首页 > 最新文献

IEEE transactions on neural networks and learning systems最新文献

英文 中文
Predicting What Matters: Training AI Models for Better Decisions 预测重要的事情:训练AI模型以做出更好的决策
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-04 DOI: 10.1109/tnnls.2025.3633573
Akhil S. Anand, Shambhuraj Sawant, Dirk Peter Reinhardt, Sebastien Gros
{"title":"Predicting What Matters: Training AI Models for Better Decisions","authors":"Akhil S. Anand, Shambhuraj Sawant, Dirk Peter Reinhardt, Sebastien Gros","doi":"10.1109/tnnls.2025.3633573","DOIUrl":"https://doi.org/10.1109/tnnls.2025.3633573","url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"41 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D2Vformer: A Flexible Time-Series Prediction Model Based on Time-Position Embedding D2Vformer:基于时间位置嵌入的灵活时间序列预测模型
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-04 DOI: 10.1109/tnnls.2025.3630792
Xiaobao Song, Hao Wang, Liwei Deng, Dong Wang, Hongbo Qiu, Yuxin He, Wenming Cao, Chi-Sing Leung
{"title":"D2Vformer: A Flexible Time-Series Prediction Model Based on Time-Position Embedding","authors":"Xiaobao Song, Hao Wang, Liwei Deng, Dong Wang, Hongbo Qiu, Yuxin He, Wenming Cao, Chi-Sing Leung","doi":"10.1109/tnnls.2025.3630792","DOIUrl":"https://doi.org/10.1109/tnnls.2025.3630792","url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"33 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chain-of-Detection: Enhancing Cross-Granularity Robotic Perception for Object Manipulation 检测链:增强对象操作的跨粒度机器人感知
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-04 DOI: 10.1109/tnnls.2025.3626567
Tianrun Xu, Haichuan Gao, Changlin Chen, Yuxuan Li, Shiyuan Xu, Shangqi Guo, Feng Chen
{"title":"Chain-of-Detection: Enhancing Cross-Granularity Robotic Perception for Object Manipulation","authors":"Tianrun Xu, Haichuan Gao, Changlin Chen, Yuxuan Li, Shiyuan Xu, Shangqi Guo, Feng Chen","doi":"10.1109/tnnls.2025.3626567","DOIUrl":"https://doi.org/10.1109/tnnls.2025.3626567","url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"19 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interlayer Sparse Compression-Based Deep Echo State Network Model and Its Application in Time-Series Forecasting 基于层间稀疏压缩的深度回波状态网络模型及其在时间序列预测中的应用
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-04 DOI: 10.1109/tnnls.2025.3634741
Yuxuan Wang, Mingwen Zheng, Yaru Shang, Manman Yuan, Hui Zhao
{"title":"Interlayer Sparse Compression-Based Deep Echo State Network Model and Its Application in Time-Series Forecasting","authors":"Yuxuan Wang, Mingwen Zheng, Yaru Shang, Manman Yuan, Hui Zhao","doi":"10.1109/tnnls.2025.3634741","DOIUrl":"https://doi.org/10.1109/tnnls.2025.3634741","url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"14 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral-Guided Multiscale Feature-Aware Transformer for Hyperspectral Image Classification 用于高光谱图像分类的光谱制导多尺度特征感知变压器
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-04 DOI: 10.1109/tnnls.2025.3630239
Zhenqiu Shu, Kexin Zeng, Yuyang Wang, Songze Tang, Zhengtao Yu, Liang Xiao
{"title":"Spectral-Guided Multiscale Feature-Aware Transformer for Hyperspectral Image Classification","authors":"Zhenqiu Shu, Kexin Zeng, Yuyang Wang, Songze Tang, Zhengtao Yu, Liang Xiao","doi":"10.1109/tnnls.2025.3630239","DOIUrl":"https://doi.org/10.1109/tnnls.2025.3630239","url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"244 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal Set of Observables for Forecasting Physical Systems Through Causal Embedding 通过因果嵌入预测物理系统的通用观测集
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-04 DOI: 10.1109/tnnls.2025.3632965
G. Manjunath, A. de Clercq, M. J. Steynberg
{"title":"Universal Set of Observables for Forecasting Physical Systems Through Causal Embedding","authors":"G. Manjunath, A. de Clercq, M. J. Steynberg","doi":"10.1109/tnnls.2025.3632965","DOIUrl":"https://doi.org/10.1109/tnnls.2025.3632965","url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"169 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Refreshed Similarity-Based Upsampler for Direct High-Ratio Feature Upsampling 一种改进的基于相似性的直接高比特征上采样器
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-04 DOI: 10.1109/tnnls.2025.3638370
Minghao Zhou, Hong Wang, Yefeng Zheng, Deyu Meng
{"title":"A Refreshed Similarity-Based Upsampler for Direct High-Ratio Feature Upsampling","authors":"Minghao Zhou, Hong Wang, Yefeng Zheng, Deyu Meng","doi":"10.1109/tnnls.2025.3638370","DOIUrl":"https://doi.org/10.1109/tnnls.2025.3638370","url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"48 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145673799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal Topology-Informed Multiagent Reinforcement Learning Framework for Structured Multiprocess Collaborative Optimization. 面向结构化多进程协同优化的时空拓扑多智能体强化学习框架。
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-02 DOI: 10.1109/tnnls.2025.3633880
Diju Liu,Yalin Wang,Chenliang Liu,Biao Luo,Biao Huang
