Pub Date : 2025-10-01Epub Date: 2025-09-09DOI: 10.1007/s11626-025-01110-6
Camila Maria Araújo de Aguiar, Solano Dantas Martins, Alesandro Silva Ferreira, Hyandra Emilly Oliveira Santos-Saboia, João Eudes Farias Cavalcante-Filho, Maria Alice Felipe Oliveira, Maria Joana Nogueira de Moura, Rafael Aires Lessa, Maria Gonçalves Pereira, Cibele Dos Santos Borges, Vânia Marilande Ceccatto, Sônia Nair Báo, Valdevane Rocha Araújo
The present study aimed to (1) evaluate the effects of different concentrations of the polysaccharide extract of Cissus sicyoides (PE-Cs) during in vitro culture of preantral follicles included in goat ovarian tissue on (i) follicular morphology and activation, (ii) ovarian stromal density, (iii) follicular and oocyte diameters, (iv) antioxidant enzymes activity (SOD, CAT, and GPx), (v) quantification of MDA, thiol, and nitrite levels; as well as to (2) measure the total antioxidant capacity of the extract. The ovarian cortex fragments were cultured at 39 °C in a humidified atmosphere with 5% CO2 for 6 d in alpha-modified minimum essential medium (αMEM) supplemented with insulin, transferrin, and selenium; hypoxanthine; glutamine; and bovine serum albumin, which was called αMEM+ alone or added of PE-Cs at 20, 40, or 80 µg/mL. At the end of the culture period, a reduction in the percentage of normal follicles in all treatments using PE-Cs compared to fresh control and αMEM+. Moreover, 80 µg/mL of PE-Cs reduced stromal density and follicular diameter, as well as ultrastructural changes were observed in ovarian tissue. On the other hand, a decrease in MDA levels was observed in all treatments cultured with PE-Cs, although its antioxidant capacity was proven. In summary, supplementation of the culture medium with PE-Cs induced in vitro follicular degeneration. Thus, more studies are needed to evaluate the effect of Cissus sicyoides in reproductive cells and culture systems.
{"title":"The ability of the polysaccharide extract Cissus sicyoides L. leaves to maintain normal follicle structure in ovarian tissue culture.","authors":"Camila Maria Araújo de Aguiar, Solano Dantas Martins, Alesandro Silva Ferreira, Hyandra Emilly Oliveira Santos-Saboia, João Eudes Farias Cavalcante-Filho, Maria Alice Felipe Oliveira, Maria Joana Nogueira de Moura, Rafael Aires Lessa, Maria Gonçalves Pereira, Cibele Dos Santos Borges, Vânia Marilande Ceccatto, Sônia Nair Báo, Valdevane Rocha Araújo","doi":"10.1007/s11626-025-01110-6","DOIUrl":"10.1007/s11626-025-01110-6","url":null,"abstract":"<p><p>The present study aimed to (1) evaluate the effects of different concentrations of the polysaccharide extract of Cissus sicyoides (PE-Cs) during in vitro culture of preantral follicles included in goat ovarian tissue on (i) follicular morphology and activation, (ii) ovarian stromal density, (iii) follicular and oocyte diameters, (iv) antioxidant enzymes activity (SOD, CAT, and GPx), (v) quantification of MDA, thiol, and nitrite levels; as well as to (2) measure the total antioxidant capacity of the extract. The ovarian cortex fragments were cultured at 39 °C in a humidified atmosphere with 5% CO<sub>2</sub> for 6 d in alpha-modified minimum essential medium (αMEM) supplemented with insulin, transferrin, and selenium; hypoxanthine; glutamine; and bovine serum albumin, which was called αMEM<sup>+</sup> alone or added of PE-Cs at 20, 40, or 80 µg/mL. At the end of the culture period, a reduction in the percentage of normal follicles in all treatments using PE-Cs compared to fresh control and αMEM<sup>+</sup>. Moreover, 80 µg/mL of PE-Cs reduced stromal density and follicular diameter, as well as ultrastructural changes were observed in ovarian tissue. On the other hand, a decrease in MDA levels was observed in all treatments cultured with PE-Cs, although its antioxidant capacity was proven. In summary, supplementation of the culture medium with PE-Cs induced in vitro follicular degeneration. Thus, more studies are needed to evaluate the effect of Cissus sicyoides in reproductive cells and culture systems.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1137-1147"},"PeriodicalIF":1.7,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145023119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-01Epub Date: 2025-09-09DOI: 10.1007/s11626-025-01105-3
Youyi Chen, Xu Yang, Rie Kinoshita, Nahoko Tomonobu, Bo Pan, Fangping Wu, Xu Zhang, Kazumi Sagayama, Bei Sun, Masakiyo Sakaguchi
