Cardiovascular diseases are among the leading causes of death worldwide, with well-known modifiable risk factors, such as smoking, overweight, lipid metabolism disorders, lack of physical activity and high blood pressure playing a significant role. Recent studies have now identified "clonal hematopoiesis" as a novel blood-based risk factor. Clonal hematopoiesis arises from mutations in hematopoietic stem cells, which lead to the expansion of mutated blood cells. Mutated cell clones can be detected in over 40% of individuals over 50 years old, with more than 15% of those over 90 years old harboring large clones. Surprisingly, mutated cells predispose to the development of leukemia only to a minor extent, leading to the term clonal hematopoiesis of indeterminate potential (CHIP); however, it has been shown that CHIP is associated with an increased risk of cardiovascular diseases. Individuals with CHIP-associated gene mutations have an elevated risk of atherosclerotic vascular diseases, stroke and thrombosis. Patients with heart failure with reduced ejection fraction (HFrEF), whether of ischemic or non-ischemic origin and patients with heart failure with preserved ejection fraction (HFpEF) exhibit an increased number of mutated cells in the blood. The presence of CHIP mutations is linked to a poorer prognosis in patients with existing cardiovascular diseases. Future research should aim at a better understanding of the specific effects of different mutations, clone sizes and combinations to develop personalized therapeutic approaches. Various anti-inflammatory therapeutic drugs are available, which can be tested in controlled studies.