Telocytes (TCs) are characterized by a small oval-shaped cell body with long prolongations that are called telopods (Tps). PDGFR-β and c-kit markers may assist for the immunohistochemical identification of TCs; however, by these means they cannot be identified with absolute specificity. Transmission electron microscopy (TEM) is considered as a gold standard method for TCs observation. Studies on TCs in the female reproductive system are limited, and there is a lack of awareness regarding TCs in rat ovaries. We aimed to demonstrate the existence and morphology of TCs in rat ovaries, alongside previously studied TCs in rat uteri. Thus, ovaries and uteri from young adult Sprague-Dawley female rats (n = 8) with regular estrous cycles were collected. Then, left ovaries and uteri were proccessed for TEM analysis, while the right ones were used for immunohistochemistry. As a result, TCs were seen throughout the rat's ovarian stroma with their characteristic cell bodies, Tps, podomes (Pds) and podomers (Pdms). Tps were situated within the thecal layer of the follicles, surrounding the corpus luteum and blood vessels. Ovarian TCs were recognized to have relationship with other TCs/stromal cells. Subsequently, TCs were seen in stroma of endometrium with surrounding blood vessels and uterine glands, myometrium and perimetrium in rat uteri. There was also no statistical significance between the number of c-kit+ and PDGFR-β+ telocyte-like cells in both rat ovarian (p = 0.137) and endometrial stroma (p = 0.450). Further investigation of the roles and functions of TCs in the female reproductive system is needed.
{"title":"Distribution and morphologic characterization of telocytes in rat ovary and uterus: insights from ultrastructural and immunohistochemical analysis.","authors":"Merjem Purelku, Hakan Sahin, Gozde Erkanli Senturk, Gamze Tanriverdi","doi":"10.1007/s00418-024-02313-w","DOIUrl":"10.1007/s00418-024-02313-w","url":null,"abstract":"<p><p>Telocytes (TCs) are characterized by a small oval-shaped cell body with long prolongations that are called telopods (Tps). PDGFR-β and c-kit markers may assist for the immunohistochemical identification of TCs; however, by these means they cannot be identified with absolute specificity. Transmission electron microscopy (TEM) is considered as a gold standard method for TCs observation. Studies on TCs in the female reproductive system are limited, and there is a lack of awareness regarding TCs in rat ovaries. We aimed to demonstrate the existence and morphology of TCs in rat ovaries, alongside previously studied TCs in rat uteri. Thus, ovaries and uteri from young adult Sprague-Dawley female rats (n = 8) with regular estrous cycles were collected. Then, left ovaries and uteri were proccessed for TEM analysis, while the right ones were used for immunohistochemistry. As a result, TCs were seen throughout the rat's ovarian stroma with their characteristic cell bodies, Tps, podomes (Pds) and podomers (Pdms). Tps were situated within the thecal layer of the follicles, surrounding the corpus luteum and blood vessels. Ovarian TCs were recognized to have relationship with other TCs/stromal cells. Subsequently, TCs were seen in stroma of endometrium with surrounding blood vessels and uterine glands, myometrium and perimetrium in rat uteri. There was also no statistical significance between the number of c-kit+ and PDGFR-β+ telocyte-like cells in both rat ovarian (p = 0.137) and endometrial stroma (p = 0.450). Further investigation of the roles and functions of TCs in the female reproductive system is needed.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"373-384"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-29DOI: 10.1007/s00418-024-02312-x
Maria Eugenia Gulino, Paloma Ordóñez-Morán, Yashwant R Mahida
The study of intestinal stem cells is a prerequisite for the development of therapies aimed at regenerating the gut. To enable investigation of adult slow-cycling H2B-GFP-retaining putative small intestinal (SI) stem cells in vitro, we have developed a three-dimensional (3D) SI organoid culture model based on the Tet-Op histone 2 B (H2B)-green fluorescent protein (GFP) fusion protein (Tet-Op-H2B-GFP) transgenic mouse. SI crypts were isolated from 6- to 12-week-old Tet-Op-H2B-GFP transgenic mice and cultured with appropriate growth factors and an animal-derived matrix (Matrigel). For in vitro transgene expression, doxycycline was added to the culture medium for 24 h. By pulse-chase experiments, H2B-GFP expression and retention were assessed through direct GFP fluorescence observations, both by confocal and fluorescence microscopy and by immunohistochemistry. The percentages of H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells persisting in organoids were determined by scoring relevant GFP-positive cells. Our results indicate that 24 h exposure to doxycycline (pulse) induced ubiquitous expression of H2B-GFP in the SI organoids. During subsequent culture, in the absence of doxycycline (chase), there was a gradual loss (due to cell division) of H2B-GFP. At 6-day chase, slow-cycling H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells were detected in the SI organoids. The developed culture model allows detection of slow-cycling H2B-GFP-retaining putative SI stem cells and will enable the study of self-renewal and regeneration for further characterization of these cells.