S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis. However, the exact mechanisms by which S100A8/A9 contributes to GC pathogenesis remain unclear. This study investigates the role of S100A8/A9 and its receptor in GC. Immunohistochemical analysis was performed on GC tissue samples to assess the expression of the S100A8/A9 receptor melanoma cell adhesion molecule (MCAM). In vitro transwell migration and invasion assays were used to evaluate the motility and invasiveness of GC cells. Cell proliferation was assessed using a growth assay, and Western blotting (WB) was employed to examine downstream signaling pathways, including ERK and the transcription factor c-Jun, in response to S100A8/A9-MCAM interaction. S100A8/A9 stimulation enhanced both proliferation and migration through MCAM binding in GC cell lines. These cellular events were accompanied by ERK activation and c-Jun induction. Downregulation of MCAM suppressed both ERK phosphorylation and c-Jun expression, highlighting the importance of the S100A8/A9‒MCAM‒ERK‒c-Jun axis in promoting GC progression. These findings indicate that S100A8/A9 contributes to GC progression via MCAM, which activates the ERK‒c-Jun pathway. The S100A8/A9‒signaling axis may represent a novel therapeutic target in GC.
{"title":"S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation.","authors":"Youyi Chen, Xu Yang, Rie Kinoshita, Nahoko Tomonobu, Bo Pan, Fangping Wu, Xu Zhang, Kazumi Sagayama, Bei Sun, Masakiyo Sakaguchi","doi":"10.1007/s11626-025-01105-3","DOIUrl":"10.1007/s11626-025-01105-3","url":null,"abstract":"<p><p>S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis. However, the exact mechanisms by which S100A8/A9 contributes to GC pathogenesis remain unclear. This study investigates the role of S100A8/A9 and its receptor in GC. Immunohistochemical analysis was performed on GC tissue samples to assess the expression of the S100A8/A9 receptor melanoma cell adhesion molecule (MCAM). In vitro transwell migration and invasion assays were used to evaluate the motility and invasiveness of GC cells. Cell proliferation was assessed using a growth assay, and Western blotting (WB) was employed to examine downstream signaling pathways, including ERK and the transcription factor c-Jun, in response to S100A8/A9-MCAM interaction. S100A8/A9 stimulation enhanced both proliferation and migration through MCAM binding in GC cell lines. These cellular events were accompanied by ERK activation and c-Jun induction. Downregulation of MCAM suppressed both ERK phosphorylation and c-Jun expression, highlighting the importance of the S100A8/A9‒MCAM‒ERK‒c-Jun axis in promoting GC progression. These findings indicate that S100A8/A9 contributes to GC progression via MCAM, which activates the ERK‒c-Jun pathway. The S100A8/A9‒signaling axis may represent a novel therapeutic target in GC.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1082-1096"},"PeriodicalIF":1.7,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12628424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145023191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atherosclerosis (AS) is a primary contributor to cardiovascular disease (CVD), resulting in high mortality. Ferroptosis, triggered by lipid peroxidation, contribute to AS development. This study aimed to explore the regulatory relationships of Trim28, ALDH4A1, P53, and ferroptosis in the pathogenesis of AS. The AS cell model was constructed by treating HUVECs with oxidized low-density lipoprotein (ox-LDL). The roles of Trim28 overexpression in regulating AS development, P53 ubiquitination, and ferroptosis of vascular endothelial cells were investigated. Moreover, the interaction between Trim28 and ALDH4A1 was explored, followed by analyzing the effect of ALDH4A1 knockdown on P53 ubiquitination. Additionally, the impact of ALDH4A1 knockdown and P53 overexpression on AS development and ferroptosis of vascular endothelial cells was explored. Reduced Trim28 expression and increased ALDH4A1 and P53 expression were observed in HUVECs after treatment with ox-LDL. Overexpression of Trim28 mitigated AS development, promoted P53 ubiquitination, and suppressed ferroptosis of vascular endothelial cells. Additionally, ALDH4A1 could interact with Trim28, and ALDH4A1 knockdown enhanced P53 ubiquitination. Moreover, P53 overexpression reversed the inhibitory effects of ALDH4A1 knockdown on AS development and ferroptosis of vascular endothelial cells. Our findings indicate that Trim28, ALDH4A1, and P53 may be key regulators in AS development. Silencing of ALDH4A1 may alleviate AS development through regulating Trim28-mediated P53 ubiquitination to inhibit ferroptosis of vascular endothelial cells. These molecules may by promising therapeutic targets for AS and related CVD.
