Apelin-13 is a peptide hormone that regulates pancreatic endocrine functions, and its benefits on the endocrine pancreas are of interest. This study aims to investigate the potential protective effects of apelin-13 in cisplatin-induced endocrine pancreatic damage. Twenty-four rats were divided into four groups: control, apelin-13, cisplatin, and cisplatin + apelin-13. Caspase-3, TUNEL, and Ki-67 immunohistochemical staining were used as markers of apoptosis and mitosis. NF-κB/p65 and TNFα were used to show inflammation. β-cells and α-cells were also evaluated with insulin and glucagon staining in the microscopic examination. Pancreatic tissue was subjected to biochemical analyses of glutathione (GSH) and malondialdehyde (MDA). Apelin-13 ameliorated cisplatin-induced damage in the islets of Langerhans. The immunopositivity of apelin-13 on β-cells and α-cells was found to be increased compared to the cisplatin group (p = 0.001, p = 0.001). Mitosis and apoptosis were significantly higher in the cisplatin group (p = 0.001). Apelin-13 reduced TNFα, NF-κB/p65 positivity, and apoptosis caused by cisplatin (p = 0.001, p = 0.001, p = 0.001). While cisplatin caused a significant increase in MDA levels (p = 0.001), apelin caused a significant decrease in MDA levels (p = 0.001). The results demonstrated a significant decrease in pancreatic tissue GSH levels following cisplatin treatment (p = 0.001). Nevertheless, apelin-13 significantly enhanced cisplatin-induced GSH reduction (p = 0.001). On the other hand, the serum glucose level, which was measured as 18.7 ± 2.5 mmol/L in the cisplatin group, decreased to 13.8 ± 0.7 mmol/L in the cisplatin + apelin-13 group (p = 0.001). The study shows that apelin-13 ameliorated cisplatin-induced endocrine pancreas damage by reducing oxidative stress and preventing apoptosis.
{"title":"The impact of apelin-13 on cisplatin-induced endocrine pancreas damage in rats: an in vivo study.","authors":"Serpil Ciftel, Levent Tumkaya, Sinan Saral, Tolga Mercantepe, Kerimali Akyildiz, Adnan Yilmaz, Filiz Mercantepe","doi":"10.1007/s00418-024-02269-x","DOIUrl":"10.1007/s00418-024-02269-x","url":null,"abstract":"<p><p>Apelin-13 is a peptide hormone that regulates pancreatic endocrine functions, and its benefits on the endocrine pancreas are of interest. This study aims to investigate the potential protective effects of apelin-13 in cisplatin-induced endocrine pancreatic damage. Twenty-four rats were divided into four groups: control, apelin-13, cisplatin, and cisplatin + apelin-13. Caspase-3, TUNEL, and Ki-67 immunohistochemical staining were used as markers of apoptosis and mitosis. NF-κB/p65 and TNFα were used to show inflammation. β-cells and α-cells were also evaluated with insulin and glucagon staining in the microscopic examination. Pancreatic tissue was subjected to biochemical analyses of glutathione (GSH) and malondialdehyde (MDA). Apelin-13 ameliorated cisplatin-induced damage in the islets of Langerhans. The immunopositivity of apelin-13 on β-cells and α-cells was found to be increased compared to the cisplatin group (p = 0.001, p = 0.001). Mitosis and apoptosis were significantly higher in the cisplatin group (p = 0.001). Apelin-13 reduced TNFα, NF-κB/p65 positivity, and apoptosis caused by cisplatin (p = 0.001, p = 0.001, p = 0.001). While cisplatin caused a significant increase in MDA levels (p = 0.001), apelin caused a significant decrease in MDA levels (p = 0.001). The results demonstrated a significant decrease in pancreatic tissue GSH levels following cisplatin treatment (p = 0.001). Nevertheless, apelin-13 significantly enhanced cisplatin-induced GSH reduction (p = 0.001). On the other hand, the serum glucose level, which was measured as 18.7 ± 2.5 mmol/L in the cisplatin group, decreased to 13.8 ± 0.7 mmol/L in the cisplatin + apelin-13 group (p = 0.001). The study shows that apelin-13 ameliorated cisplatin-induced endocrine pancreas damage by reducing oxidative stress and preventing apoptosis.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"391-408"},"PeriodicalIF":2.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139897964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-12DOI: 10.1007/s00418-024-02268-y
David Sedmera, Alena Kvasilova, Adam Eckhardt, Petr Kacer, Martin Penicka, Matej Kocka, Dana Schindler, Ron Kaban, Radka Kockova
