Michelle Grunin, Robert P Igo, Yeunjoo E Song, Susan H Blanton, Margaret A Pericak-Vance, Jonathan L Haines
Purpose: In genome-wide association studies (GWAS), X chromosome (ChrX) variants are often not investigated. Sex-specific effects and ChrX-specific quality control (QC) are needed to examine these effects. Previous GWAS identified 52 autosomal variants associated with age-related macular degeneration (AMD) via the International AMD Genomics Consortium (IAMDGC), but did not analyze ChrX. Therefore¸ our goal was to investigate ChrX variants for association with AMD.
Methods: We genotyped 29 629 non-Hispanic White (NHW) individuals (M/F:10404/18865; AMD12,087/14723) via a custom chip and imputed after ChrX-specific QC (XWAS 3.0) using the Michigan Imputation Server. Imputation generated 1 221 623 variants on ChrX. Age, informative PCs, and subphenotypes were covariates for logistic association analyses with Fisher's correction. Gene/pathway analyses were performed with VEGAS, GSEASNP, ICSNPathway, DAVID, and mirPath.
Results: Logistic association on NHW individuals with sex correction identified variants in/near the genes SLITRK4, ARHGAP6, FGF13 and DMD associated with AMD (P < 1 × 10-6,Fisher's combined-corrected). Association testing of the subphenotypes of choroidal neovascularization and geographic atrophy (GA), identified variants in DMD associated with GA (P < 1 × 10-6, Fisher's combined-corrected). Via gene-based analysis with VEGAS, several genes were associated with AMD (P < 0.05, both truncated tail strength/truncated product P) including SLITRK4 and BHLHB9. Pathway analysis using GSEASNP and DAVID identified genes associated with nervous system development (FDR: P:0.02), and blood coagulation (FDR: P:0.03). Variants in the region of a microRNA (miR) were associated with AMD (P < 0.05, truncated tail strength/truncated product P). Via DIANA mirPath analysis, downstream targets of miRs showed association with brain disorders and fatty acid elongation (P < 0.05). A long noncoding RNA on ChrX near the DMD locus was also associated with AMD (P = 4 × 10-7). Epistatic analysis (t-statistic) for a quantitative trait of AMD vs control including covariates found a suggestive association in the XG gene (P = 2 × 10^-5).
Conclusions: Analysis of ChrX variation identifies several potential new locifor AMD risk and these variants nominate novel AMD pathways. Further analysis is needed to refine these results and to understand their biological significance and relationship with AMD development in worldwide populations.
{"title":"Identifying X-chromosome variants associated with age-related macular degeneration.","authors":"Michelle Grunin, Robert P Igo, Yeunjoo E Song, Susan H Blanton, Margaret A Pericak-Vance, Jonathan L Haines","doi":"10.1093/hmg/ddae141","DOIUrl":"10.1093/hmg/ddae141","url":null,"abstract":"<p><strong>Purpose: </strong>In genome-wide association studies (GWAS), X chromosome (ChrX) variants are often not investigated. Sex-specific effects and ChrX-specific quality control (QC) are needed to examine these effects. Previous GWAS identified 52 autosomal variants associated with age-related macular degeneration (AMD) via the International AMD Genomics Consortium (IAMDGC), but did not analyze ChrX. Therefore¸ our goal was to investigate ChrX variants for association with AMD.</p><p><strong>Methods: </strong>We genotyped 29 629 non-Hispanic White (NHW) individuals (M/F:10404/18865; AMD12,087/14723) via a custom chip and imputed after ChrX-specific QC (XWAS 3.0) using the Michigan Imputation Server. Imputation generated 1 221 623 variants on ChrX. Age, informative PCs, and subphenotypes were covariates for logistic association analyses with Fisher's correction. Gene/pathway analyses were performed with VEGAS, GSEASNP, ICSNPathway, DAVID, and mirPath.</p><p><strong>Results: </strong>Logistic association on NHW individuals with sex correction identified variants in/near the genes SLITRK4, ARHGAP6, FGF13 and DMD associated with AMD (P < 1 × 10-6,Fisher's combined-corrected). Association testing of the subphenotypes of choroidal neovascularization and geographic atrophy (GA), identified variants in DMD associated with GA (P < 1 × 10-6, Fisher's combined-corrected). Via gene-based analysis with VEGAS, several genes were associated with AMD (P < 0.05, both truncated tail strength/truncated product P) including SLITRK4 and BHLHB9. Pathway analysis using GSEASNP and DAVID identified genes associated with nervous system development (FDR: P:0.02), and blood coagulation (FDR: P:0.03). Variants in the region of a microRNA (miR) were associated with AMD (P < 0.05, truncated tail strength/truncated product P). Via DIANA mirPath analysis, downstream targets of miRs showed association with brain disorders and fatty acid elongation (P < 0.05). A long noncoding RNA on ChrX near the DMD locus was also associated with AMD (P = 4 × 10-7). Epistatic analysis (t-statistic) for a quantitative trait of AMD vs control including covariates found a suggestive association in the XG gene (P = 2 × 10^-5).</p><p><strong>Conclusions: </strong>Analysis of ChrX variation identifies several potential new locifor AMD risk and these variants nominate novel AMD pathways. Further analysis is needed to refine these results and to understand their biological significance and relationship with AMD development in worldwide populations.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Li, Bo Xie, Hu Wang, QingKang Wang, YongYou Wu