{"title":"ALDH4A1 knockdown inhibits in vitro atherosclerosis model by modulating Trim28-mediated P53 ubiquitination to suppress ferroptosis of vascular endothelial cells.","authors":"Xiaoyong Xu, Xiaorong Xu, Wangzhuo Zhou, Wenwen Wang, Bin Lin, Xumei Huang, Shan Chen","doi":"10.1007/s11626-025-01102-6","DOIUrl":"10.1007/s11626-025-01102-6","url":null,"abstract":"<p><p>Atherosclerosis (AS) is a primary contributor to cardiovascular disease (CVD), resulting in high mortality. Ferroptosis, triggered by lipid peroxidation, contribute to AS development. This study aimed to explore the regulatory relationships of Trim28, ALDH4A1, P53, and ferroptosis in the pathogenesis of AS. The AS cell model was constructed by treating HUVECs with oxidized low-density lipoprotein (ox-LDL). The roles of Trim28 overexpression in regulating AS development, P53 ubiquitination, and ferroptosis of vascular endothelial cells were investigated. Moreover, the interaction between Trim28 and ALDH4A1 was explored, followed by analyzing the effect of ALDH4A1 knockdown on P53 ubiquitination. Additionally, the impact of ALDH4A1 knockdown and P53 overexpression on AS development and ferroptosis of vascular endothelial cells was explored. Reduced Trim28 expression and increased ALDH4A1 and P53 expression were observed in HUVECs after treatment with ox-LDL. Overexpression of Trim28 mitigated AS development, promoted P53 ubiquitination, and suppressed ferroptosis of vascular endothelial cells. Additionally, ALDH4A1 could interact with Trim28, and ALDH4A1 knockdown enhanced P53 ubiquitination. Moreover, P53 overexpression reversed the inhibitory effects of ALDH4A1 knockdown on AS development and ferroptosis of vascular endothelial cells. Our findings indicate that Trim28, ALDH4A1, and P53 may be key regulators in AS development. Silencing of ALDH4A1 may alleviate AS development through regulating Trim28-mediated P53 ubiquitination to inhibit ferroptosis of vascular endothelial cells. These molecules may by promising therapeutic targets for AS and related CVD.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1110-1119"},"PeriodicalIF":1.7,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12628478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144834927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-01Epub Date: 2025-07-21DOI: 10.1007/s11626-025-01075-6
Sneha Raut, Meet Makwana, Prakash Pillai
Anoikis resistance, the evasion of programmed cell death when cells detach from the extracellular matrix (ECM), is a critical feature of glioblastoma (GBM) malignancy, contributing to tumor survival, spread, and resistance to therapy. We focused on the role of growth factor receptors, particularly platelet-derived growth factor receptor-α (PDGFRα), and integrin expression patterns in mediating this resistance. We first cultured cells under non-adherent conditions using polyHEMA-treated plates to induce anoikis resistance. We performed assays like cell survival, migration, and sphere formation. To delineate the role of PDGFRα signalling in anoikis resistance, we further employed pharmacological inhibitors of key signalling molecules such as AG1295 (PDGFRα blocker), HS173 (PI3K inhibitor), U0126 (ERK inhibitor), and AG490 (JAK-STAT inhibitor) which led to a decrease in cell survival, proliferation, and migration. These findings highlight the critical role of PDGFRα and associated signalling pathways in mediating anoikis resistance in GBM, offering potential therapeutic targets for intervention.
