related to climate change, chemistry fundamentals are taught using sustainable principles. The principles of green chemistry and United Nations Sustainable Development Goals (SDGs) are guides to help us reach a sustainable future. Educators use these to create resources to connect green principles and sustainability goals. Systems thinking provides the method for creating relevant lectures, meaningful activities, and cohesive assessments in an educational module. A week-long stoichiometry module for introductory chemistry is described. Students tackle multiple learning outcomes to answer complex questions such as ‘what makes an reaction efficient?’. This module relates SDGs #7 and #13, clean energy and climate action, to the green principle of atom economy, which evaluates the efficiency of chemical transformations. The process of backward design is used with systems thinking to map learning outcomes across the module. Students demonstrate skills related to individual outcomes and use their knowledge to evaluate chemical systems from multiple perspectives across outcomes. Incorporating real-world examples the module explores how incomplete combustion impacts human health and the environment while exploring the material efficiency of making different fuels. The context and practice of sustainable science can be used to teach chemistry in a systematic way. GRAPHICAL ABSTRACT
{"title":"Using systems thinking to connect green principles and United Nations Sustainable Development Goals in a reaction stoichiometry module","authors":"Jessica C. D’eon, J. Silverman","doi":"10.1080/17518253.2023.2185109","DOIUrl":"https://doi.org/10.1080/17518253.2023.2185109","url":null,"abstract":"ABSTRACT To help students address problems related to climate change, chemistry fundamentals are taught using sustainable principles. The principles of green chemistry and United Nations Sustainable Development Goals (SDGs) are guides to help us reach a sustainable future. Educators use these to create resources to connect green principles and sustainability goals. Systems thinking provides the method for creating relevant lectures, meaningful activities, and cohesive assessments in an educational module. A week-long stoichiometry module for introductory chemistry is described. Students tackle multiple learning outcomes to answer complex questions such as ‘what makes an reaction efficient?’. This module relates SDGs #7 and #13, clean energy and climate action, to the green principle of atom economy, which evaluates the efficiency of chemical transformations. The process of backward design is used with systems thinking to map learning outcomes across the module. Students demonstrate skills related to individual outcomes and use their knowledge to evaluate chemical systems from multiple perspectives across outcomes. Incorporating real-world examples the module explores how incomplete combustion impacts human health and the environment while exploring the material efficiency of making different fuels. The context and practice of sustainable science can be used to teach chemistry in a systematic way. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"17 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72995793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1080/17518253.2023.2260417
Nesrine M.R. Mahmoud, Amal L. Al-Otaibi, Sultan Akhtar, Mohammad Azam Ansari, Abeer Ramadan, Somia B. Ahmed
Six samples of bio-capped copper oxide nanoparticles were made from two bio-waste extracts: Punica granatum L. peels and Psidium guajava Linn. leaves. Extraction methods included soaking in water or hydroethanol and boiling in water. The samples were characterized using FT-IR, XRD, SEM, and TGA. Results showed organic residue capping on CuO nanoparticles varied based on the extract and capping medium used. The thermal stability of all CuO samples was observed to be high, as recorded from TGA patterns and confirmed by EDX analysis, which showed a high content of copper ranging from 10.1 to 36.1%. TEM analysis revealed an average particle size of less than 20 nm for all six samples, suggesting a similarity in size. The soaking technique produced the most stable bio-capped CuO nanoparticles with a high negative zeta potential value. According to the study, the CuO samples synthesized from aqueous extracts obtained through soaking showed the highest antibacterial activity. This could be attributed to the high oxygen ratio, which was confirmed via EDX analysis. The bio-capped CuO was effective against multidrug- resistant gram-positive bacteria MRSA, and C. albicans. A mechanism was proposed to explain how the capping media affected the antimicrobial activity of the bio-capped CuO nanoparticles.
