首页 > 最新文献

IEEE Intelligent Systems最新文献

英文 中文
IEEE Computer Society D&I Fund 电气和电子工程师学会计算机协会 D&I 基金
IF 6.4 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-30 DOI: 10.1109/mis.2024.3380231
{"title":"IEEE Computer Society D&I Fund","authors":"","doi":"10.1109/mis.2024.3380231","DOIUrl":"https://doi.org/10.1109/mis.2024.3380231","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"43 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can Generative AI Models Extract Deeper Sentiments as Compared to Traditional Deep Learning Algorithms? 与传统深度学习算法相比,生成式人工智能模型能否提取更深层次的情感?
IF 6.4 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-30 DOI: 10.1109/mis.2024.3374582
Mohammad Anas, Anam Saiyeda, Shahab Saquib Sohail, Erik Cambria, Amir Hussain
Recent advances in the context of deep learning have led to the development of generative artificial intelligence (AI) models which have shown remarkable performance in complex language understanding tasks. This study proposes an evaluation of traditional deep learning algorithms and generative AI models for sentiment analysis. Experimental results show that RoBERTa outperforms all models, including ChatGPT and Bard, suggesting that generative AI models are not yet able to capture the nuances and subtleties of sentiment in text. We provide valuable insights into the strengths and weaknesses of different models for sentiment analysis and offer guidance for researchers and practitioners in selecting suitable models for their tasks.
深度学习的最新进展推动了生成式人工智能(AI)模型的发展,这些模型在复杂的语言理解任务中表现出色。本研究对传统深度学习算法和情感分析的生成式人工智能模型进行了评估。实验结果表明,RoBERTa 的表现优于包括 ChatGPT 和 Bard 在内的所有模型,这表明生成式人工智能模型还无法捕捉文本中情感的细微差别和微妙之处。我们对不同情感分析模型的优缺点提出了宝贵的见解,并为研究人员和从业人员选择适合其任务的模型提供了指导。
{"title":"Can Generative AI Models Extract Deeper Sentiments as Compared to Traditional Deep Learning Algorithms?","authors":"Mohammad Anas, Anam Saiyeda, Shahab Saquib Sohail, Erik Cambria, Amir Hussain","doi":"10.1109/mis.2024.3374582","DOIUrl":"https://doi.org/10.1109/mis.2024.3374582","url":null,"abstract":"Recent advances in the context of deep learning have led to the development of generative artificial intelligence (AI) models which have shown remarkable performance in complex language understanding tasks. This study proposes an evaluation of traditional deep learning algorithms and generative AI models for sentiment analysis. Experimental results show that RoBERTa outperforms all models, including ChatGPT and Bard, suggesting that generative AI models are not yet able to capture the nuances and subtleties of sentiment in text. We provide valuable insights into the strengths and weaknesses of different models for sentiment analysis and offer guidance for researchers and practitioners in selecting suitable models for their tasks.","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"155 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group Behavior Prediction and Evolution in Social Networks 社交网络中的群体行为预测与演变
IF 6.4 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-30 DOI: 10.1109/mis.2024.3366668
Jingchao Wang, Xinyi Zhang, Weimin Li, Xiao Yu, Fangfang Liu, Qun Jin
Group behavior prediction and evolution in social networks aims to accurately predict and model trends and patterns of group behavior through detailed analysis of massive user data, which is of great significance to the formulation of marketing strategies, user experience, and business strategies. Therefore, experts in various fields are actively exploring the potential of social network data to develop more accurate group behavior prediction and evolution models. This article provides an overview of these studies and explores the challenges and opportunities faced by group behavior prediction and evolution in social networks.