{"title":"Role of PDGFRα-mediated signalling in anoikis resistance in glioblastoma: in vitro study.","authors":"Sneha Raut, Meet Makwana, Prakash Pillai","doi":"10.1007/s11626-025-01075-6","DOIUrl":"10.1007/s11626-025-01075-6","url":null,"abstract":"<p><p>Anoikis resistance, the evasion of programmed cell death when cells detach from the extracellular matrix (ECM), is a critical feature of glioblastoma (GBM) malignancy, contributing to tumor survival, spread, and resistance to therapy. We focused on the role of growth factor receptors, particularly platelet-derived growth factor receptor-α (PDGFRα), and integrin expression patterns in mediating this resistance. We first cultured cells under non-adherent conditions using polyHEMA-treated plates to induce anoikis resistance. We performed assays like cell survival, migration, and sphere formation. To delineate the role of PDGFRα signalling in anoikis resistance, we further employed pharmacological inhibitors of key signalling molecules such as AG1295 (PDGFRα blocker), HS173 (PI3K inhibitor), U0126 (ERK inhibitor), and AG490 (JAK-STAT inhibitor) which led to a decrease in cell survival, proliferation, and migration. These findings highlight the critical role of PDGFRα and associated signalling pathways in mediating anoikis resistance in GBM, offering potential therapeutic targets for intervention.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1005-1016"},"PeriodicalIF":1.7,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144682557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Differentiation of the human monocytic leukemia cell line THP-1 is widely used to analyze the function of monocyte/macrophage-like cells in vitro. Although chemotaxis, a critical function of monocytes/macrophages enabling tissue accumulation, has been extensively studied, methods to evaluate sustained, long-distance chemotaxis remain underexplored. Therefore, we aimed to evaluate macrophage-like cells in vitro by differentiating THP-1 cells into monocyte/macrophage-like cells exhibiting sustained, strong chemotaxis over long distances (up to 260 μm). Using various reagents, we identified the combination of vitamin D, panobinostat, and granulocyte-macrophage-colony-stimulating factor as optimal for achieving high directionality and velocity in cell migration, as analyzed using the TAXIScan cell dynamics assay device. The differentiated cells matured into M1 macrophage-like cells and displayed reduced migratory capacity post-maturation, along with enhanced phagocytosis and reactive oxygen species production. Collectively, our differentiation and analysis methods provide a reliable platform for basic research into cellular maturation processes and drug development targeting the regulation of monocyte/macrophage dynamics.