Gastric cancer (GC) is a leading cause of cancer-related deaths globally, necessitating the identification of novel therapeutic targets. This study investigates the roles of MATN3 and ASPN in GC progression via the epithelial-mesenchymal transition (EMT) pathway. Analysis of the Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset revealed that both MATN3 and ASPN are significantly upregulated in GC tissues and correlate with poor patient survival. Protein-protein interaction and co-expression analyses confirmed a direct interaction between MATN3 and ASPN, suggesting their synergistic role in EMT activation. Functional assays demonstrated that MATN3 promotes GC cell proliferation, migration, and invasion, while its knockdown inhibits these malignant behaviors and induces apoptosis. ASPN overexpression further amplified these oncogenic effects. In vivo, studies in a mouse model corroborated that co-overexpression of MATN3 and ASPN enhances tumor growth and metastasis. These findings highlight the MATN3-ASPN axis as a potential therapeutic target in GC, offering new insights into the molecular mechanisms driving GC progression.
{"title":"Investigating MATN3 and ASPN as novel drivers of gastric cancer progression via EMT pathways.","authors":"Jing Li, Bo Xie, Hu Wang, QingKang Wang, YongYou Wu","doi":"10.1093/hmg/ddae129","DOIUrl":"https://doi.org/10.1093/hmg/ddae129","url":null,"abstract":"<p><p>Gastric cancer (GC) is a leading cause of cancer-related deaths globally, necessitating the identification of novel therapeutic targets. This study investigates the roles of MATN3 and ASPN in GC progression via the epithelial-mesenchymal transition (EMT) pathway. Analysis of the Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset revealed that both MATN3 and ASPN are significantly upregulated in GC tissues and correlate with poor patient survival. Protein-protein interaction and co-expression analyses confirmed a direct interaction between MATN3 and ASPN, suggesting their synergistic role in EMT activation. Functional assays demonstrated that MATN3 promotes GC cell proliferation, migration, and invasion, while its knockdown inhibits these malignant behaviors and induces apoptosis. ASPN overexpression further amplified these oncogenic effects. In vivo, studies in a mouse model corroborated that co-overexpression of MATN3 and ASPN enhances tumor growth and metastasis. These findings highlight the MATN3-ASPN axis as a potential therapeutic target in GC, offering new insights into the molecular mechanisms driving GC progression.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142285998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas A Boehler, Shane D I Seheult, Muhammad Wahid, Kazuma Hase, Sierra F D'Amico, Shakshi Saini, Brittany Mascarenhas, Matthew E Bergman, Michael A Phillips, Paul A Faure, Hai-Ying Mary Cheng
Hearing loss is the most common congenital sensory deficit worldwide and exhibits high genetic heterogeneity, making molecular diagnoses elusive for most individuals. Detecting novel mutations that contribute to hearing loss is crucial to providing accurate personalized diagnoses, tailored interventions, and improving prognosis. Copy number variants (CNVs) are structural mutations that are understudied, potential contributors to hearing loss. Here, we present the Abnormal Wobbly Gait (AWG) mouse, the first documented mutant exhibiting waltzer-like locomotor dysfunction, hyperactivity, circling behaviour, and profound deafness caused by a spontaneous CNV deletion in cadherin 23 (Cdh23). We were unable to identify the causative mutation through a conventional whole-genome sequencing (WGS) and variant detection pipeline, but instead found a linked variant in hexokinase 1 (Hk1) that was insufficient to recapitulate the AWG phenotype when introduced into C57BL/6J mice using CRISPR-Cas9. Investigating nearby deafness-associated genes revealed a pronounced downregulation of Cdh23 mRNA and a complete absence of full-length CDH23 protein, which is critical for the development and maintenance of inner ear hair cells, in whole head extracts from AWG neonates. Manual inspection of WGS read depth plots of the Cdh23 locus revealed a putative 10.4 kb genomic deletion of exons 11 and 12 that was validated by PCR and Sanger sequencing. This study underscores the imperative to refine variant detection strategies to permit identification of pathogenic CNVs easily missed by conventional variant calling to enhance diagnostic precision and ultimately improve clinical outcomes for individuals with genetically heterogenous disorders such as hearing loss.