{"title":"Establishment of a 3D organoid culture model for the investigation of adult slow-cycling putative intestinal stem cells.","authors":"Maria Eugenia Gulino, Paloma Ordóñez-Morán, Yashwant R Mahida","doi":"10.1007/s00418-024-02312-x","DOIUrl":"10.1007/s00418-024-02312-x","url":null,"abstract":"<p><p>The study of intestinal stem cells is a prerequisite for the development of therapies aimed at regenerating the gut. To enable investigation of adult slow-cycling H2B-GFP-retaining putative small intestinal (SI) stem cells in vitro, we have developed a three-dimensional (3D) SI organoid culture model based on the Tet-Op histone 2 B (H2B)-green fluorescent protein (GFP) fusion protein (Tet-Op-H2B-GFP) transgenic mouse. SI crypts were isolated from 6- to 12-week-old Tet-Op-H2B-GFP transgenic mice and cultured with appropriate growth factors and an animal-derived matrix (Matrigel). For in vitro transgene expression, doxycycline was added to the culture medium for 24 h. By pulse-chase experiments, H2B-GFP expression and retention were assessed through direct GFP fluorescence observations, both by confocal and fluorescence microscopy and by immunohistochemistry. The percentages of H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells persisting in organoids were determined by scoring relevant GFP-positive cells. Our results indicate that 24 h exposure to doxycycline (pulse) induced ubiquitous expression of H2B-GFP in the SI organoids. During subsequent culture, in the absence of doxycycline (chase), there was a gradual loss (due to cell division) of H2B-GFP. At 6-day chase, slow-cycling H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells were detected in the SI organoids. The developed culture model allows detection of slow-cycling H2B-GFP-retaining putative SI stem cells and will enable the study of self-renewal and regeneration for further characterization of these cells.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"351-362"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-06-28DOI: 10.1007/s00418-024-02306-9
Flores Naselli, Paola Sofia Cardinale, Sara Volpes, Chiara Martino, Ilenia Cruciata, Rossella Valenti, Claudio Luparello, Fabio Caradonna, Roberto Chiarelli
DNA damage is one of the most important effects induced by chemical agents. We report a comparative analysis of DNA fragmentation on three different cell lines using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, generally applied to detect apoptosis. Our approach combines cytogenetic techniques and investigation in detached cellular structures, recovered from the culture medium with the aim to compare the DNA fragmentation of three different cell line even beyond the cells adherent to substrate. Consequently, we detect any fragmentation points on single chromosomes, whole nuclei and other cellular structures. Cells were exposed to resveratrol (RSV) and doxorubicin (Doxo), in single and combined treatments. Control and treated astrocytes showed DNA damage in condensed nuclei and detached structures. Caco-2 cells showed fragmented DNA only after Doxo-treatment, while controls showed fragmented chromosomes, indicating DNA damage in replicating cells. MDA-MB-231 cells showed nuclear condensation and DNA fragmentation above all after RSV-treatment and related to detached structures. This model proved to perform a grading of genomic instability (GI). Astrocytes show a hybrid level of GI. Caco-2 cells showed fragmented metaphase chromosomes, proving that the DNA damage was transmitted to the daughter cells probably due to an absence of DNA repair mechanisms. Instead, MDA-MB-231 cells showed few or no fragmented metaphase, suggesting a probable activation of DNA repair mechanisms. By applying this alternative approach of TUNEL test, we obtained data that can more specifically characterize DNA fragmentation for a suitable application in various fields.