Valvular heart disease leads to ventricular pressure and/or volume overload. Pressure overload leads to fibrosis, which might regress with its resolution, but the limits and details of this reverse remodeling are not known. To gain more insight into the extent and nature of cardiac fibrosis in valve disease, we analyzed needle biopsies taken from the interventricular septum of patients undergoing surgery for valve replacement focusing on the expression and distribution of major extracellular matrix protein involved in this process. Proteomic analysis performed using mass spectrometry revealed an excellent correlation between the expression of collagen type I and III, but there was little correlation with the immunohistochemical staining performed on sister sections, which included antibodies against collagen I, III, fibronectin, sarcomeric actin, and histochemistry for wheat germ agglutinin. Surprisingly, the immunofluorescence intensity did not correlate significantly with the gold standard for fibrosis quantification, which was performed using Picrosirius Red (PSR) staining, unless multiplexed on the same tissue section. There was also little correlation between the immunohistochemical markers and pressure gradient severity. It appears that at least in humans, the immunohistochemical pattern of fibrosis is not clearly correlated with standard Picrosirius Red staining on sister sections or quantitative proteomic data, possibly due to tissue heterogeneity at microscale, comorbidities, or other patient-specific factors. For precise correlation of different types of staining, multiplexing on the same section is the best approach.
{"title":"Fibrosis and expression of extracellular matrix proteins in human interventricular septum in aortic valve stenosis and regurgitation.","authors":"David Sedmera, Alena Kvasilova, Adam Eckhardt, Petr Kacer, Martin Penicka, Matej Kocka, Dana Schindler, Ron Kaban, Radka Kockova","doi":"10.1007/s00418-024-02268-y","DOIUrl":"10.1007/s00418-024-02268-y","url":null,"abstract":"<p><p>Valvular heart disease leads to ventricular pressure and/or volume overload. Pressure overload leads to fibrosis, which might regress with its resolution, but the limits and details of this reverse remodeling are not known. To gain more insight into the extent and nature of cardiac fibrosis in valve disease, we analyzed needle biopsies taken from the interventricular septum of patients undergoing surgery for valve replacement focusing on the expression and distribution of major extracellular matrix protein involved in this process. Proteomic analysis performed using mass spectrometry revealed an excellent correlation between the expression of collagen type I and III, but there was little correlation with the immunohistochemical staining performed on sister sections, which included antibodies against collagen I, III, fibronectin, sarcomeric actin, and histochemistry for wheat germ agglutinin. Surprisingly, the immunofluorescence intensity did not correlate significantly with the gold standard for fibrosis quantification, which was performed using Picrosirius Red (PSR) staining, unless multiplexed on the same tissue section. There was also little correlation between the immunohistochemical markers and pressure gradient severity. It appears that at least in humans, the immunohistochemical pattern of fibrosis is not clearly correlated with standard Picrosirius Red staining on sister sections or quantitative proteomic data, possibly due to tissue heterogeneity at microscale, comorbidities, or other patient-specific factors. For precise correlation of different types of staining, multiplexing on the same section is the best approach.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"367-379"},"PeriodicalIF":2.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-24DOI: 10.1007/s00418-024-02265-1
J A Ramirez, M C Jiménez, V Ospina, B S Rivera, S Fiorentino, A Barreto, L M Restrepo
Cancer is understood as a multifactorial disease that involve multiple cell types and phenotypes in the tumor microenvironment (TME). The components of the TME can interact directly or via soluble factors (cytokines, chemokines, growth factors, extracellular vesicles, etc.). Among the cells composing the TME, mesenchymal stem cells (MSCs) appear as a population with debated properties since it has been seen that they can both promote or attenuate tumor progression. For various authors, the main mechanism of interaction of MSCs is through their secretome, the set of molecules secreted into the extracellular milieu, recruiting, and influencing the behavior of other cells in inflammatory environments where they normally reside, such as wounds and tumors. Natural products have been studied as possible cancer treatments, appealing to synergisms between the molecules in their composition; thus, extracts obtained from Petiveria alliacea (Anamu-SC) and Caesalpinia spinosa (P2Et) have been produced and studied previously on different models, showing promising results. The effect of plant