{"title":"A novel copy number variant in the murine Cdh23 gene gives rise to profound deafness and vestibular dysfunction.","authors":"Nicholas A Boehler, Shane D I Seheult, Muhammad Wahid, Kazuma Hase, Sierra F D'Amico, Shakshi Saini, Brittany Mascarenhas, Matthew E Bergman, Michael A Phillips, Paul A Faure, Hai-Ying Mary Cheng","doi":"10.1093/hmg/ddae095","DOIUrl":"10.1093/hmg/ddae095","url":null,"abstract":"<p><p>Hearing loss is the most common congenital sensory deficit worldwide and exhibits high genetic heterogeneity, making molecular diagnoses elusive for most individuals. Detecting novel mutations that contribute to hearing loss is crucial to providing accurate personalized diagnoses, tailored interventions, and improving prognosis. Copy number variants (CNVs) are structural mutations that are understudied, potential contributors to hearing loss. Here, we present the Abnormal Wobbly Gait (AWG) mouse, the first documented mutant exhibiting waltzer-like locomotor dysfunction, hyperactivity, circling behaviour, and profound deafness caused by a spontaneous CNV deletion in cadherin 23 (Cdh23). We were unable to identify the causative mutation through a conventional whole-genome sequencing (WGS) and variant detection pipeline, but instead found a linked variant in hexokinase 1 (Hk1) that was insufficient to recapitulate the AWG phenotype when introduced into C57BL/6J mice using CRISPR-Cas9. Investigating nearby deafness-associated genes revealed a pronounced downregulation of Cdh23 mRNA and a complete absence of full-length CDH23 protein, which is critical for the development and maintenance of inner ear hair cells, in whole head extracts from AWG neonates. Manual inspection of WGS read depth plots of the Cdh23 locus revealed a putative 10.4 kb genomic deletion of exons 11 and 12 that was validated by PCR and Sanger sequencing. This study underscores the imperative to refine variant detection strategies to permit identification of pathogenic CNVs easily missed by conventional variant calling to enhance diagnostic precision and ultimately improve clinical outcomes for individuals with genetically heterogenous disorders such as hearing loss.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Orangel J Gutierrez Fugón, Osman Sharifi, Nicholas Heath, Daniela C Soto, J Antonio Gomez, Dag H Yasui, Aron Judd P Mendiola, Henriette O'Geen, Ulrika Beitnere, Marketa Tomkova, Viktoria Haghani, Greg Dillon, David J Segal, Janine M LaSalle
Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11 834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.
{"title":"Integration of CTCF loops, methylome, and transcriptome in differentiating LUHMES as a model for imprinting dynamics of the 15q11-q13 locus in human neurons.","authors":"Orangel J Gutierrez Fugón, Osman Sharifi, Nicholas Heath, Daniela C Soto, J Antonio Gomez, Dag H Yasui, Aron Judd P Mendiola, Henriette O'Geen, Ulrika Beitnere, Marketa Tomkova, Viktoria Haghani, Greg Dillon, David J Segal, Janine M LaSalle","doi":"10.1093/hmg/ddae111","DOIUrl":"10.1093/hmg/ddae111","url":null,"abstract":"<p><p>Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11 834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Psychosocial adversity and socioeconomic position during childhood and epigenetic age: analysis of two prospective cohort studies.","authors":"","doi":"10.1093/hmg/ddae118","DOIUrl":"10.1093/hmg/ddae118","url":null,"abstract":"","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Early or late pubertal onset can lead to disease in adulthood, including cancer, obesity, type 2 diabetes, metabolic disorders, bone fractures, and psychopathologies. Thus, knowing the age at which puberty is attained is crucial as it can serve as a risk factor for future diseases. Pubertal development is divided into five stages of sexual maturation in boys and girls according to the standardized Tanner scale. We performed genome-wide association studies (GWAS) on the "Growth and Obesity Chilean Cohort Study" cohort composed of admixed children with mainly European and Native American ancestry. Using joint models that integrate time-to-event data with longitudinal trajectories of body mass index (BMI), we identified genetic variants associated with phenotypic transitions between pairs of Tanner stages. We identified $42$ novel significant associations, most of them in boys. The GWAS on Tanner $3rightarrow 4$ transition in boys captured an association peak around the growth-related genes LARS2 and LIMD1 genes, the former of which causes ovarian dysfunction when mutated. The associated variants are expression and splicing Quantitative Trait Loci regulating gene expression and alternative splicing in multiple tissues. Further, higher individual Native American genetic ancestry proportions predicted a significantly earlier puberty onset in boys but not in girls. Finally, the joint models identified a longitudinal BMI parameter significantly associated with several Tanner stages' transitions, confirming the association of BMI with pubertal timing.