DNA 损伤是化学制剂引起的最重要影响之一。我们报告了使用末端脱氧核苷酸转移酶 dUTP 缺口末端标记(TUNEL)检测法对三种不同细胞系的 DNA 断裂进行比较分析的结果,该检测法通常用于检测细胞凋亡。我们的方法结合了细胞遗传学技术和对从培养基中分离出来的细胞结构的研究,目的是比较三种不同细胞系的 DNA 断裂情况,甚至包括粘附在基质上的细胞。因此,我们能检测到单条染色体、整个细胞核和其他细胞结构上的任何碎片点。我们将细胞暴露于白藜芦醇(RSV)和多柔比星(Doxo)的单一或联合处理中。对照组和经处理的星形胶质细胞在浓缩的细胞核和分离的结构中显示出 DNA 损伤。Caco-2细胞仅在Doxo处理后才出现DNA碎片,而对照组则出现染色体碎片,表明复制细胞中的DNA受损。经 RSV 处理后,MDA-MB-231 细胞首先出现核凝聚和 DNA 断裂,并与脱落结构有关。该模型可对基因组不稳定性(GI)进行分级。星形胶质细胞显示出混合水平的 GI。Caco-2 细胞显示出分裂期染色体碎片,这证明 DNA 损伤传递给子细胞可能是由于 DNA 修复机制的缺失。相反,MDA-MB-231 细胞的分裂期染色体很少或没有破碎,表明 DNA 修复机制可能被激活。通过采用这种替代 TUNEL 测试的方法,我们获得了能更有针对性地描述 DNA 断裂特征的数据,适合应用于各个领域。
{"title":"An alternative approach of TUNEL assay to specifically characterize DNA fragmentation in cell model systems.","authors":"Flores Naselli, Paola Sofia Cardinale, Sara Volpes, Chiara Martino, Ilenia Cruciata, Rossella Valenti, Claudio Luparello, Fabio Caradonna, Roberto Chiarelli","doi":"10.1007/s00418-024-02306-9","DOIUrl":"10.1007/s00418-024-02306-9","url":null,"abstract":"<p><p>DNA damage is one of the most important effects induced by chemical agents. We report a comparative analysis of DNA fragmentation on three different cell lines using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, generally applied to detect apoptosis. Our approach combines cytogenetic techniques and investigation in detached cellular structures, recovered from the culture medium with the aim to compare the DNA fragmentation of three different cell line even beyond the cells adherent to substrate. Consequently, we detect any fragmentation points on single chromosomes, whole nuclei and other cellular structures. Cells were exposed to resveratrol (RSV) and doxorubicin (Doxo), in single and combined treatments. Control and treated astrocytes showed DNA damage in condensed nuclei and detached structures. Caco-2 cells showed fragmented DNA only after Doxo-treatment, while controls showed fragmented chromosomes, indicating DNA damage in replicating cells. MDA-MB-231 cells showed nuclear condensation and DNA fragmentation above all after RSV-treatment and related to detached structures. This model proved to perform a grading of genomic instability (GI). Astrocytes show a hybrid level of GI. Caco-2 cells showed fragmented metaphase chromosomes, proving that the DNA damage was transmitted to the daughter cells probably due to an absence of DNA repair mechanisms. Instead, MDA-MB-231 cells showed few or no fragmented metaphase, suggesting a probable activation of DNA repair mechanisms. By applying this alternative approach of TUNEL test, we obtained data that can more specifically characterize DNA fragmentation for a suitable application in various fields.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"429-442"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-17DOI: 10.1007/s00418-024-02322-9
Andrey I Emanuilov, Antonina F Budnik, Petr M Masliukov
Somatostatin (SST) is a peptide expressed in the peripheral and central nervous systems, as well as in endocrine and immune cells. The aim of the current study is to determine the percentage of SST immunoreactive (IR) neurons and their colocalization with choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY), and glial fibrillary acidic protein (GFAP) in the myenteric plexus (MP) and submucous plexus (SP) of the small intestine (SI) and large intestine (LI) of rats across different age groups from newborn to senescence using immunohistochemistry. In the MP of the SI and LI, the percentage of SST-IR neurons significantly increased during early postnatal development from 12 ± 2.4 (SI) and 13 ± 3.0 (LI) in newborn rats to 23 ± 1.5 (SI) and 18 ± 1.6 (LI) in 20-day-old animals, remaining stable until 60 days of age. The proportion of SST-IR cells then decreased in aged 2-year-old animals to 14 ± 2.0 (SI) and 10 ± 2.6 (LI). In the SP, the percentage of SST-IR neurons significantly rose from 22 ± 3.2 (SI) and 23 ± 1.7 (LI) in newborn rats to 42 ± 4.0 in 20-day-old animals (SI) and 32 ± 4.9 in 30-day-old animals (LI), before declining in aged 2-year-old animals to 21 ± 2.6 (SI) and 28 ± 7.4 (LI). Between birth and 60 days of age, 97-98% of SST-IR neurons in the MP and SP colocalized with ChAT in both plexuses of the SI and LI. The percentage of SST/ChAT neurons decreased in old rats to 85 ± 5.0 (SI) and 90 ± 3.8 (LI) in the MP and 89 ± 3.2 (SI) and 89 ± 1.6 (LI) in the SP. Conversely, in young rats, only a few SST-IR neurons colocalized with nNOS, but this percentage significantly increased in 2-year-old rats. The percentage of SST/NPY-IR neurons exhibited considerable variation throughout postnatal development, with no significant differences across different age groups in both the MP and SP of both intestines. No colocalization of SST with GFAP was observed in any of the studied animals. In conclusion, the expression of SST in enteric neurons increases in young rats and decreases in senescence, accompanied by changes in SST colocalization with ChAT and nNOS.