extracts on the MSC secretome has been poorly studied, especially in the context of the TME. Here, we studied the effect of Anamu-SC and P2Et extracts in the human adipose-derived MSC (hAMSC)-tumor cell interaction as a TME model. We also investigated the influence of the hAMSC secretome, in combination with these natural products, on tumor cell hallmarks such as viability, clonogenicity, and migration. In addition, hAMSC gene expression and protein synthesis were evaluated for some key factors in tumor progression in the presence of the extracts by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Multiplex, respectively. It was found that the presence of the hAMSC secretome did not affect the cytotoxic or clonogenicity-reducing activities of the natural extracts on cancer cells, and even this secretome can inhibit the migration of these tumor cells, in addition to the fact that the profile of molecules can be modified by natural products. Overall, our findings demonstrate that hAMSC secretome participation in TME interactions can favor the antitumor activities of natural products.
{"title":"The secretome from human-derived mesenchymal stem cells augments the activity of antitumor plant extracts in vitro.","authors":"J A Ramirez, M C Jiménez, V Ospina, B S Rivera, S Fiorentino, A Barreto, L M Restrepo","doi":"10.1007/s00418-024-02265-1","DOIUrl":"10.1007/s00418-024-02265-1","url":null,"abstract":"<p><p>Cancer is understood as a multifactorial disease that involve multiple cell types and phenotypes in the tumor microenvironment (TME). The components of the TME can interact directly or via soluble factors (cytokines, chemokines, growth factors, extracellular vesicles, etc.). Among the cells composing the TME, mesenchymal stem cells (MSCs) appear as a population with debated properties since it has been seen that they can both promote or attenuate tumor progression. For various authors, the main mechanism of interaction of MSCs is through their secretome, the set of molecules secreted into the extracellular milieu, recruiting, and influencing the behavior of other cells in inflammatory environments where they normally reside, such as wounds and tumors. Natural products have been studied as possible cancer treatments, appealing to synergisms between the molecules in their composition; thus, extracts obtained from Petiveria alliacea (Anamu-SC) and Caesalpinia spinosa (P2Et) have been produced and studied previously on different models, showing promising results. The effect of plant extracts on the MSC secretome has been poorly studied, especially in the context of the TME. Here, we studied the effect of Anamu-SC and P2Et extracts in the human adipose-derived MSC (hAMSC)-tumor cell interaction as a TME model. We also investigated the influence of the hAMSC secretome, in combination with these natural products, on tumor cell hallmarks such as viability, clonogenicity, and migration. In addition, hAMSC gene expression and protein synthesis were evaluated for some key factors in tumor progression in the presence of the extracts by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Multiplex, respectively. It was found that the presence of the hAMSC secretome did not affect the cytotoxic or clonogenicity-reducing activities of the natural extracts on cancer cells, and even this secretome can inhibit the migration of these tumor cells, in addition to the fact that the profile of molecules can be modified by natural products. Overall, our findings demonstrate that hAMSC secretome participation in TME interactions can favor the antitumor activities of natural products.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":" ","pages":"409-421"},"PeriodicalIF":2.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-20DOI: 10.1007/s00418-024-02282-0
Yomna F. Hassan, Dalia A. Shabaan
Chemotherapy-induced alopecia (CIA) represents one of the most severe side effects of chemotherapy, which forces some patients to reject cancer treatment. The exact pathophysiological mechanisms of CIA are not clearly understood, which makes it difficult to discover efficient preventive or therapeutic procedures for this adverse effect. N-acetylcysteine (NAC) has a strong antioxidant activity as it stimulates glutathione synthesis and acts as an oxygen radical scavenger. The current study tried to investigate the efficacy of NAC in preserving biochemical parameters and hair follicle structure against cyclophosphamide (CYP) administration. In total, 40 adult female C57BL/6 mice were induced to enter anagen by depilation (day 0) and divided into four groups: group I (control), group II (CYP) received a single dose of CYP [150 mg/kg body weight (B.W.)