{"title":"Joint models reveal genetic architecture of pubertal stage transitions and their association with BMI in admixed Chilean population.","authors":"Lucas Vicuña, Esteban Barrientos, Valeria Leiva-Yamaguchi, Danilo Alvares, Veronica Mericq, Anita Pereira, Susana Eyheramendy","doi":"10.1093/hmg/ddae098","DOIUrl":"10.1093/hmg/ddae098","url":null,"abstract":"<p><p>Early or late pubertal onset can lead to disease in adulthood, including cancer, obesity, type 2 diabetes, metabolic disorders, bone fractures, and psychopathologies. Thus, knowing the age at which puberty is attained is crucial as it can serve as a risk factor for future diseases. Pubertal development is divided into five stages of sexual maturation in boys and girls according to the standardized Tanner scale. We performed genome-wide association studies (GWAS) on the \"Growth and Obesity Chilean Cohort Study\" cohort composed of admixed children with mainly European and Native American ancestry. Using joint models that integrate time-to-event data with longitudinal trajectories of body mass index (BMI), we identified genetic variants associated with phenotypic transitions between pairs of Tanner stages. We identified $42$ novel significant associations, most of them in boys. The GWAS on Tanner $3rightarrow 4$ transition in boys captured an association peak around the growth-related genes LARS2 and LIMD1 genes, the former of which causes ovarian dysfunction when mutated. The associated variants are expression and splicing Quantitative Trait Loci regulating gene expression and alternative splicing in multiple tissues. Further, higher individual Native American genetic ancestry proportions predicted a significantly earlier puberty onset in boys but not in girls. Finally, the joint models identified a longitudinal BMI parameter significantly associated with several Tanner stages' transitions, confirming the association of BMI with pubertal timing.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unlike other cancers with widespread screening (breast, colorectal, cervical, prostate, and skin), lung nodule biopsies for positive screenings have higher morbidity with clinical complications. Development of non-invasive diagnostic biomarkers could thereby significantly enhance lung cancer management for at-risk patients. Here, we leverage Mendelian Randomization (MR) to investigate the plasma proteome and metabolome for potential biomarkers relevant to lung cancer. Utilizing bidirectional MR and co-localization analyses, we identify novel associations, highlighting inverse relationships between plasma proteins SFTPB and KDELC2 in lung adenocarcinoma (LUAD) and positive associations of TCL1A with lung squamous cell carcinoma (LUSC) and CNTN1 with small cell lung cancer (SCLC). Additionally, our work reveals significant negative correlations between metabolites such as theobromine and paraxanthine, along with paraxanthine-related ratios, in both LUAD and LUSC. Conversely, positive correlations are found in caffeine/paraxanthine and arachidonate (20:4n6)/paraxanthine ratios with these cancer types. Through single-cell sequencing data of normal lung tissue, we further explore the role of lung tissue-specific protein SFTPB in carcinogenesis. These findings offer new insights into lung cancer etiology, potentially guiding the development of diagnostic biomarkers and therapeutic approaches.