{"title":"Somatostatin-immunoreactive neurons of the rat gut during the development.","authors":"Andrey I Emanuilov, Antonina F Budnik, Petr M Masliukov","doi":"10.1007/s00418-024-02322-9","DOIUrl":"10.1007/s00418-024-02322-9","url":null,"abstract":"<p><p>Somatostatin (SST) is a peptide expressed in the peripheral and central nervous systems, as well as in endocrine and immune cells. The aim of the current study is to determine the percentage of SST immunoreactive (IR) neurons and their colocalization with choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY), and glial fibrillary acidic protein (GFAP) in the myenteric plexus (MP) and submucous plexus (SP) of the small intestine (SI) and large intestine (LI) of rats across different age groups from newborn to senescence using immunohistochemistry. In the MP of the SI and LI, the percentage of SST-IR neurons significantly increased during early postnatal development from 12 ± 2.4 (SI) and 13 ± 3.0 (LI) in newborn rats to 23 ± 1.5 (SI) and 18 ± 1.6 (LI) in 20-day-old animals, remaining stable until 60 days of age. The proportion of SST-IR cells then decreased in aged 2-year-old animals to 14 ± 2.0 (SI) and 10 ± 2.6 (LI). In the SP, the percentage of SST-IR neurons significantly rose from 22 ± 3.2 (SI) and 23 ± 1.7 (LI) in newborn rats to 42 ± 4.0 in 20-day-old animals (SI) and 32 ± 4.9 in 30-day-old animals (LI), before declining in aged 2-year-old animals to 21 ± 2.6 (SI) and 28 ± 7.4 (LI). Between birth and 60 days of age, 97-98% of SST-IR neurons in the MP and SP colocalized with ChAT in both plexuses of the SI and LI. The percentage of SST/ChAT neurons decreased in old rats to 85 ± 5.0 (SI) and 90 ± 3.8 (LI) in the MP and 89 ± 3.2 (SI) and 89 ± 1.6 (LI) in the SP. Conversely, in young rats, only a few SST-IR neurons colocalized with nNOS, but this percentage significantly increased in 2-year-old rats. The percentage of SST/NPY-IR neurons exhibited considerable variation throughout postnatal development, with no significant differences across different age groups in both the MP and SP of both intestines. No colocalization of SST with GFAP was observed in any of the studied animals. In conclusion, the expression of SST in enteric neurons increases in young rats and decreases in senescence, accompanied by changes in SST colocalization with ChAT and nNOS.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"385-402"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mast cells (MCs) in rat airways have been classified into two subtypes: epithelial MCs and connective tissue MCs (CTMCs). However, the immunohistochemical characteristics, cellular morphology, and distribution of epithelial MCs in the upper airways remain unclear. The present study investigated the morphological characteristics and distribution of epithelial MCs using 5-hydroxytryptamine (5-HT) and other immunohistochemical markers in sectioned or whole-mount preparations of the rat larynx and trachea. A double immunofluorescence analysis revealed the colocalization of 5-HT immunoreactivity with c-kit, a stem cell factor receptor commonly used as a MC marker, in both epithelial MCs and CTMCs. Dopa decarboxylase, an enzyme involved in 5-HT synthesis, was detected in both subtypes, suggesting their ability to synthesize and release 5-HT. Tryptase and histidine decarboxylase (a biosynthetic enzyme of histamine), which are well-known mediators of MCs, were exclusive to CTMCs. Epithelial MCs were pleomorphic with long cytoplasmic processes, whereas CTMCs were round and lacked cytoplasmic processes. The density of epithelial MCs was significantly higher in the glottis and cranial part of the trachea than in the epiglottis and other parts of the trachea. The present results showed that the morphology and immunohistochemical characteristics of epithelial MCs were different from those of CTMCs in the rat larynx and trachea, and variform epithelial MCs were predominantly located at the entrance of the upper airways. Epithelial MCs may release 5-HT to regulate innate immune responses by modulating epithelial cell functions at the entrance gate of the upper airways.
{"title":"Immunohistochemical analysis and distribution of epithelial mast cells in the rat larynx and trachea.","authors":"Sayed Sharif Abdali, Takuya Yokoyama, Yoshio Yamamoto, Keishi Narita, Masato Hirakawa, Tomoyuki Saino","doi":"10.1007/s00418-024-02309-6","DOIUrl":"10.1007/s00418-024-02309-6","url":null,"abstract":"<p><p>Mast cells (MCs) in rat airways have been classified into two subtypes: epithelial MCs and connective tissue MCs (CTMCs). However, the immunohistochemical characteristics, cellular morphology, and distribution of epithelial MCs in the upper airways remain unclear. The present study investigated the morphological characteristics and distribution of epithelial MCs using 5-hydroxytryptamine (5-HT) and other immunohistochemical markers in sectioned or whole-mount preparations of the rat larynx and trachea. A double immunofluorescence analysis revealed the colocalization of 5-HT immunoreactivity with c-kit, a stem cell factor receptor commonly used as a MC marker, in both epithelial MCs and CTMCs. Dopa decarboxylase, an enzyme involved in 5-HT synthesis, was detected in both subtypes, suggesting their ability to synthesize and release 5-HT. Tryptase and histidine decarboxylase (a biosynthetic enzyme of histamine), which are well-known mediators of MCs, were exclusive to CTMCs. Epithelial MCs were pleomorphic with long cytoplasmic processes, whereas CTMCs were round and lacked cytoplasmic processes. The density of epithelial MCs was significantly higher in the glottis and cranial part of the trachea than in the epiglottis and other parts of the trachea. The present results showed that the morphology and immunohistochemical characteristics of epithelial MCs were different from those of CTMCs in the rat larynx and trachea, and variform epithelial MCs were predominantly located at the entrance of the upper airways. Epithelial MCs may release 5-HT to regulate innate immune responses by modulating epithelial cell functions at the entrance gate of the upper airways.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"287-297"},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-17DOI: 10.1007/s00418-024-02304-x
