Bi-allelic mutations in GBA1, a gene that encodes the lysosomal enzyme β-glucocerebrosidase (GCase), cause Gaucher disease (GD). Although GD carriers do not exhibit clinical manifestations, GBA1 mutations are the highest risk factor for Parkinson's disease (PD) in GD patients and carriers of the disease [1-5]. GCase breaks down glucosylceramide (GluCer), a sphingolipid that accumulates in GD. GluCer is deacylated by the lysosomal enzyme acid ceramidase (ACDase) to glucosylsphingosine (GluSph) [6-8]. GluSph is neurotoxic and accumulates to high levels in neuronopathic GD brains [9, 10]. However, whether this metabolic pathway involving ACDase plays a role in GBA1-associated PD (GBA1/PD) is not known. In this report we used induced pluripotent stem cells (hiPSCs) from PD patients harboring heterozygote GBA1 mutations to examine the role of ACDase in promoting α-synuclein accumulation and aggregation, a hallmark of PD. Compared to isogenic controls, hiPSC-derived PD dopamine (DA) neurons had elevated levels of pathogenic α-synuclein species. There was also reduced nuclear localization of transcription factor EB (TFEB), impaired autophagy, and decreased levels of cathepsin D (CathD), a lysosomal protease involved in α-synuclein degradation [11]. Treatment of the mutant DA neurons with a number of different ACDase inhibitors, or CRISPR/Cas9 knockdown (KD) of the ASAH1 gene, reversed all the phenotypic abnormalities of the mutant DA neurons. We conclude that in GBA1/PD-DA neurons, ACDase contributes to deregulation of key nodes of the autophagy/lysosomal pathway (ALP) involved in α-synuclein clearance. Our results suggest that ACDase is a potential therapeutic target for treating GBA1-associated PD.
扫码关注我们
求助内容:
应助结果提醒方式:
