首页 > 最新文献

IEEE Intelligent Systems最新文献

英文 中文
IEEE Computer Society Jobs Board 电气和电子工程师学会计算机协会招聘板
IF 6.4 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-28 DOI: 10.1109/mis.2024.3359896
{"title":"IEEE Computer Society Jobs Board","authors":"","doi":"10.1109/mis.2024.3359896","DOIUrl":"https://doi.org/10.1109/mis.2024.3359896","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responsible AI: An Urgent Mandate 负责任的人工智能:当务之急
IF 6.4 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-28 DOI: 10.1109/mis.2023.3343488
Ricardo Baeza-Yates, Usama M. Fayyad
{"title":"Responsible AI: An Urgent Mandate","authors":"Ricardo Baeza-Yates, Usama M. Fayyad","doi":"10.1109/mis.2023.3343488","DOIUrl":"https://doi.org/10.1109/mis.2023.3343488","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurosymbolic Value-Inspired Artificial Intelligence (Why, What, and How) 受神经符号价值启发的人工智能(为什么、是什么、怎么做)
IF 6.4 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-28 DOI: 10.1109/mis.2023.3344353
Amit Sheth, Kaushik Roy
The rapid progression of artificial intelligence (AI) systems, facilitated by the advent of large language models (LLMs), has resulted in their widespread application to provide human assistance across diverse industries. This trend has sparked significant discourse centered around the ever-increasing need for LLM-based AI systems to function among humans as a part of human society. Toward this end, neurosymbolic AI systems are attractive because of their potential to enable and interpretable interfaces for facilitating value-based decision making by leveraging explicit representations of shared values. In this article, we introduce substantial extensions to Kahneman’s System 1 and System 2 framework and propose a neurosymbolic computational framework called value-inspired AI (VAI). It outlines the crucial components essential for the robust and practical implementation of VAI systems, representing and integrating various dimensions of human values. Finally, we further offer insights into the current progress made in this direction and outline potential future directions for the field.
随着大型语言模型(LLM)的出现,人工智能(AI)系统得到了快速发展,并被广泛应用于各行各业,为人类提供帮助。这一趋势引发了围绕基于 LLM 的人工智能系统作为人类社会的一部分在人类中发挥作用的日益增长的需求的重要讨论。为此,神经符号人工智能系统颇具吸引力,因为它们有可能利用共同价值观的明确表征,为促进基于价值的决策提供可解释的界面。在本文中,我们介绍了对卡尼曼的系统 1 和系统 2 框架的实质性扩展,并提出了一种称为价值启发式人工智能(VAI)的神经符号计算框架。它概述了 VAI 系统稳健实用的重要组成部分,代表并整合了人类价值观的各个层面。最后,我们进一步深入分析了该领域目前取得的进展,并概述了该领域未来的潜在发展方向。
{"title":"Neurosymbolic Value-Inspired Artificial Intelligence (Why, What, and How)","authors":"Amit Sheth, Kaushik Roy","doi":"10.1109/mis.2023.3344353","DOIUrl":"https://doi.org/10.1109/mis.2023.3344353","url":null,"abstract":"The rapid progression of artificial intelligence (AI) systems, facilitated by the advent of large language models (LLMs), has resulted in their widespread application to provide human assistance across diverse industries. This trend has sparked significant discourse centered around the ever-increasing need for LLM-based AI systems to function among humans as a part of human society. Toward this end, neurosymbolic AI systems are attractive because of their potential to enable and interpretable interfaces for facilitating value-based decision making by leveraging explicit representations of shared values. In this article, we introduce substantial extensions to Kahneman’s System 1 and System 2 framework and propose a neurosymbolic computational framework called value-inspired AI (VAI). It outlines the crucial components essential for the robust and practical implementation of VAI systems, representing and integrating various dimensions of human values. Finally, we further offer insights into the current progress made in this direction and outline potential future directions for the field.","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embracing LLMs for Point-of-Interest Recommendations 将法律硕士纳入利益点建议
IF 6.4 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-28 DOI: 10.1109/mis.2023.3343489
Tianxing Wang, Can Wang
A point-of-interest (POI) recommendation becomes the core function of location-based services. Unlike a traditional item recommendation, a POI recommendation has distinct features, such as geographical influences, complex mobility patterns, and a balance between local and global user preferences. Past POI recommendation system research has focused mainly on integrating deep learning models like convolutional neural networks, recurrent neural networks, and attention-based architectures, demonstrating their effectiveness in addressing the dynamic nature of spatial–temporal data in POI recommendation areas. In recent years, with the rise of large language models (LLMs), POI recommendation has produced a number of promising directions. This article first discusses the characteristics and state-of-the-art solutions of POI recommendation, then it introduces potential research directions by integrating the latest LLMs.