Industrial multiprocess collaborative optimization presents significant challenges due to the intricate spatiotemporal dependencies inherent in modern process industries. Traditional optimization and reinforcement learning often treat subprocesses as independent entities, neglecting the fine-grained interdependencies among operational variables across different subprocesses. To fundamentally address this limitation, we introduce, a novel spatiotemporal topology-informed multiprocess collaborative optimization (STI-MCO) framework, which pioneers action-level interdependency modeling through an innovative spatiotemporal graph architecture. Rather than treating subprocesses as monolithic entities, STI-MCO operates at the operational variable level, enabling precise representation of both interprocess relationships and intraprocess dependencies through a hierarchical two-stage decision framework. This approach enables more precise coordination through fine-grained variable interactions, better temporal consistency via dynamic graph structures, and enhanced scalability compared with conventional agent-level methods. This paradigm shift from subprocess-level to variable-level collaboration, combined with dynamic graph-based coordination, enables extensive simulations and experiments conducted across three benchmark environments with progressively complex topologies to demonstrate that STI-MCO consistently outperforms baseline methods, achieving up to 38.9% improvement over centralized methods and 171.9% improvement over existing multiagent strategies. In addition, STI-MCO exhibits superior convergence efficiency, requiring significantly fewer training steps to achieve high performance. Its practical applicability is further validated through deployment in a real-world Salt Lake chemical process. By fundamentally shifting the optimization paradigm from holistic subprocess control to fine-grained variable-level collaboration, this work establishes a new framework for more effective optimization in complex industrial processes, particularly those with strong interunit coupling.
由于现代过程工业固有的复杂时空依赖性,工业多过程协同优化提出了重大挑战。传统的优化和强化学习通常将子过程视为独立的实体,忽略了跨不同子过程的操作变量之间的细粒度相互依赖关系。为了从根本上解决这一限制,我们引入了一种新的时空拓扑信息多进程协同优化(STI-MCO)框架,该框架通过创新的时空图架构开创了行动级相互依赖建模。STI-MCO没有将子流程视为整体实体,而是在操作变量级别上进行操作,通过分层的两阶段决策框架支持精确表示流程间关系和进程内依赖关系。这种方法通过细粒度的变量交互实现更精确的协调,通过动态图结构实现更好的时间一致性,并且与传统的代理级方法相比,增强了可伸缩性。这种从子流程级协作到变量级协作的范式转变,结合基于动态图的协调,可以在三个具有逐渐复杂拓扑的基准环境中进行广泛的模拟和实验,以证明STI-MCO始终优于基线方法,比集中式方法提高38.9%,比现有的多智能体策略提高171.9%。此外,STI-MCO表现出优越的收敛效率,需要更少的训练步骤来实现高性能。通过实际盐湖化工过程的部署,进一步验证了其实际适用性。通过从根本上将优化范例从整体子过程控制转变为细粒度变量级协作,这项工作建立了一个新的框架,用于更有效地优化复杂的工业过程,特别是那些具有强单元间耦合的过程。
{"title":"Spatiotemporal Topology-Informed Multiagent Reinforcement Learning Framework for Structured Multiprocess Collaborative Optimization.","authors":"Diju Liu,Yalin Wang,Chenliang Liu,Biao Luo,Biao Huang","doi":"10.1109/tnnls.2025.3633880","DOIUrl":"https://doi.org/10.1109/tnnls.2025.3633880","url":null,"abstract":"Industrial multiprocess collaborative optimization presents significant challenges due to the intricate spatiotemporal dependencies inherent in modern process industries. Traditional optimization and reinforcement learning often treat subprocesses as independent entities, neglecting the fine-grained interdependencies among operational variables across different subprocesses. To fundamentally address this limitation, we introduce, a novel spatiotemporal topology-informed multiprocess collaborative optimization (STI-MCO) framework, which pioneers action-level interdependency modeling through an innovative spatiotemporal graph architecture. Rather than treating subprocesses as monolithic entities, STI-MCO operates at the operational variable level, enabling precise representation of both interprocess relationships and intraprocess dependencies through a hierarchical two-stage decision framework. This approach enables more precise coordination through fine-grained variable interactions, better temporal consistency via dynamic graph structures, and enhanced scalability compared with conventional agent-level methods. This paradigm shift from subprocess-level to variable-level collaboration, combined with dynamic graph-based coordination, enables extensive simulations and experiments conducted across three benchmark environments with progressively complex topologies to demonstrate that STI-MCO consistently outperforms baseline methods, achieving up to 38.9% improvement over centralized methods and 171.9% improvement over existing multiagent strategies. In addition, STI-MCO exhibits superior convergence efficiency, requiring significantly fewer training steps to achieve high performance. Its practical applicability is further validated through deployment in a real-world Salt Lake chemical process. By fundamentally shifting the optimization paradigm from holistic subprocess control to fine-grained variable-level collaboration, this work establishes a new framework for more effective optimization in complex industrial processes, particularly those with strong interunit coupling.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"29 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145657028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population Historical Information-Driven Evolutionary Multitask Neural Architecture Search. 种群历史信息驱动的进化多任务神经结构搜索。
IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-02 DOI: 10.1109/tnnls.2025.3637391
Kunjie Yu,Hao Tang,Jing Liang,Chao Li,Mingyuan Yu
Neural architecture search (NAS) has achieved significant success in automating neural network design, particularly through evolutionary NAS. To address the critical need for efficient architecture discovery across diverse scenarios, such as computer vision and natural language processing, multitask NAS (MT-NAS) methods have emerged. Nevertheless, existing MT-NAS approaches still face critical challenges, including redundant search arising from insufficient exploitation of population historical information across generations and negative transfer caused by unguided interactions between tasks. To address these limitations, a population historical information-driven evolutionary multitask neural architecture search (HIMT-NAS) algorithm is proposed. For each generation, the population historical information is recorded, which includes the operation information and the topology information. In the search process, systematic utilization of population historical information to guide evolutionary search directions, preventing redundant search. Furthermore, the proposed method adjusts cross-task knowledge transfer probability by measuring task similarity through patterns in population historical information, and then updates transfer probabilities when the information proves useful across multiple tasks. Extensive experiments on MedMNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate consistent advantages of the proposed method over both single-task NAS methods and recent MT-NAS methods.
神经结构搜索(NAS)在自动化神经网络设计方面取得了显著的成功,特别是通过进化NAS。为了解决跨不同场景(如计算机视觉和自然语言处理)高效架构发现的关键需求,多任务NAS (MT-NAS)方法已经出现。然而,现有的MT-NAS方法仍然面临着严峻的挑战,包括由于对跨代人口历史信息的利用不足而产生的冗余搜索以及任务之间无导向交互引起的负迁移。针对这些局限性,提出了一种种群历史信息驱动的进化多任务神经结构搜索(HIMT-NAS)算法。记录每一代人口的历史信息,包括操作信息和拓扑信息。在搜索过程中,系统利用种群历史信息引导进化搜索方向,防止冗余搜索。此外,该方法通过群体历史信息中的模式度量任务相似性来调整跨任务知识转移概率,当信息在多个任务间证明有用时,更新知识转移概率。在MedMNIST、CIFAR-10、CIFAR-100和Tiny-ImageNet上进行的大量实验表明,该方法与单任务NAS方法和最近的MT-NAS方法相比具有一致的优势。
{"title":"Population Historical Information-Driven Evolutionary Multitask Neural Architecture Search.","authors":"Kunjie Yu,Hao Tang,Jing Liang,Chao Li,Mingyuan Yu","doi":"10.1109/tnnls.2025.3637391","DOIUrl":"https://doi.org/10.1109/tnnls.2025.3637391","url":null,"abstract":"Neural architecture search (NAS) has achieved significant success in automating neural network design, particularly through evolutionary NAS. To address the critical need for efficient architecture discovery across diverse scenarios, such as computer vision and natural language processing, multitask NAS (MT-NAS) methods have emerged. Nevertheless, existing MT-NAS approaches still face critical challenges, including redundant search arising from insufficient exploitation of population historical information across generations and negative transfer caused by unguided interactions between tasks. To address these limitations, a population historical information-driven evolutionary multitask neural architecture search (HIMT-NAS) algorithm is proposed. For each generation, the population historical information is recorded, which includes the operation information and the topology information. In the search process, systematic utilization of population historical information to guide evolutionary search directions, preventing redundant search. Furthermore, the proposed method adjusts cross-task knowledge transfer probability by measuring task similarity through patterns in population historical information, and then updates transfer probabilities when the information proves useful across multiple tasks. Extensive experiments on MedMNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate consistent advantages of the proposed method over both single-task NAS methods and recent MT-NAS methods.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"33 1","pages":""},"PeriodicalIF":10.4,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145656997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Neural Networks and Learning Systems Information for Authors IEEE神经网络与学习系统信息汇刊
IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-02 DOI: 10.1109/TNNLS.2025.3629911
{"title":"IEEE Transactions on Neural Networks and Learning Systems Information for Authors","authors":"","doi":"10.1109/TNNLS.2025.3629911","DOIUrl":"https://doi.org/10.1109/TNNLS.2025.3629911","url":null,"abstract":"","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"36 12","pages":"C4-C4"},"PeriodicalIF":8.9,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11272993","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE transactions on neural networks and learning systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1