Sei Kuriyama, Kuboki Thasaneeya, Go Itoh, Satoru Kidoaki, Masamitsu Tanaka
Förster resonance energy transfer (FRET) serves as a tool for measuring protein-protein interactions using various sensor molecules. The tension sensor module relies on FRET technology. In our study, this module was inserted within the actinin molecule to measure the surface tension of the cells. Given that the decay curve of FRET efficiency correlates with surface tension increase, precise and accurate efficiency measurement becomes crucial. Among the methods of FRET measurements, FRET efficiency remains the most accurate if sample fixation is successful. However, when cells were fixed with 4% paraformaldehyde (PFA), the actinin-FRET sensor diffused across the cytoplasm; this prompted us to explore fixation method enhancements. Glyoxal fixative has been reported to improve cytoskeletal morphologies compared to PFA. However, it was not known whether glyoxal fits FRET measurements. Glyoxal necessitates an acetic acid solution for fixation; however, acidic conditions could compromise fluorescence stability. We observed that the pH working range of glyoxal fixative aligns closely with MES (methyl-ethylene sulfonic acid) Good's buffer. Initially, we switched the acidic solution for MES buffer and optimized the fixation procedure for in vitro and in vivo FRET imaging. By comparing FRET measurements on hydrogels with known stiffness to tumor nodules in mouse lung, we estimated in vivo stiffness. The estimated stiffness of cancerous tissue was harder than the reported stiffness of smooth muscle. This discovery shed lights on how cancer cells perceive environmental stiffness during metastasis.
{"title":"Glyoxal-methyl-ethylene sulfonic acid fixative enhances the fixation of cytoskeletal structures for Förster resonance energy transfer measurements.","authors":"Sei Kuriyama, Kuboki Thasaneeya, Go Itoh, Satoru Kidoaki, Masamitsu Tanaka","doi":"10.1007/s00418-024-02304-x","DOIUrl":"10.1007/s00418-024-02304-x","url":null,"abstract":"<p><p>Förster resonance energy transfer (FRET) serves as a tool for measuring protein-protein interactions using various sensor molecules. The tension sensor module relies on FRET technology. In our study, this module was inserted within the actinin molecule to measure the surface tension of the cells. Given that the decay curve of FRET efficiency correlates with surface tension increase, precise and accurate efficiency measurement becomes crucial. Among the methods of FRET measurements, FRET efficiency remains the most accurate if sample fixation is successful. However, when cells were fixed with 4% paraformaldehyde (PFA), the actinin-FRET sensor diffused across the cytoplasm; this prompted us to explore fixation method enhancements. Glyoxal fixative has been reported to improve cytoskeletal morphologies compared to PFA. However, it was not known whether glyoxal fits FRET measurements. Glyoxal necessitates an acetic acid solution for fixation; however, acidic conditions could compromise fluorescence stability. We observed that the pH working range of glyoxal fixative aligns closely with MES (methyl-ethylene sulfonic acid) Good's buffer. Initially, we switched the acidic solution for MES buffer and optimized the fixation procedure for in vitro and in vivo FRET imaging. By comparing FRET measurements on hydrogels with known stiffness to tumor nodules in mouse lung, we estimated in vivo stiffness. The estimated stiffness of cancerous tissue was harder than the reported stiffness of smooth muscle. This discovery shed lights on how cancer cells perceive environmental stiffness during metastasis.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"337-347"},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-12DOI: 10.1007/s00418-024-02308-7
Esma Kirimlioglu, Asli Okan Oflamaz, Enis Hidisoglu, Sukru Ozen, Piraye Yargicoglu, Necdet Demir
Long-term radiofrequency radiation (RFR) exposure, which adversely affects organisms, deteriorates testicular functions. Misfolding or unfolding protein accumulation in the endoplasmic reticulum (ER) initiates an intracellular reaction known as ER stress (ERS), which activates the unfolded protein response (UPR) for proteostasis. Since both RFR exposure and ERS can cause male infertility, we hypothesized that RFR exposure causes ERS to adversely affect testicular functions in rats. To investigate role of ERS in mediating RFR effects on rat testis, we established five experimental groups in male rats: control, short-term 2100-megahertz (MHz) RFR (1-week), short-term sham (sham/1-week), long-term 2100-MHz RFR (10-week), and long-term sham (sham/10-week). ERS markers Grp78 and phosphorylated PERK (p-Perk) levels and ERS-related apoptosis markers Chop and caspase 12 were investigated by immunohistochemistry, immunoblotting, and quantitative real-time polymerase chain reaction (qPCR). Long-term RFR exposure increased Grp78, p-Perk, and Chop levels, while short-term RFR exposure elevated Chop and caspase 12 levels. Chop expression was not observed in spermatogonia and primary spermatocytes, which may protect spermatogonia and primary spermatocytes against RFR-induced ERS-mediated apoptosis, thereby allowing transmission of genetic material to next generations. While short and long-term RFR exposures trigger ERS and ERS-related apoptotic pathways, further functional analyses are needed to elucidate whether this RFR-induced apoptosis has long-term male infertility effects.