兴趣点(POI)推荐成为基于位置服务的核心功能。与传统的物品推荐不同,兴趣点推荐具有明显的特征,如地理影响、复杂的移动模式、本地用户偏好与全球用户偏好之间的平衡等。以往的 POI 推荐系统研究主要集中在卷积神经网络、递归神经网络和基于注意力的架构等深度学习模型的集成上,证明了它们在解决 POI 推荐领域时空数据的动态特性方面的有效性。近年来,随着大型语言模型(LLMs)的兴起,POI 推荐领域出现了许多前景广阔的方向。本文首先讨论了 POI 推荐的特点和最先进的解决方案,然后结合最新的 LLMs 介绍了潜在的研究方向。
{"title":"Embracing LLMs for Point-of-Interest Recommendations","authors":"Tianxing Wang, Can Wang","doi":"10.1109/mis.2023.3343489","DOIUrl":"https://doi.org/10.1109/mis.2023.3343489","url":null,"abstract":"A point-of-interest (POI) recommendation becomes the core function of location-based services. Unlike a traditional item recommendation, a POI recommendation has distinct features, such as geographical influences, complex mobility patterns, and a balance between local and global user preferences. Past POI recommendation system research has focused mainly on integrating deep learning models like convolutional neural networks, recurrent neural networks, and attention-based architectures, demonstrating their effectiveness in addressing the dynamic nature of spatial–temporal data in POI recommendation areas. In recent years, with the rise of large language models (LLMs), POI recommendation has produced a number of promising directions. This article first discusses the characteristics and state-of-the-art solutions of POI recommendation, then it introduces potential research directions by integrating the latest LLMs.","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Computer Society Information 电气和电子工程师学会计算机协会信息
IF 6.4 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-28 DOI: 10.1109/mis.2024.3354160
{"title":"IEEE Computer Society Information","authors":"","doi":"10.1109/mis.2024.3354160","DOIUrl":"https://doi.org/10.1109/mis.2024.3354160","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE CS Call for Papers IEEE CS 征稿启事
IF 6.4 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-28 DOI: 10.1109/mis.2024.3359876
{"title":"IEEE CS Call for Papers","authors":"","doi":"10.1109/mis.2024.3359876","DOIUrl":"https://doi.org/10.1109/mis.2024.3359876","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing Edge 计算边缘
IF 6.4 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-28 DOI: 10.1109/mis.2024.3359882
{"title":"Computing Edge","authors":"","doi":"10.1109/mis.2024.3359882","DOIUrl":"https://doi.org/10.1109/mis.2024.3359882","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EEG Emotion Recognition Based on Manifold Geomorphological Features in Riemannian Space 基于黎曼空间中的曼菲尔德地貌特征的脑电图情感识别
IF 6.4 3区 计算机科学 Q1 Computer Science Pub Date : 2024-02-09 DOI: 10.1109/mis.2024.3363895
Yanbing Wang, Hong He
{"title":"EEG Emotion Recognition Based on Manifold Geomorphological Features in Riemannian Space","authors":"Yanbing Wang, Hong He","doi":"10.1109/mis.2024.3363895","DOIUrl":"https://doi.org/10.1109/mis.2024.3363895","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From EEG Data to Brain Networks: Graph Learning Based Brain Disease Diagnosis 从脑电图数据到大脑网络:基于图学习的脑疾病诊断
IF 6.4 3区 计算机科学 Q1 Computer Science Pub Date : 2024-01-11 DOI: 10.1109/mis.2024.3352972
Ke Sun, Ciyuan Peng, Shuo Yu, Zhuoyang Han, Feng Xia
{"title":"From EEG Data to Brain Networks: Graph Learning Based Brain Disease Diagnosis","authors":"Ke Sun, Ciyuan Peng, Shuo Yu, Zhuoyang Han, Feng Xia","doi":"10.1109/mis.2024.3352972","DOIUrl":"https://doi.org/10.1109/mis.2024.3352972","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reflecting on Algorithmic Bias with Design Fiction: the MiniCoDe Workshops 用设计小说反思算法偏见:MiniCoDe 研讨会
IF 6.4 3区 计算机科学 Q1 Computer Science Pub Date : 2024-01-11 DOI: 10.1109/mis.2024.3352977
T. Turchi, A. Malizia, S. Borsci
{"title":"Reflecting on Algorithmic Bias with Design Fiction: the MiniCoDe Workshops","authors":"T. Turchi, A. Malizia, S. Borsci","doi":"10.1109/mis.2024.3352977","DOIUrl":"https://doi.org/10.1109/mis.2024.3352977","url":null,"abstract":"","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Intelligent Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1