{"title":"Study the effect of simple extraction techniques to synthesizing promising antimicrobial bio-capped copper oxide nanoparticles","authors":"Nesrine M.R. Mahmoud, Amal L. Al-Otaibi, Sultan Akhtar, Mohammad Azam Ansari, Abeer Ramadan, Somia B. Ahmed","doi":"10.1080/17518253.2023.2260417","DOIUrl":"https://doi.org/10.1080/17518253.2023.2260417","url":null,"abstract":"Six samples of bio-capped copper oxide nanoparticles were made from two bio-waste extracts: Punica granatum L. peels and Psidium guajava Linn. leaves. Extraction methods included soaking in water or hydroethanol and boiling in water. The samples were characterized using FT-IR, XRD, SEM, and TGA. Results showed organic residue capping on CuO nanoparticles varied based on the extract and capping medium used. The thermal stability of all CuO samples was observed to be high, as recorded from TGA patterns and confirmed by EDX analysis, which showed a high content of copper ranging from 10.1 to 36.1%. TEM analysis revealed an average particle size of less than 20 nm for all six samples, suggesting a similarity in size. The soaking technique produced the most stable bio-capped CuO nanoparticles with a high negative zeta potential value. According to the study, the CuO samples synthesized from aqueous extracts obtained through soaking showed the highest antibacterial activity. This could be attributed to the high oxygen ratio, which was confirmed via EDX analysis. The bio-capped CuO was effective against multidrug- resistant gram-positive bacteria MRSA, and C. albicans. A mechanism was proposed to explain how the capping media affected the antimicrobial activity of the bio-capped CuO nanoparticles.","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"395 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135798727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1080/17518253.2023.2185546
L. D. Bastin
ABSTRACT This paper describes the design and implementation of a political advocacy project in an Organic Chemistry II course. The advocacy project was designed to demonstrate that organic, green, and sustainable chemistry can be applied outside of laboratory and industrial settings to help solve issues related to environmental sustainability. After the instructor identified pending state legislation relating to sustainability, students read and summarized the bill. After class discussion, students did further research into questions raised in the discussion and prepared talking points. The talking points were developed into a white paper or postcard in advance of a class trip to the state capitol to share the views with legislators. Student reflections indicated a positive experience with advocacy, a greater understanding of environmental issues that affect them, and better awareness of how they can affect change. GRAPHICAL ABSTRACT
{"title":"Political engagement in organic chemistry: an advocacy project utilizing green and sustainable chemistry","authors":"L. D. Bastin","doi":"10.1080/17518253.2023.2185546","DOIUrl":"https://doi.org/10.1080/17518253.2023.2185546","url":null,"abstract":"ABSTRACT\u0000 This paper describes the design and implementation of a political advocacy project in an Organic Chemistry II course. The advocacy project was designed to demonstrate that organic, green, and sustainable chemistry can be applied outside of laboratory and industrial settings to help solve issues related to environmental sustainability. After the instructor identified pending state legislation relating to sustainability, students read and summarized the bill. After class discussion, students did further research into questions raised in the discussion and prepared talking points. The talking points were developed into a white paper or postcard in advance of a class trip to the state capitol to share the views with legislators. Student reflections indicated a positive experience with advocacy, a greater understanding of environmental issues that affect them, and better awareness of how they can affect change. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"45 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90756897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1080/17518253.2023.2233539
M. Abdel-Rahman, M. Shibl, A. Shiroudi, Mohamed A. M. Mahmoud