{"title":"Establishment of a method to evaluate the dynamics of highly chemotactic THP-1 cells during differentiation into monocyte-M1 macrophage-like cells.","authors":"Shuichiro Okamoto, Kei Miyano, Yasumitsu Nishimura, Nahoko Tomonobu, Rie Kinoshita, Masakiyo Sakaguchi, Einosuke Ikeshita, Ayasa Kamezaki, Aya Morihara, Futoshi Kuribayashi, Akira Yamauchi","doi":"10.1007/s11626-025-01074-7","DOIUrl":"10.1007/s11626-025-01074-7","url":null,"abstract":"<p><p>Differentiation of the human monocytic leukemia cell line THP-1 is widely used to analyze the function of monocyte/macrophage-like cells in vitro. Although chemotaxis, a critical function of monocytes/macrophages enabling tissue accumulation, has been extensively studied, methods to evaluate sustained, long-distance chemotaxis remain underexplored. Therefore, we aimed to evaluate macrophage-like cells in vitro by differentiating THP-1 cells into monocyte/macrophage-like cells exhibiting sustained, strong chemotaxis over long distances (up to 260 μm). Using various reagents, we identified the combination of vitamin D, panobinostat, and granulocyte-macrophage-colony-stimulating factor as optimal for achieving high directionality and velocity in cell migration, as analyzed using the TAXIScan cell dynamics assay device. The differentiated cells matured into M1 macrophage-like cells and displayed reduced migratory capacity post-maturation, along with enhanced phagocytosis and reactive oxygen species production. Collectively, our differentiation and analysis methods provide a reliable platform for basic research into cellular maturation processes and drug development targeting the regulation of monocyte/macrophage dynamics.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"956-965"},"PeriodicalIF":1.7,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144753233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-01Epub Date: 2025-07-30DOI: 10.1007/s11626-025-01073-8
João Vitor da Silva Viana, Brenna de Sousa Barbosa, Luanna Lorenna Vieira Rodrigues, Antonia Beatriz Mendonça Pereira, Patrícia Vasconcelos Alves, Herlon Victor Rodrigues Silva, Sarah Sant'Anna Maranhão, Carlos Roberto Koscky Paier, Maria Claudia Dos Santos Luciano, Cláudia Pessoa, Alexsandra Fernandes Pereira
Nuclear reprogramming studies are important tools in conserving wild felids, with efficacy depending on efficient G0/G1 cell cycle arrest methodologies. This study evaluated different culture conditions at G0/G1 arrest and the quality of northern tiger cat fibroblasts. Cells from four animals were assigned to groups: 7.5 and 15 µM roscovitine (RSV) for 24 and 48 h; serum starvation (SS) for 24, 48, 72, and 96 h; and contact inhibition (CI) for 24, 48, and 72 h. Cells with 50-60% confluence were used as control. The cell quality parameters included morphology, and viability and apoptotic levels were assessed through microscopic analysis, while cell cycle phases were evaluated using flow cytometry. RSV affected the cell viable percentage and morphology with the increase of concentration and exposure time. Moreover, RSV did not improve the cells at G0/G1. CI did not significantly affect cell quality or increase the proportion of cells in G0/G1 phase. Interestingly, SS for 24 h increased the cells at G0/G1. However, SS affected the apoptosis levels. The SS for 24 h is the most efficient method of G0/G1 arrest for northern tiger cat fibroblasts. However, adjustments are still necessary to optimize cell arrest for northern tiger cat fibroblasts.
{"title":"Exploring the effects of roscovitine, serum starvation, and contact inhibition at G<sub>0</sub>/G<sub>1</sub> arrest in northern tiger cat dermal fibroblasts.","authors":"João Vitor da Silva Viana, Brenna de Sousa Barbosa, Luanna Lorenna Vieira Rodrigues, Antonia Beatriz Mendonça Pereira, Patrícia Vasconcelos Alves, Herlon Victor Rodrigues Silva, Sarah Sant'Anna Maranhão, Carlos Roberto Koscky Paier, Maria Claudia Dos Santos Luciano, Cláudia Pessoa, Alexsandra Fernandes Pereira","doi":"10.1007/s11626-025-01073-8","DOIUrl":"10.1007/s11626-025-01073-8","url":null,"abstract":"<p><p>Nuclear reprogramming studies are important tools in conserving wild felids, with efficacy depending on efficient G<sub>0</sub>/G<sub>1</sub> cell cycle arrest methodologies. This study evaluated different culture conditions at G<sub>0</sub>/G<sub>1</sub> arrest and the quality of northern tiger cat fibroblasts. Cells from four animals were assigned to groups: 7.5 and 15 µM roscovitine (RSV) for 24 and 48 h; serum starvation (SS) for 24, 48, 72, and 