/intraperitoneal injection (IP)] at day 9, group III (CYP & NAC) received a single dose of CYP at day 9 as well as NAC (500 mg/kg B.W./day/IP) from day 6–16, and group IV (NAC) received NAC from day 6–16. CYP administration in group II induced an increase in malondialdehyde (MDA), decrease in superoxide dismutase (SOD), histological hair follicle dystrophy, disruption of follicular melanogenesis, overexpression of p53, and loss of ki67 immunoreactivity. NAC coadministration in group III reversed CYP-induced alterations in the biochemical parameters and preserved hair follicle structure, typical follicular melanin distribution as well as normal pattern of p53 and ki67 expression. These findings indicated that NAC could be used as an efficient and safe therapeutic option for hair loss induced by chemotherapy.
{"title":"Effect of N-acetylcysteine on hair follicle changes in mouse model of cyclophosphamide-induced alopecia: histological and biochemical study","authors":"Yomna F. Hassan, Dalia A. Shabaan","doi":"10.1007/s00418-024-02282-0","DOIUrl":"https://doi.org/10.1007/s00418-024-02282-0","url":null,"abstract":"<p>Chemotherapy-induced alopecia (CIA) represents one of the most severe side effects of chemotherapy, which forces some patients to reject cancer treatment. The exact pathophysiological mechanisms of CIA are not clearly understood, which makes it difficult to discover efficient preventive or therapeutic procedures for this adverse effect. N-acetylcysteine (NAC) has a strong antioxidant activity as it stimulates glutathione synthesis and acts as an oxygen radical scavenger. The current study tried to investigate the efficacy of NAC in preserving biochemical parameters and hair follicle structure against cyclophosphamide (CYP) administration. In total, 40 adult female C57BL/6 mice were induced to enter anagen by depilation (day 0) and divided into four groups: group I (control), group II (CYP) received a single dose of CYP [150 mg/kg body weight (B.W.)/intraperitoneal injection (IP)] at day 9, group III (CYP & NAC) received a single dose of CYP at day 9 as well as NAC (500 mg/kg B.W./day/IP) from day 6–16, and group IV (NAC) received NAC from day 6–16. CYP administration in group II induced an increase in malondialdehyde (MDA), decrease in superoxide dismutase (SOD), histological hair follicle dystrophy, disruption of follicular melanogenesis, overexpression of p53, and loss of ki67 immunoreactivity. NAC coadministration in group III reversed CYP-induced alterations in the biochemical parameters and preserved hair follicle structure, typical follicular melanin distribution as well as normal pattern of p53 and ki67 expression. These findings indicated that NAC could be used as an efficient and safe therapeutic option for hair loss induced by chemotherapy.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"311 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-20DOI: 10.1007/s00418-024-02287-9
Douglas J. Taatjes, Jürgen Roth
{"title":"In focus in HCB","authors":"Douglas J. Taatjes, Jürgen Roth","doi":"10.1007/s00418-024-02287-9","DOIUrl":"https://doi.org/10.1007/s00418-024-02287-9","url":null,"abstract":"","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"9 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study was designed to address the question: does antioxidant-containing embryo culture media affect DNA methyltransferases, global DNA methylation, inner cell mass/trophoblast differentiation, intracellular reactive oxygen species (ROS) levels, and apoptosis? Mouse zygotes were cultured in embryo culture media containing MitoQ, N-acetyl-l-cysteine (NAC), acetyl-l-carnitine (ALC), α-lipoic acid (ALA), or the mixture of NAC + ALC + ALA (AO) until the blastocyst stage, whereas in vivo-developed blastocysts were used as control. Protein expression levels of Dnmt1, 3a, 3b, and 3l enzymes were analyzed by immunofluorescence and western blot, while global DNA methylation, apoptosis, and ROS levels were evaluated by immunofluorescence. NAC, ALC, and MitoQ significantly increased the levels of all Dnmts and global methylation. ALA significantly induced all Dnmts, whereas global methylation did not show any difference. NAC and mixture AO applications significantly induced Nanog levels, ALA and MitoQ increased Cdx2 levels, while the other groups were similar. ALA and MitoQ decreased while ALC increased the levels of intracellular ROS. This study illustrates that antioxidants, operating through distinct pathways, have varying impacts on DNA methylation levels and cell differentiation in mouse embryos. Further investigations are warranted to assess the implications of these alterations on the subsequent offspring.