ABSTRACT Global reactivity descriptors of isopropyl acetate (IPA) and thermo-kinetic aspects of its oxidation via OH radicals have been studied. Transition state theory (TST) was utilized to estimate the bimolecular rate constants. Ten oxidation pathways have been investigated, and all of them are exothermic. The potential energy diagram has been sketched using different pre- and post-reactive complexes for all reaction pathways. Rate coefficient calculations were obtained directly by connecting the separated reactants with different transition states. The results indicate that the reaction of IPA with OH radicals occurs in the ground state rather than the excited state, and the rate constants obtained directly and from the effective approach are the same, which confirmed the accuracy of the estimated pre-reactive complexes and the reaction mechanism. Rate constants and branching ratios show that hydrogen atom abstraction from the iso C − H (C2 atom) bond is the most kinetically preferable route up to 1000 K, while at higher temperatures, H-atom abstraction from the out-of-plane CH3 group (C3 atom) became the most dominant route with high competition with that of the in-plane CH3 group (C4 atom). GRAPHICAL ABSTRACT
{"title":"Ab initio chemical kinetics of Isopropyl acetate oxidation with OH radicals","authors":"M. Abdel-Rahman, M. Shibl, A. Shiroudi, Mohamed A. M. Mahmoud","doi":"10.1080/17518253.2023.2233539","DOIUrl":"https://doi.org/10.1080/17518253.2023.2233539","url":null,"abstract":"ABSTRACT Global reactivity descriptors of isopropyl acetate (IPA) and thermo-kinetic aspects of its oxidation via OH radicals have been studied. Transition state theory (TST) was utilized to estimate the bimolecular rate constants. Ten oxidation pathways have been investigated, and all of them are exothermic. The potential energy diagram has been sketched using different pre- and post-reactive complexes for all reaction pathways. Rate coefficient calculations were obtained directly by connecting the separated reactants with different transition states. The results indicate that the reaction of IPA with OH radicals occurs in the ground state rather than the excited state, and the rate constants obtained directly and from the effective approach are the same, which confirmed the accuracy of the estimated pre-reactive complexes and the reaction mechanism. Rate constants and branching ratios show that hydrogen atom abstraction from the iso C − H (C2 atom) bond is the most kinetically preferable route up to 1000 K, while at higher temperatures, H-atom abstraction from the out-of-plane CH3 group (C3 atom) became the most dominant route with high competition with that of the in-plane CH3 group (C4 atom). GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"83 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74520592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1080/17518253.2023.2232383
Mekdes Tenkolu Maru, B. Gonfa, Osman Ahmed Zelekew, Sanaulla Pathapalya Fakrudeen, H. C. Ananda Murthy, Eneyew Tilahun Bekele, F. K. Sabir
ABSTRACT The photocatalytic degradation of the organic pollutants using the green synthesized catalysts is an environmentally safe approach for the wastewater treatment. In this study, ZnO and CuO nanoparticles (NPs) and ZnO/CuO nanocomposites (NCs) with various CuO weight percents were synthesized using extract of Musa acuminata fruit peel as the stablizing and capping agent. The synthesized nanomaterials were characterized by TGA/DTA, XRD, SEM, TEM, SAED, HR-TEM, UV-DRS and FTIR techniques. The degradation of methylene blue (MB) dye using the synthesized catalysts was investigated under a visible light source. XRD analysed average crystalline sizes were 24.9, 17.0 and 22.6 nm for ZnO, CuO, and ZnO/CuO nanomaterials, respectively. The SEM and TEM analysis confirms that ZnO NPs, CuO NPs, and ZnO/CuO NCs possessed the spherically shaped monoclinic structure. The bandgap energies of ZnO NPs, CuO NPs and ZnO/CuO NCs were found to be 3.25, 1.7 and 3.18 eV respectively. The FT-IR analysis confirms presence of various reducing and capping agents. The photocatalytic activities of ZnO NPs, CuO NPs, and ZnO/CuO NCs were evaluated using the degradation of MB dye under the visible light irradiation. The photocatalysts CuO, ZnO, and ZnO/CuO exhibited the degradation efficiencies of 50%, 57%, and 90%, respectively. GRAPHICAL ABSTRACT