社交网络中的群体行为预测与演化旨在通过对海量用户数据的详细分析,对群体行为的趋势和模式进行准确预测和建模,这对营销策略、用户体验和商业战略的制定具有重要意义。因此,各领域专家都在积极探索社交网络数据的潜力,以开发更准确的群体行为预测和演化模型。本文概述了这些研究,并探讨了社交网络中群体行为预测和演化所面临的挑战和机遇。
{"title":"Group Behavior Prediction and Evolution in Social Networks","authors":"Jingchao Wang, Xinyi Zhang, Weimin Li, Xiao Yu, Fangfang Liu, Qun Jin","doi":"10.1109/mis.2024.3366668","DOIUrl":"https://doi.org/10.1109/mis.2024.3366668","url":null,"abstract":"Group behavior prediction and evolution in social networks aims to accurately predict and model trends and patterns of group behavior through detailed analysis of massive user data, which is of great significance to the formulation of marketing strategies, user experience, and business strategies. Therefore, experts in various fields are actively exploring the potential of social network data to develop more accurate group behavior prediction and evolution models. This article provides an overview of these studies and explores the challenges and opportunities faced by group behavior prediction and evolution in social networks.","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"4 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI’s 10 to Watch 人工智能十大看点
IF 6.4 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-30 DOI: 10.1109/mis.2024.3382790
{"title":"AI’s 10 to Watch","authors":"","doi":"10.1109/mis.2024.3382790","DOIUrl":"https://doi.org/10.1109/mis.2024.3382790","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"33 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Computer Society - Call for Papers IEEE 计算机协会 - 征稿启事
IF 6.4 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-30 DOI: 10.1109/mis.2024.3382796
{"title":"IEEE Computer Society - Call for Papers","authors":"","doi":"10.1109/mis.2024.3382796","DOIUrl":"https://doi.org/10.1109/mis.2024.3382796","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"92 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large Language Models and Applications: The Rebirth of Enterprise Knowledge Management and the Rise of Prompt Libraries 大型语言模型和应用:企业知识管理的重生与即时图书馆的崛起
IF 6.4 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-30 DOI: 10.1109/mis.2024.3366648
Daniel E. O’Leary
This article investigates how large language systems and the apps developed for them provide a platform for enterprise knowledge management. For those resulting systems to provide consistent and accurate responses for knowledge management, enterprises are using different approaches in their prompts, such as few-shot learning, specification of purpose, and chain-of-thought reasoning. As better and more successful prompts are being built, they are being captured and prompt libraries are being created.
本文探讨了大型语言系统和为其开发的应用程序如何为企业知识管理提供平台。为了让这些系统为知识管理提供一致而准确的回复,企业在提示中使用了不同的方法,如少量学习、明确目的和思维链推理。随着更好、更成功的提示的建立,这些提示也被收集起来,并建立了提示库。
{"title":"Large Language Models and Applications: The Rebirth of Enterprise Knowledge Management and the Rise of Prompt Libraries","authors":"Daniel E. O’Leary","doi":"10.1109/mis.2024.3366648","DOIUrl":"https://doi.org/10.1109/mis.2024.3366648","url":null,"abstract":"This article investigates how large language systems and the apps developed for them provide a platform for enterprise knowledge management. For those resulting systems to provide consistent and accurate responses for knowledge management, enterprises are using different approaches in their prompts, such as few-shot learning, specification of purpose, and chain-of-thought reasoning. As better and more successful prompts are being built, they are being captured and prompt libraries are being created.","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"16 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Computer Society Information 电气和电子工程师学会计算机协会信息
IF 6.4 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-30 DOI: 10.1109/mis.2024.3380237
{"title":"IEEE Computer Society Information","authors":"","doi":"10.1109/mis.2024.3380237","DOIUrl":"https://doi.org/10.1109/mis.2024.3380237","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"5 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Computer Society Career Center 电气和电子工程师学会计算机协会职业中心
IF 6.4 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-30 DOI: 10.1109/mis.2024.3380239
{"title":"IEEE Computer Society Career Center","authors":"","doi":"10.1109/mis.2024.3380239","DOIUrl":"https://doi.org/10.1109/mis.2024.3380239","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"9 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Computer Society Has You Covered! IEEE 计算机协会为您提供服务!
IF 6.4 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-30 DOI: 10.1109/mis.2024.3382792
{"title":"IEEE Computer Society Has You Covered!","authors":"","doi":"10.1109/mis.2024.3382792","DOIUrl":"https://doi.org/10.1109/mis.2024.3382792","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"36 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Get Published in the New IEEE Transactions on Privacy 在新的《IEEE 隐私论文集》上发表文章
IF 6.4 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-30 DOI: 10.1109/mis.2024.3383098
{"title":"Get Published in the New IEEE Transactions on Privacy","authors":"","doi":"10.1109/mis.2024.3383098","DOIUrl":"https://doi.org/10.1109/mis.2024.3383098","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"74 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Intelligent Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1