Recommendation serving with deep learning models is one of the most valuable services of modern E-commerce companies. In production, to accommodate billions of recommendation queries with stringent service level agreements, high-performant recommendation serving systems play an essential role in meeting such daunting demand. Unfortunately, existing model serving frameworks fail to achieve efficient serving due to unique challenges such as 1) the input format mismatch between service needs and the model's ability and 2) heavy software contentions to concurrently execute the constrained operations. To address the above challenges, we propose RecServe