{"title":"Effect of Musa acuminata peel extract on synthesis of ZnO/CuO nanocomposites for photocatalytic degradation of methylene blue","authors":"Mekdes Tenkolu Maru, B. Gonfa, Osman Ahmed Zelekew, Sanaulla Pathapalya Fakrudeen, H. C. Ananda Murthy, Eneyew Tilahun Bekele, F. K. Sabir","doi":"10.1080/17518253.2023.2232383","DOIUrl":"https://doi.org/10.1080/17518253.2023.2232383","url":null,"abstract":"ABSTRACT The photocatalytic degradation of the organic pollutants using the green synthesized catalysts is an environmentally safe approach for the wastewater treatment. In this study, ZnO and CuO nanoparticles (NPs) and ZnO/CuO nanocomposites (NCs) with various CuO weight percents were synthesized using extract of Musa acuminata fruit peel as the stablizing and capping agent. The synthesized nanomaterials were characterized by TGA/DTA, XRD, SEM, TEM, SAED, HR-TEM, UV-DRS and FTIR techniques. The degradation of methylene blue (MB) dye using the synthesized catalysts was investigated under a visible light source. XRD analysed average crystalline sizes were 24.9, 17.0 and 22.6 nm for ZnO, CuO, and ZnO/CuO nanomaterials, respectively. The SEM and TEM analysis confirms that ZnO NPs, CuO NPs, and ZnO/CuO NCs possessed the spherically shaped monoclinic structure. The bandgap energies of ZnO NPs, CuO NPs and ZnO/CuO NCs were found to be 3.25, 1.7 and 3.18 eV respectively. The FT-IR analysis confirms presence of various reducing and capping agents. The photocatalytic activities of ZnO NPs, CuO NPs, and ZnO/CuO NCs were evaluated using the degradation of MB dye under the visible light irradiation. The photocatalysts CuO, ZnO, and ZnO/CuO exhibited the degradation efficiencies of 50%, 57%, and 90%, respectively. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"28 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75715029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As an important class of natural products, pyrazole alkaloids have a large number of applications in various aspects such as medicines and pesticides. Due to the special position of its amino group, 3-aminopyrazole is easy to form a hydrogen bond donor–acceptor-donor, and the hydrogen bond ‘zipper’ structure enhances the binding ability of such compounds to receptors. This work provides a new one-pot three-components reaction for the efficient construction of multi-substituted aminopyrazoles derivatives via iodine-mediated cyclization in the presence of ethanol. After that, the potential mechanism of the reaction was explored based on the control transformation experimental and density functional theory (DFT) calculations. In addition, all obtained multi-substituted aminopyrazole derivatives were fully investigated for their application as potential anti-cancer agents, and some of which have been proved to exhibit excellent anti-cancer activity against A875 and HepG2 cell lines, and the possible structure–activity relationships also has been discussed based on the screening results. The kinase assay and molecular docking results indicate that these compounds may be potential CDK1 inhibitors.
{"title":"Highly efficient construction of multi-substituted aminopyrazoles derivatives <i>via</i> iodine-mediated three-components reaction as potential anticancer agents","authors":"Zilin Gao, Wenbo Huang, Manli Liu, Yu Chen, Liqiao Shi, Zhigang Zhang, Fei Yang, Xiufang Cao, Kaimei Wang, Shaoyong Ke","doi":"10.1080/17518253.2023.2264324","DOIUrl":"https://doi.org/10.1080/17518253.2023.2264324","url":null,"abstract":"As an important class of natural products, pyrazole alkaloids have a large number of applications in various aspects such as medicines and pesticides. Due to the special position of its amino group, 3-aminopyrazole is easy to form a hydrogen bond donor–acceptor-donor, and the hydrogen bond ‘zipper’ structure enhances the binding ability of such compounds to receptors. This work provides a new one-pot three-components reaction for the efficient construction of multi-substituted aminopyrazoles derivatives via iodine-mediated cyclization in the presence of ethanol. After that, the potential mechanism of the reaction was explored based on the control transformation experimental and density functional theory (DFT) calculations. In addition, all obtained multi-substituted aminopyrazole derivatives were fully investigated for their application as potential anti-cancer agents, and some of which have been proved to exhibit excellent anti-cancer activity against A875 and HepG2 cell lines, and the possible structure–activity relationships also has been discussed based on the screening results. The kinase assay and molecular docking results indicate that these compounds may be potential CDK1 inhibitors.","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135798444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT In this work, the extract of mango leaf was chosen as a green raw material, and ethylenediamine (EDA) as a supporting material for a controllable one-step reaction to realizing white light. During the reaction, EDA could balance the precursor consumption, and participated in the formation of the carbon dots (CDs). The final integrated emitting color of the materials could be adjusted to white light with a one-step hydrothermal treatment. The composite solution was directly coated on a commercial 365 nm light-emitting diode (LED) chip without a polymer matrix and showed a stable white light with CIE coordinates of (0.326, 0.328). This work developed an interesting method for tuning the reaction process in a complex system and provided a simple way of realizing an integrated white light with a single wavelength excitation. GRAPHICAL ABSTRACT