长期暴露于射频辐射(RFR)会对生物体产生不利影响,并导致睾丸功能退化。内质网(ER)中错误折叠或未折叠蛋白质的积累会引发一种称为ER应激(ERS)的细胞内反应,从而激活未折叠蛋白质反应(UPR)以促进蛋白稳态。由于暴露于射频辐射和ERS都会导致雄性不育,我们假设暴露于射频辐射会导致ERS对大鼠的睾丸功能产生不利影响。为了研究ERS在介导射频辐射对大鼠睾丸影响中的作用,我们在雄性大鼠中设立了五个实验组:对照组、短期2100兆赫射频辐射组(1周)、短期假体组(假体/1周)、长期2100兆赫射频辐射组(10周)和长期假体组(假体/10周)。通过免疫组化、免疫印迹和实时定量聚合酶链反应(qPCR)研究了ERS标志物 Grp78 和磷酸化 PERK(p-Perk)的水平以及与ERS相关的细胞凋亡标志物 Chop 和 caspase 12。长期暴露于射频辐射会提高 Grp78、p-Perk 和 Chop 的水平,而短期暴露于射频辐射会提高 Chop 和 caspase 12 的水平。在精原细胞和初级精母细胞中未观察到 Chop 的表达,这可能会保护精原细胞和初级精母细胞免受射频辐射诱导的 ERS 介导的凋亡,从而使遗传物质得以传给下一代。虽然短期和长期暴露于射频辐射会触发ERS和与ERS相关的凋亡途径,但还需要进一步的功能分析来阐明射频辐射诱导的凋亡是否会对男性不育产生长期影响。
{"title":"Short and long-term 2100 MHz radiofrequency radiation causes endoplasmic reticulum stress in rat testis.","authors":"Esma Kirimlioglu, Asli Okan Oflamaz, Enis Hidisoglu, Sukru Ozen, Piraye Yargicoglu, Necdet Demir","doi":"10.1007/s00418-024-02308-7","DOIUrl":"10.1007/s00418-024-02308-7","url":null,"abstract":"<p><p>Long-term radiofrequency radiation (RFR) exposure, which adversely affects organisms, deteriorates testicular functions. Misfolding or unfolding protein accumulation in the endoplasmic reticulum (ER) initiates an intracellular reaction known as ER stress (ERS), which activates the unfolded protein response (UPR) for proteostasis. Since both RFR exposure and ERS can cause male infertility, we hypothesized that RFR exposure causes ERS to adversely affect testicular functions in rats. To investigate role of ERS in mediating RFR effects on rat testis, we established five experimental groups in male rats: control, short-term 2100-megahertz (MHz) RFR (1-week), short-term sham (sham/1-week), long-term 2100-MHz RFR (10-week), and long-term sham (sham/10-week). ERS markers Grp78 and phosphorylated PERK (p-Perk) levels and ERS-related apoptosis markers Chop and caspase 12 were investigated by immunohistochemistry, immunoblotting, and quantitative real-time polymerase chain reaction (qPCR). Long-term RFR exposure increased Grp78, p-Perk, and Chop levels, while short-term RFR exposure elevated Chop and caspase 12 levels. Chop expression was not observed in spermatogonia and primary spermatocytes, which may protect spermatogonia and primary spermatocytes against RFR-induced ERS-mediated apoptosis, thereby allowing transmission of genetic material to next generations. While short and long-term RFR exposures trigger ERS and ERS-related apoptotic pathways, further functional analyses are needed to elucidate whether this RFR-induced apoptosis has long-term male infertility effects.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"311-321"},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141599221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-02DOI: 10.1007/s00418-024-02305-w
Marta Arnal-Forné, Tamara Molina-García, María Ortega, Víctor Marcos-Garcés, Pilar Molina, Antonio Ferrández-Izquierdo, Pilar Sepulveda, Vicente Bodí, César Ríos-Navarro, Amparo Ruiz-Saurí
Skin represents the main barrier against the external environment, but also plays a role in human relations, as one of the prime determinants of beauty, resulting in a high consumer demand for skincare-related pharmaceutical products. Given the importance of skin aging in both medical and social spheres, the present research aims to characterize microscopic changes in human skin composition due to intrinsic aging (as opposed to aging influenced by external factors) via histological analysis of a photoprotected body region. Samples from 25 autopsies were taken from the periumbilical area and classified into four age groups: group 1 (0-12 years), group 2 (13-25 years), group 3 (26-54 years), and group 4 (≥ 55 years). Different traditional histological (hematoxylin-eosin, Masson's trichrome, orcein, toluidine, Alcian blue, and Feulgen reaction) and immunohistochemical (CK20, CD1a, Ki67, and CD31) stains were performed. A total of 1879 images photographed with a Leica DM3000 optical microscope were morphometrically analyzed using Image ProPlus 7.0 for further statistical analysis with GraphPad 9.0. Our results showed a reduction in epidermis thickness, interdigitation and mitotic indexes, while melanocyte count was raised. Papillary but not reticular dermis showed increased thickness with aging. Specifically, in the papillary layer mast cells and glycosaminoglycans were expanded, whereas the reticular dermis displayed a diminution in glycosaminoglycans and elastic fibers. Moreover, total cellularity and vascularization of both dermises were diminished with aging. This morphometric analysis of photoprotected areas reveals that intrinsic aging significantly influences human skin composition. This study paves the way for further research into the molecular basis underpinning these alterations, and into potential antiaging strategies.