本研究旨在解决以下问题:含抗氧化剂的胚胎培养基是否会影响 DNA 甲基转移酶、DNA 整体甲基化、内细胞质量/滋养细胞分化、细胞内活性氧(ROS)水平和细胞凋亡?小鼠胚胎在含有 MitoQ、N-乙酰-L-半胱氨酸(NAC)、乙酰-L-肉碱(ALC)、α-硫辛酸(ALA)或 NAC + ALC + ALA 混合物(AO)的胚胎培养基中培养至囊胚期,而体内发育的囊胚作为对照。免疫荧光和 Western 印迹分析了 Dnmt1、3a、3b 和 3l 酶的蛋白表达水平,免疫荧光评估了 DNA 甲基化、细胞凋亡和 ROS 水平。NAC、ALC和MitoQ能显著提高所有Dnmts和全局甲基化水平。ALA 能明显诱导所有 Dnmts,而全局甲基化则没有任何差异。应用 NAC 和 AO 混合物可明显诱导 Nanog 水平,ALA 和 MitoQ 可提高 Cdx2 水平,而其他组的情况相似。ALA 和 MitoQ 降低了细胞内 ROS 的水平,而 ALC 增加了细胞内 ROS 的水平。这项研究表明,抗氧化剂通过不同的途径对小鼠胚胎的 DNA 甲基化水平和细胞分化产生不同的影响。我们有必要进行进一步研究,以评估这些改变对后代的影响。
{"title":"Antioxidant supplementation may effect DNA methylation patterns, apoptosis, and ROS levels in developing mouse embryos","authors":"Fatma Uysal, Gozde Sukur, Nazlican Bozdemir, Ozgur Cinar","doi":"10.1007/s00418-024-02286-w","DOIUrl":"https://doi.org/10.1007/s00418-024-02286-w","url":null,"abstract":"<p>This study was designed to address the question: does antioxidant-containing embryo culture media affect DNA methyltransferases, global DNA methylation, inner cell mass/trophoblast differentiation, intracellular reactive oxygen species (ROS) levels, and apoptosis? Mouse zygotes were cultured in embryo culture media containing MitoQ, <i>N</i>-acetyl-<span>l</span>-cysteine (NAC), acetyl-<span>l</span>-carnitine (ALC), α-lipoic acid (ALA), or the mixture of NAC + ALC + ALA (AO) until the blastocyst stage, whereas in vivo-developed blastocysts were used as control. Protein expression levels of Dnmt1, 3a, 3b, and 3l enzymes were analyzed by immunofluorescence and western blot, while global DNA methylation, apoptosis, and ROS levels were evaluated by immunofluorescence. NAC, ALC, and MitoQ significantly increased the levels of all Dnmts and global methylation. ALA significantly induced all Dnmts, whereas global methylation did not show any difference. NAC and mixture AO applications significantly induced Nanog levels, ALA and MitoQ increased Cdx2 levels, while the other groups were similar. ALA and MitoQ decreased while ALC increased the levels of intracellular ROS. This study illustrates that antioxidants, operating through distinct pathways, have varying impacts on DNA methylation levels and cell differentiation in mouse embryos. Further investigations are warranted to assess the implications of these alterations on the subsequent offspring.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"15 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1007/s00418-024-02280-2
Karin Purshouse, Steven M. Pollard, Wendy A. Bickmore
Extrachromosomal DNA (ecDNA) are circular regions of DNA that are found in many cancers. They are an important means of oncogene amplification, and correlate with treatment resistance and poor prognosis. Consequently, there is great interest in exploring and targeting ecDNA vulnerabilities as potential new therapeutic targets for cancer treatment. However, the biological significance of ecDNA and their associated regulatory control remains unclear. Light microscopy has been a central tool in the identification and characterisation of ecDNA. In this review we describe the different cellular models available to study ecDNA, and the imaging tools used to characterise ecDNA and their regulation. The insights gained from quantitative imaging are discussed in comparison with genome sequencing and computational approaches. We suggest that there is a crucial need for ongoing innovation using imaging if we are to achieve a full understanding of the dynamic regulation and organisation of ecDNA and their role in tumourigenesis.