{"title":"Color integration in biomass-derived carbon dots to realize one-step white light","authors":"Hui Shi, Chuanqing Li, Xucheng Ke, Yu Cai, Shuangjie Qian, Liuqing Wu, Yuqi Deng, Liman Sai, Xiaofeng Xu","doi":"10.1080/17518253.2023.2214178","DOIUrl":"https://doi.org/10.1080/17518253.2023.2214178","url":null,"abstract":"ABSTRACT In this work, the extract of mango leaf was chosen as a green raw material, and ethylenediamine (EDA) as a supporting material for a controllable one-step reaction to realizing white light. During the reaction, EDA could balance the precursor consumption, and participated in the formation of the carbon dots (CDs). The final integrated emitting color of the materials could be adjusted to white light with a one-step hydrothermal treatment. The composite solution was directly coated on a commercial 365 nm light-emitting diode (LED) chip without a polymer matrix and showed a stable white light with CIE coordinates of (0.326, 0.328). This work developed an interesting method for tuning the reaction process in a complex system and provided a simple way of realizing an integrated white light with a single wavelength excitation. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"34 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78069111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1080/17518253.2023.2185547
Jessica Pichler, Rosa Maria Eder, C. Besser, Lucia Pisarova, N. Dörr, M. Marchetti‐Deschmann, M. Frauscher
ABSTRACT In the last few years, there is a general shift observable toward greener lubrication, fueled amongst others by policy initiatives such as the European Green Deal in consistency with the UN Sustainable Development Goals. At least 70 vol% of a lubricant is composed of a specific base oil, the rest is a variation of additives altering the lubricant properties (enhancing or suppressing existent base oil properties or adding new properties) to be operational for a particular field of application. So, in terms of sustainability, biodegradability, bioaccumulation, and toxicity the type of base oil plays a major role, which makes environmentally harmful petroleum-based lubricant formulations highly problematic for future applications. Hence, this leads to an ever-growing demand of environmentally friendly lubricant alternatives. Within the scope of this review lies the investigation of bio-based, bio-derived, and other sustainable lubricant components that could serve as promising replacements for conventional petroleum-based formulations, in accordance with the principles of green chemistry and tribology. As recycling is embraced by the term sustainability, waste-derived components of non-biological origin are also included in this work. An overview of studies on the tribological performance such as friction and wear properties of these sustainable and benign lubricant components is given. GRAPHICAL ABSTRACT Sustainable lubricant components in a circular approach.
{"title":"A comprehensive review of sustainable approaches for synthetic lubricant components","authors":"Jessica Pichler, Rosa Maria Eder, C. Besser, Lucia Pisarova, N. Dörr, M. Marchetti‐Deschmann, M. Frauscher","doi":"10.1080/17518253.2023.2185547","DOIUrl":"https://doi.org/10.1080/17518253.2023.2185547","url":null,"abstract":"ABSTRACT In the last few years, there is a general shift observable toward greener lubrication, fueled amongst others by policy initiatives such as the European Green Deal in consistency with the UN Sustainable Development Goals. At least 70 vol% of a lubricant is composed of a specific base oil, the rest is a variation of additives altering the lubricant properties (enhancing or suppressing existent base oil properties or adding new properties) to be operational for a particular field of application. So, in terms of sustainability, biodegradability, bioaccumulation, and toxicity the type of base oil plays a major role, which makes environmentally harmful petroleum-based lubricant formulations highly problematic for future applications. Hence, this