{"title":"Changes in human skin composition due to intrinsic aging: a histologic and morphometric study.","authors":"Marta Arnal-Forné, Tamara Molina-García, María Ortega, Víctor Marcos-Garcés, Pilar Molina, Antonio Ferrández-Izquierdo, Pilar Sepulveda, Vicente Bodí, César Ríos-Navarro, Amparo Ruiz-Saurí","doi":"10.1007/s00418-024-02305-w","DOIUrl":"10.1007/s00418-024-02305-w","url":null,"abstract":"<p><p>Skin represents the main barrier against the external environment, but also plays a role in human relations, as one of the prime determinants of beauty, resulting in a high consumer demand for skincare-related pharmaceutical products. Given the importance of skin aging in both medical and social spheres, the present research aims to characterize microscopic changes in human skin composition due to intrinsic aging (as opposed to aging influenced by external factors) via histological analysis of a photoprotected body region. Samples from 25 autopsies were taken from the periumbilical area and classified into four age groups: group 1 (0-12 years), group 2 (13-25 years), group 3 (26-54 years), and group 4 (≥ 55 years). Different traditional histological (hematoxylin-eosin, Masson's trichrome, orcein, toluidine, Alcian blue, and Feulgen reaction) and immunohistochemical (CK20, CD1a, Ki67, and CD31) stains were performed. A total of 1879 images photographed with a Leica DM3000 optical microscope were morphometrically analyzed using Image ProPlus 7.0 for further statistical analysis with GraphPad 9.0. Our results showed a reduction in epidermis thickness, interdigitation and mitotic indexes, while melanocyte count was raised. Papillary but not reticular dermis showed increased thickness with aging. Specifically, in the papillary layer mast cells and glycosaminoglycans were expanded, whereas the reticular dermis displayed a diminution in glycosaminoglycans and elastic fibers. Moreover, total cellularity and vascularization of both dermises were diminished with aging. This morphometric analysis of photoprotected areas reveals that intrinsic aging significantly influences human skin composition. This study paves the way for further research into the molecular basis underpinning these alterations, and into potential antiaging strategies.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"259-271"},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-24DOI: 10.1007/s00418-024-02300-1
Amr M Abd El-Hady, Rady M Azzoz, Saeed M Soliman, Ibrahim Y Abdelrahman, Wafaa M Khalil, Said A Ali
Ionizing radiation produces deleterious effects on living organisms. The present investigation has been carried out to study the prophylactic as well as the therapeutic effects of treated rats with quercetin (Quer) and curcumin (Cur), which are two medicinal herbs known for their antioxidant activities against damages induced by whole-body fractionated gamma irradiation. Exposure of rats to whole-body gamma irradiation induced a significant decrease in erythrocyte (RBC), leukocyte (WBCs), platelet count (Plt), hemoglobin concentration (Hb), hematocrit (Hct %), mean erythrocyte hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and mean erythrocyte volume (MCV); a high increase in plasma thiobarbituric acid reactive substances (TBARS); a nonsignificant statistical decrease in the mean value of serum glutathione (GSH); a significant increase in plasma alanine transferase (ALT), aspartate transferase (AST), alkaline phosphates (ALP), serum total protein, serum total cholesterol levels, total triglycerides levels, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels; and with marked histological changes and structural changes measured by Fourier transform infrared (FTIR). Applying both quercetin and curcumin pre- and postexposure to gamma radiation revealed a remarkable improvement in all the studied parameters. The cellular damage by gamma radiation is greatly mitigated by the coadministration of curcumin and quercetin before radiation exposure.