{"title":"Plasma proteometabolome in lung cancer: exploring biomarkers through bidirectional Mendelian randomization and colocalization analysis.","authors":"Bo Dong, Mengyao Wang, Kaixiu Li, Zuwei Li, Lunxu Liu, Shensi Shen","doi":"10.1093/hmg/ddae110","DOIUrl":"10.1093/hmg/ddae110","url":null,"abstract":"<p><p>Unlike other cancers with widespread screening (breast, colorectal, cervical, prostate, and skin), lung nodule biopsies for positive screenings have higher morbidity with clinical complications. Development of non-invasive diagnostic biomarkers could thereby significantly enhance lung cancer management for at-risk patients. Here, we leverage Mendelian Randomization (MR) to investigate the plasma proteome and metabolome for potential biomarkers relevant to lung cancer. Utilizing bidirectional MR and co-localization analyses, we identify novel associations, highlighting inverse relationships between plasma proteins SFTPB and KDELC2 in lung adenocarcinoma (LUAD) and positive associations of TCL1A with lung squamous cell carcinoma (LUSC) and CNTN1 with small cell lung cancer (SCLC). Additionally, our work reveals significant negative correlations between metabolites such as theobromine and paraxanthine, along with paraxanthine-related ratios, in both LUAD and LUSC. Conversely, positive correlations are found in caffeine/paraxanthine and arachidonate (20:4n6)/paraxanthine ratios with these cancer types. Through single-cell sequencing data of normal lung tissue, we further explore the role of lung tissue-specific protein SFTPB in carcinogenesis. These findings offer new insights into lung cancer etiology, potentially guiding the development of diagnostic biomarkers and therapeutic approaches.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongzheng Dai, Shamika Ketkar, Taotao Tan, Elizabeth G Atkinson, Lindsay Burrage, Kim C Worley, Brian Christopher, Marka A Lyons, Shervin Assassi, Maureen D Mayes, Brendan Lee
Systemic sclerosis (SSc) is a heterogeneous rare autoimmune fibrosing disorder affecting connective tissue. The etiology of systemic sclerosis is largely unknown and many genes have been suggested as susceptibility loci of modest impact by genome-wide association study (GWAS). Multiple factors can contribute to the pathological process of the disease, which makes it more difficult to identify possible disease-causing genetic alterations. In this study, we have applied whole genome sequencing (WGS) in 101 indexed family trios, supplemented with transcriptome sequencing on cultured fibroblast cells of four patients and five family controls where available. Single nucleotide variants (SNVs) and copy number variants (CNVs) were examined, with emphasis on de novo variants. We also performed enrichment test for rare variants in candidate genes previously proposed in association with systemic sclerosis. We identified 42 exonic and 34 ncRNA de novo SNV changes in 101 trios, from a total of over 6000 de novo variants genome wide. We observed higher than expected de novo variants in PRKXP1 gene. We also observed such phenomenon along with increased expression in patient group in NEK7 gene. Additionally, we also observed significant enrichment of rare variants in candidate genes in the patient cohort, further supporting the complexity/multi-factorial etiology of systemic sclerosis. Our findings identify new candidate genes including PRKXP1 and NEK7 for future studies in SSc. We observed rare variant enrichment in candidate genes previously proposed in association with SSc, which suggest more efforts should be pursued to further investigate possible pathogenetic mechanisms associated with those candidate genes.
{"title":"Exploring the complexity of systemic sclerosis etiology by trio whole genome sequencing.","authors":"Hongzheng Dai, Shamika Ketkar, Taotao Tan, Elizabeth G Atkinson, Lindsay Burrage, Kim C Worley, Brian Christopher, Marka A Lyons, Shervin Assassi, Maureen D Mayes, Brendan Lee","doi":"10.1093/hmg/ddae105","DOIUrl":"10.1093/hmg/ddae105","url":null,"abstract":"<p><p>Systemic sclerosis (SSc) is a heterogeneous rare autoimmune fibrosing disorder affecting connective tissue. The etiology of systemic sclerosis is largely unknown and many genes have been suggested as susceptibility loci of modest impact by genome-wide association study (GWAS). Multiple factors can contribute to the pathological process of the disease, which makes it more difficult to identify possible disease-causing genetic alterations. In this study, we have applied whole genome sequencing (WGS) in 101 indexed family trios, supplemented with transcriptome sequencing on cultured fibroblast cells of four patients and five family controls where available. Single nucleotide variants (SNVs) and copy number variants (CNVs) were examined, with emphasis on de novo variants. We also performed enrichment test for rare variants in candidate genes previously proposed in association with systemic sclerosis. We identified 42 exonic and 34 ncRNA de novo SNV changes in 101 trios, from a total of over 6000 de novo variants genome wide. We observed higher than expected de novo variants in PRKXP1 gene. We also observed such phenomenon along with increased expression in patient group in NEK7 gene. Additionally, we also observed significant enrichment of rare variants in candidate genes in the patient cohort, further supporting the complexity/multi-factorial etiology of systemic sclerosis. Our findings identify new candidate genes including PRKXP1 and NEK7 for future studies in SSc. We observed rare variant enrichment in candidate genes previously proposed in association with SSc, which suggest more efforts should be pursued to further investigate possible pathogenetic mechanisms associated with those candidate genes.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yinhua Zhang, Hyae Rim Kang, Yukyung Jun, Hyojin Kang, Geul Bang, Ruiying Ma, Sungjin Ju, Da Eun Yoon, Yoonhee Kim, Kyoungmi Kim, Jin Young Kim, Kihoon Han