leads to an ever-growing demand of environmentally friendly lubricant alternatives. Within the scope of this review lies the investigation of bio-based, bio-derived, and other sustainable lubricant components that could serve as promising replacements for conventional petroleum-based formulations, in accordance with the principles of green chemistry and tribology. As recycling is embraced by the term sustainability, waste-derived components of non-biological origin are also included in this work. An overview of studies on the tribological performance such as friction and wear properties of these sustainable and benign lubricant components is given. GRAPHICAL ABSTRACT Sustainable lubricant components in a circular approach.","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"45 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79471014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.1080/17518253.2023.2240837
Eman M. Alshehri, Nawal A. Alarfaj, S. Al-Tamimi, M. El-Tohamy
ABSTRACT Two modified coated membrane sensors were designed and tested. Pantoprazole-phosphotungstate was prepared by a reaction of pantoprazole with phosphotungstic acid in the solvent mediator o-nitrophenyloctyl ether. Two metal oxide nanoparticles nickel oxide and iron oxide nanoparticles, were synthesized from green sources Matricaria recutita flowers and Salvia officinalis leaves extracts, respectively. These nanoparticles were used for the potentiometric assay of pantoprazole sodium in the authentic sample and commercial products. The results showed that the improved nickel oxide and iron oxide nanosensors exhibited linearity using the concentration range of 1.0 × 10−9–1.0 × 10−2 and 1.0 × 10−10–1.0 × 10−2 mol L−1, respectively compared with 1.0 × 10−6–1.0 × 10−2 mol L−1 for the normally coated sensor. The lower limits of detection (7.6 × 10−6, 2.3 × 10−10, 2.8 × 10−11 mol L−1) and quantification (1.0 × 10−6, 1.0 × 10−9, 1.0 × 10−10 mol L−1) were determined for each of the three proposed sensors. Least squares calculations gave EmV = (27.266 ± 0.5) log (pantoprazole) + 433.37, EmV = (30.967 ± 0.3) log (pantoprazole) + 432.24 for the enriched nano-metal oxides, and EmV = (26.642 ± 0.6) log (pantoprazole) + 443.69 for the conventional type, respectively with correlation coefficients around 0.999 for the proposed sensors. The accuracy and precision of the modified potentiometric systems were estimated and the results showed excellent validity and suitability for the determination of pantoprazole in an authentic sample. GRAPHICAL ABSTRACT
{"title":"Electroanalytical sensors-based biogenic synthesized metal oxide nanoparticles for potentiometric assay of pantoprazole sodium","authors":"Eman M. Alshehri, Nawal A. Alarfaj, S. Al-Tamimi, M. El-Tohamy","doi":"10.1080/17518253.2023.2240837","DOIUrl":"https://doi.org/10.1080/17518253.2023.2240837","url":null,"abstract":"ABSTRACT Two modified coated membrane sensors were designed and tested. Pantoprazole-phosphotungstate was prepared by a reaction of pantoprazole with phosphotungstic acid in the solvent mediator o-nitrophenyloctyl ether. Two metal oxide nanoparticles nickel oxide and iron oxide nanoparticles, were synthesized from green sources Matricaria recutita flowers and Salvia officinalis leaves extracts, respectively. These nanoparticles were used for the potentiometric assay of pantoprazole sodium in the authentic sample and commercial products. The results showed that the improved nickel oxide and iron oxide nanosensors exhibited linearity using the concentration range of 1.0 × 10−9–1.0 × 10−2 and 1.0 × 10−10–1.0 × 10−2 mol L−1, respectively compared with 1.0 × 10−6–1.0 × 10−2 mol L−1 for the normally coated sensor. The lower limits of detection (7.6 × 10−6, 2.3 × 10−10, 2.8 × 10−11 mol L−1) and quantification (1.0 × 10−6, 1.0 × 10−9, 1.0 × 10−10 mol L−1) were determined for each of the three proposed sensors. Least squares calculations gave EmV = (27.266 ± 0.5) log (pantoprazole) + 433.37, EmV = (30.967 ± 0.3) log (pantoprazole) + 432.24 for the enriched nano-metal oxides, and EmV = (26.642 ± 0.6) log (pantoprazole) + 443.69 for the conventional type, respectively with correlation coefficients around 0.999 for the proposed sensors. The accuracy and precision of the modified potentiometric systems were estimated and the results showed excellent validity and suitability for the determination of pantoprazole in an authentic sample. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"19 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79655532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}