{"title":"Studies on the effect of curcumin and quercetin in the liver of male albino rats exposed to gamma irradiation.","authors":"Amr M Abd El-Hady, Rady M Azzoz, Saeed M Soliman, Ibrahim Y Abdelrahman, Wafaa M Khalil, Said A Ali","doi":"10.1007/s00418-024-02300-1","DOIUrl":"10.1007/s00418-024-02300-1","url":null,"abstract":"<p><p>Ionizing radiation produces deleterious effects on living organisms. The present investigation has been carried out to study the prophylactic as well as the therapeutic effects of treated rats with quercetin (Quer) and curcumin (Cur), which are two medicinal herbs known for their antioxidant activities against damages induced by whole-body fractionated gamma irradiation. Exposure of rats to whole-body gamma irradiation induced a significant decrease in erythrocyte (RBC), leukocyte (WBCs), platelet count (Plt), hemoglobin concentration (Hb), hematocrit (Hct %), mean erythrocyte hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and mean erythrocyte volume (MCV); a high increase in plasma thiobarbituric acid reactive substances (TBARS); a nonsignificant statistical decrease in the mean value of serum glutathione (GSH); a significant increase in plasma alanine transferase (ALT), aspartate transferase (AST), alkaline phosphates (ALP), serum total protein, serum total cholesterol levels, total triglycerides levels, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels; and with marked histological changes and structural changes measured by Fourier transform infrared (FTIR). Applying both quercetin and curcumin pre- and postexposure to gamma radiation revealed a remarkable improvement in all the studied parameters. The cellular damage by gamma radiation is greatly mitigated by the coadministration of curcumin and quercetin before radiation exposure.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"299-309"},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-31DOI: 10.1007/s00418-024-02310-z
Göksel Doğan, Mustafa Sandıkçı, Levent Karagenç
Genes encoding Toll-like receptors (TLRs) are expressed by germ cells in the mouse testis. Nevertheless, the expression of TLRs by germ cells has only been demonstrated for TLR-3, TLR-9, and TLR-11. Furthermore, the expression of each TLR in relation to the stage of spermatogenesis remains uncertain. We aimed in the present study to examine the expression pattern of all TLRs in germ cells throughout the cycle of seminiferous epithelium in the adult mouse testis. Immunohistochemistry was used to evaluate the expression of TLRs. Results of the present study reveal the expression of TLRs by specific populations of germ cells. Expression of TLRs, except for TLR-7, at endosomal compartments, acrosomes, and/or residual bodies was another interesting and novel finding of the present study. We further demonstrate that the expression of TLR-1, -2, -3, -4, -5, -7, -11, -12, and -13 follows a distinct spatiotemporal pattern throughout the cycle of seminiferous epithelium. While TLR-1, -3, -5, -11, and -12 are expressed in all stages, TLR-4 is expressed only in early and middle stages of spermatogenic cycle. On the other hand, TLR-2, -7, and -13 are expressed only in early stage of spermatogenic cycle. Evidence demonstrating the expression of TLRs in a stage specific manner throughout spermatogenesis strengthen the hypothesis that the expression of various TLRs by germ cells is a developmentally regulated process. However, if TLRs play a role in the regulation of proliferation, growth, maturation, and differentiation of germ cells throughout the cycle of the seminiferous epithelium warrants further investigations.
{"title":"Stage-specific expression of Toll-like receptors in the seminiferous epithelium of mouse testis.","authors":"Göksel Doğan, Mustafa Sandıkçı, Levent Karagenç","doi":"10.1007/s00418-024-02310-z","DOIUrl":"10.1007/s00418-024-02310-z","url":null,"abstract":"<p><p>Genes encoding Toll-like receptors (TLRs) are expressed by germ cells in the mouse testis. Nevertheless, the expression of TLRs by germ cells has only been demonstrated for TLR-3, TLR-9, and TLR-11. Furthermore, the expression of each TLR in relation to the stage of spermatogenesis remains uncertain. We aimed in the present study to examine the expression pattern of all TLRs in germ cells throughout the cycle of seminiferous epithelium in the adult mouse testis. Immunohistochemistry was used to evaluate the expression of TLRs. Results of the present study reveal the expression of TLRs by specific populations of germ cells. Expression of TLRs, except for TLR-7, at endosomal compartments, acrosomes, and/or residual bodies was another interesting and novel finding of the present study. We further demonstrate that the expression of TLR-1, -2, -3, -4, -5, -7, -11, -12, and -13 follows a distinct spatiotemporal pattern throughout the cycle of seminiferous epithelium. While TLR-1, -3, -5, -11, and -12 are expressed in all stages, TLR-4 is expressed only in early and middle stages of spermatogenic cycle. On the other hand, TLR-2, -7, and -13 are expressed only in early stage of spermatogenic cycle. Evidence demonstrating the expression of TLRs in a stage specific manner throughout spermatogenesis strengthen the hypothesis that the expression of various TLRs by germ cells is a developmentally regulated process. However, if TLRs play a role in the regulation of proliferation, growth, maturation, and differentiation of germ cells throughout the cycle of the seminiferous epithelium warrants further investigations.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"323-335"},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}