De novo variants in the Cytoplasmic FMR1-interacting protein 2 (CYFIP2) have been repeatedly associated with neurodevelopmental disorders and epilepsy, underscoring its critical role in brain development and function. While CYFIP2's role in regulating actin polymerization as part of the WAVE regulatory complex (WRC) is well-established, its additional molecular functions remain relatively unexplored. In this study, we performed unbiased quantitative proteomic analysis, revealing 278 differentially expressed proteins (DEPs) in the forebrain of Cyfip2 knock-out embryonic mice compared to wild-type mice. Unexpectedly, these DEPs, in conjunction with previously identified CYFIP2 brain interactors, included not only other WRC components but also numerous proteins associated with membraneless organelles (MLOs) involved in mRNA processing and translation within cells, including the nucleolus, stress granules, and processing bodies. Additionally, single-cell transcriptomic analysis of the Cyfip2 knock-out forebrain revealed gene expression changes linked to cellular stress responses and MLOs. We also observed morphological changes in MLOs in Cyfip2 knock-out brains and CYFIP2 knock-down cells under basal and stress conditions. Lastly, we demonstrated that CYFIP2 knock-down in cells, potentially through WRC-dependent actin regulation, suppressed the phosphorylation levels of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α), thereby enhancing protein synthesis. These results suggest a physical and functional connection between CYFIP2 and various MLO proteins and also extend CYFIP2's role within the WRC from actin regulation to influencing eIF2α phosphorylation and protein synthesis. With these dual functions, CYFIP2 may fine-tune the balance between MLO formation/dynamics and protein synthesis, a crucial aspect of proper mRNA processing and translation.
{"title":"Neurodevelopmental disorder-associated CYFIP2 regulates membraneless organelles and eIF2α phosphorylation via protein interactors and actin cytoskeleton.","authors":"Yinhua Zhang, Hyae Rim Kang, Yukyung Jun, Hyojin Kang, Geul Bang, Ruiying Ma, Sungjin Ju, Da Eun Yoon, Yoonhee Kim, Kyoungmi Kim, Jin Young Kim, Kihoon Han","doi":"10.1093/hmg/ddae107","DOIUrl":"10.1093/hmg/ddae107","url":null,"abstract":"<p><p>De novo variants in the Cytoplasmic FMR1-interacting protein 2 (CYFIP2) have been repeatedly associated with neurodevelopmental disorders and epilepsy, underscoring its critical role in brain development and function. While CYFIP2's role in regulating actin polymerization as part of the WAVE regulatory complex (WRC) is well-established, its additional molecular functions remain relatively unexplored. In this study, we performed unbiased quantitative proteomic analysis, revealing 278 differentially expressed proteins (DEPs) in the forebrain of Cyfip2 knock-out embryonic mice compared to wild-type mice. Unexpectedly, these DEPs, in conjunction with previously identified CYFIP2 brain interactors, included not only other WRC components but also numerous proteins associated with membraneless organelles (MLOs) involved in mRNA processing and translation within cells, including the nucleolus, stress granules, and processing bodies. Additionally, single-cell transcriptomic analysis of the Cyfip2 knock-out forebrain revealed gene expression changes linked to cellular stress responses and MLOs. We also observed morphological changes in MLOs in Cyfip2 knock-out brains and CYFIP2 knock-down cells under basal and stress conditions. Lastly, we demonstrated that CYFIP2 knock-down in cells, potentially through WRC-dependent actin regulation, suppressed the phosphorylation levels of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α), thereby enhancing protein synthesis. These results suggest a physical and functional connection between CYFIP2 and various MLO proteins and also extend CYFIP2's role within the WRC from actin regulation to influencing eIF2α phosphorylation and protein synthesis. With these dual functions, CYFIP2 may fine-tune the balance between MLO formation/dynamics and protein synthesis, a crucial aspect of proper mRNA processing and translation.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: The C-terminal extension of dyskerin is a dyskeratosis congenita mutational hotspot that modulates interaction with telomerase RNA and subcellular localization.","authors":"","doi":"10.1093/hmg/ddae126","DOIUrl":"10.1093/hmg/ddae126","url":null,"abstract":"","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}