{"title":"Imaging extrachromosomal DNA (ecDNA) in cancer","authors":"Karin Purshouse, Steven M. Pollard, Wendy A. Bickmore","doi":"10.1007/s00418-024-02280-2","DOIUrl":"https://doi.org/10.1007/s00418-024-02280-2","url":null,"abstract":"<p>Extrachromosomal DNA (ecDNA) are circular regions of DNA that are found in many cancers. They are an important means of oncogene amplification, and correlate with treatment resistance and poor prognosis. Consequently, there is great interest in exploring and targeting ecDNA vulnerabilities as potential new therapeutic targets for cancer treatment. However, the biological significance of ecDNA and their associated regulatory control remains unclear. Light microscopy has been a central tool in the identification and characterisation of ecDNA. In this review we describe the different cellular models available to study ecDNA, and the imaging tools used to characterise ecDNA and their regulation. The insights gained from quantitative imaging are discussed in comparison with genome sequencing and computational approaches. We suggest that there is a crucial need for ongoing innovation using imaging if we are to achieve a full understanding of the dynamic regulation and organisation of ecDNA and their role in tumourigenesis.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"246 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lung adenocarcinoma (LUAD) is a subtype of lung cancer with high incidence and mortality globally. Emerging evidence suggests that circular RNAs (circRNAs) exert critical functions in human cancers, including LUAD. CircRNA_100549 (circ_100549) has been reported to be significantly upregulated in non-small cell lung cancer (NSCLC) samples, while its role in modulating LUAD progression remains to be explored. The current study aims at investigating the functional roles of circ_100549 in LUAD and its downstream molecular mechanism. First, we found that the expression of circ_100549 was higher in LUAD cell lines. Loss-of-function assays verified that depletion of circ_100549 repressed LUAD cell proliferation but accelerated cell apoptosis. Furthermore, in vivo experiments demonstrated that silencing of circ_100549 suppressed tumor growth. Subsequently, based on database analysis, we carried out a series of experiments to explore the mechanisms and effects of circ_100549 underlying LUAD progression, including RNA-binding protein immunoprecipitation (RIP), RNA/DNA pull-down, luciferase reporter, and chromatin immunoprecipitation (ChIP) assays. The results indicated that circ_100549 serves as a ceRNA by sponging miR-95-5p to upregulate BPTF expression, thus upregulating BIRC6 expression at a transcriptional level in LUAD. In summary, our study demonstrated that circ_100549 facilitates LUAD progression by upregulating BIRC6 expression.
{"title":"Circ_100549 promotes tumor progression in lung adenocarcinoma through upregulation of BIRC6","authors":"Feifei Chen, Juan Chen, Yuan Yuan, Surong Fang, Jing Xie, Xiaojuan Xu, Zhenhua Yang, Jianzhong Jiang","doi":"10.1007/s00418-024-02275-z","DOIUrl":"https://doi.org/10.1007/s00418-024-02275-z","url":null,"abstract":"<p>Lung adenocarcinoma (LUAD) is a subtype of lung cancer with high incidence and mortality globally. Emerging evidence suggests that circular RNAs (circRNAs) exert critical functions in human cancers, including LUAD. <i>CircRNA_100549</i> (<i>circ_100549</i>) has been reported to be significantly upregulated in non-small cell lung cancer (NSCLC) samples, while its role in modulating LUAD progression remains to be explored. The current study aims at investigating the functional roles of <i>circ_100549</i> in LUAD and its downstream molecular mechanism. First, we found that the expression of <i>circ_100549</i> was higher in LUAD cell lines. Loss-of-function assays verified that depletion of <i>circ_100549</i> repressed LUAD cell proliferation but accelerated cell apoptosis. Furthermore, in vivo experiments demonstrated that silencing of <i>circ_100549</i> suppressed tumor growth. Subsequently, based on database analysis, we carried out a series of experiments to explore the mechanisms and effects of <i>circ_100549</i> underlying LUAD progression, including RNA-binding protein immunoprecipitation (RIP), RNA/DNA pull-down, luciferase reporter, and chromatin immunoprecipitation (ChIP) assays. The results indicated that <i>circ_100549</i> serves as a ceRNA by sponging <i>miR-95-5p</i> to upregulate <i>BPTF</i> expression, thus upregulating <i>BIRC6</i> expression at a transcriptional level in LUAD. In summary, our study demonstrated that <i>circ_100549</i> facilitates LUAD progression by upregulating <i>BIRC6</i> expression.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"28 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1007/s00418-024-02281-1
Diego M. Presman, Belén Benítez, Agustina L. Lafuente, Alejo Vázquez Lareu
Eukaryotic genomes store information on many levels, including their linear DNA sequence, the posttranslational modifications of its constituents (epigenetic modifications), and its three-dimensional folding. Understanding how this information is stored and read requires multidisciplinary collaborations from many branches of science beyond biology, including physics, chemistry, and computer science. Concurrent recent developments in all these areas have enabled researchers to image the genome with unprecedented spatial and temporal resolution. In this review, we focus on what single-molecule imaging and tracking of individual proteins in live cells have taught us about chromatin structure and dynamics. Starting with the basics of single-molecule tracking (SMT), we describe some advantages over in situ imaging techniques and its current limitations. Next, we focus on single-nucleosome studies and what they have added to our current understanding of the relationship between chromatin dynamics and transcription. In celebration of Robert Feulgen’s ground-breaking discovery that allowed us to start seeing the genome, we discuss current models of chromatin structure and future challenges ahead.
真核生物基因组在许多层面上存储信息,包括其线性 DNA 序列、其组成成分的翻译后修饰(表观遗传修饰)以及其三维折叠。要了解这些信息是如何存储和读取的,需要生物学以外的许多科学分支(包括物理学、化学和计算机科学)开展多学科合作。所有这些领域的最新发展使研究人员能够以前所未有的空间和时间分辨率对基因组进行成像。在这篇综述中,我们将重点讨论单分子成像和追踪活细胞中的单个蛋白质对染色质结构和动态的影响。我们从单分子追踪(SMT)的基本原理入手,介绍了它相对于原位成像技术的一些优势及其目前的局限性。接下来,我们将重点介绍单核糖体研究,以及这些研究对我们目前理解染色质动力学与转录之间关系的帮助。罗伯特-费尔根(Robert Feulgen)的突破性发现让我们开始看到基因组,为庆祝这一发现,我们讨论了染色质结构的现有模型和未来的挑战。
{"title":"Chromatin structure and dynamics: one nucleosome at a time","authors":"Diego M. Presman, Belén Benítez, Agustina L. Lafuente, Alejo Vázquez Lareu","doi":"10.1007/s00418-024-02281-1","DOIUrl":"https://doi.org/10.1007/s00418-024-02281-1","url":null,"abstract":"<p>Eukaryotic genomes store information on many levels, including their linear DNA sequence, the posttranslational modifications of its constituents (epigenetic modifications), and its three-dimensional folding. Understanding how this information is stored and read requires multidisciplinary collaborations from many branches of science beyond biology, including physics, chemistry, and computer science. Concurrent recent developments in all these areas have enabled researchers to image the genome with unprecedented spatial and temporal resolution. In this review, we focus on what single-molecule imaging and tracking of individual proteins in live cells have taught us about chromatin structure and dynamics. Starting with the basics of single-molecule tracking (SMT), we describe some advantages over in situ imaging techniques and its current limitations. Next, we focus on single-nucleosome studies and what they have added to our current understanding of the relationship between chromatin dynamics and transcription. In celebration of Robert Feulgen’s ground-breaking discovery that allowed us to start seeing the genome, we discuss current models of chromatin structure and future challenges ahead.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"189 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1007/s00418-024-02279-9
Marco Biggiogera, Margherita Cavallo, Claudio Casali
One hundred years ago, Robert Feulgen published a landmark paper in which he described the first method to stain DNA in cells and tissues. Although a century has passed since the discovery by Feulgen and Rossenbeck, the chemical reaction still exerts an important influence in current histochemical studies. Its contribution in diverse fields, spanning from biomedicine to plant biology, has paved the way for the most significant studies that constitute our current knowledge. The possibility to specifically explore the DNA in cell nuclei while quantifying its content makes it a contemporary and timeless method. Indeed, many histocytochemical studies following the 1924 paper have led to a deep understanding of genome organization in general as well as several specific mechanisms (e.g. DNA duplication or tumour pathology) that, nowadays, constitute some of the most fundamental pillars in biological investigations. In this review, we discuss the chemistry and application of the Feulgen reaction to both light and electron microscopy.
100 年前,罗伯特-费尔根(Robert Feulgen)发表了一篇具有里程碑意义的论文,描述了第一种对细胞和组织中的 DNA 进行染色的方法。尽管距离费尔根和罗森贝克的发现已经过去了一个世纪,但这一化学反应仍然在当前的组织化学研究中发挥着重要影响。它在从生物医学到植物生物学等多个领域都做出了贡献,为我们当前最重要的研究铺平了道路。组织细胞化学法可以对细胞核中的 DNA 进行特异性研究,同时还能对其含量进行量化,因此是一种现代而永恒的方法。事实上,继 1924 年的论文之后,许多组织细胞化学研究已使我们深入了解了基因组的一般组织结构以及一些特定机制(如 DNA 复制或肿瘤病理学),这些机制如今已成为生物研究中一些最基本的支柱。在这篇综述中,我们将讨论费尔根反应的化学原理及其在光镜和电子显微镜中的应用。
{"title":"A brief history of the Feulgen reaction","authors":"Marco Biggiogera, Margherita Cavallo, Claudio Casali","doi":"10.1007/s00418-024-02279-9","DOIUrl":"https://doi.org/10.1007/s00418-024-02279-9","url":null,"abstract":"<p>One hundred years ago, Robert Feulgen published a landmark paper in which he described the first method to stain DNA in cells and tissues. Although a century has passed since the discovery by Feulgen and Rossenbeck, the chemical reaction still exerts an important influence in current histochemical studies. Its contribution in diverse fields, spanning from biomedicine to plant biology, has paved the way for the most significant studies that constitute our current knowledge. The possibility to specifically explore the DNA in cell nuclei while quantifying its content makes it a contemporary and timeless method. Indeed, many histocytochemical studies following the 1924 paper have led to a deep understanding of genome organization in general as well as several specific mechanisms (e.g. DNA duplication or tumour pathology) that, nowadays, constitute some of the most fundamental pillars in biological investigations. In this review, we discuss the chemistry and application of the Feulgen reaction to both light and electron microscopy.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"245 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}