96 h; and contact inhibition (CI) for 24, 48, and 72 h. Cells with 50-60% confluence were used as control. The cell quality parameters included morphology, and viability and apoptotic levels were assessed through microscopic analysis, while cell cycle phases were evaluated using flow cytometry. RSV affected the cell viable percentage and morphology with the increase of concentration and exposure time. Moreover, RSV did not improve the cells at G<sub>0</sub>/G<sub>1</sub>. CI did not significantly affect cell quality or increase the proportion of cells in G<sub>0</sub>/G<sub>1</sub> phase. Interestingly, SS for 24 h increased the cells at G<sub>0</sub>/G<sub>1</sub>. However, SS affected the apoptosis levels. The SS for 24 h is the most efficient method of G<sub>0</sub>/G<sub>1</sub> arrest for northern tiger cat fibroblasts. However, adjustments are still necessary to optimize cell arrest for northern tiger cat fibroblasts.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"899-908"},"PeriodicalIF":1.7,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144753234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-01Epub Date: 2025-09-08DOI: 10.1007/s11626-025-01086-3
Tingyue Li, Zihan Dai, Zhihua Wang, Minghao Wang, Chengxiong Cai, Xiaoru Zhu, Yang Zhao, Paul Roy Cooper, Shengchao Wang, Wenxi He
TP53TG1 is a long non-coding RNA related to the TP53 gene, which plays an important role in various biological processes such as tumorigenesis, cell cycle regulation, and DNA damage repair. In recent years, researchers have begun to explore the role of TP53TG1 in dental pulp biology, especially its potential impact on pulpitis and other pulp-related diseases. However, the role of TP53TG1 in human dental pulp stem cells (hDPSCs) remains unclear. In this study, we obtained TP53TG1 knockdown dental pulp stem cells by plasmid transfection to determine the biological role of TP53TG1 in DPSCs. We found that the expression of TP53TG1 increased significantly during odontogenic differentiation of DPSCs. SiRNA knockdown of TP53TG1 expression resulted in inhibition of proliferation of hDPSCs. During odontogenic differentiation, downregulation of TP53TG inhibited the expression of multiple differentiation-related indices, and alkaline phosphatase activity and the formation of mineralized nodules were also inhibited. In addition, Western blot found that knockdown of TP53TG1 also weakened SMAD3 and JNK1/2 signaling in DPSCs. In conclusion, our study revealed the differentiation-inducing role of TP53TG1 in DPSCs, which plays an important role in dental pulp repair and regeneration and provides new insights and approaches for the prevention and treatment of dental pulp diseases.
{"title":"LncRNA TP53TG1 promotes the growth and osteo/dentinogenic differentiation of dental pulp stem cells by activating the Smad3 and JNK1/2 pathway.","authors":"Tingyue Li, Zihan Dai, Zhihua Wang, Minghao Wang, Chengxiong Cai, Xiaoru Zhu, Yang Zhao, Paul Roy Cooper, Shengchao Wang, Wenxi He","doi":"10.1007/s11626-025-01086-3","DOIUrl":"10.1007/s11626-025-01086-3","url":null,"abstract":"<p><p>TP53TG1 is a long non-coding RNA related to the TP53 gene, which plays an important role in various biological processes such as tumorigenesis, cell cycle regulation, and DNA damage repair. In recent years, researchers have begun to explore the role of TP53TG1 in dental pulp biology, especially its potential impact on pulpitis and other pulp-related diseases. However, the role of TP53TG1 in human dental pulp stem cells (hDPSCs) remains unclear. In this study, we obtained TP53TG1 knockdown dental pulp stem cells by plasmid transfection to determine the biological role of TP53TG1 in DPSCs. We found that the expression of TP53TG1 increased significantly during odontogenic differentiation of DPSCs. SiRNA knockdown of TP53TG1 expression resulted in inhibition of proliferation of hDPSCs. During odontogenic differentiation, downregulation of TP53TG inhibited the expression of multiple differentiation-related indices, and alkaline phosphatase activity and the formation of mineralized nodules were also inhibited. In addition, Western blot found that knockdown of TP53TG1 also weakened SMAD3 and JNK1/2 signaling in DPSCs. In conclusion, our study revealed the differentiation-inducing role of TP53TG1 in DPSCs, which plays an important role in dental pulp repair and regeneration and provides new insights and approaches for the prevention and treatment of dental pulp diseases.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"921-930"},"PeriodicalIF":1.7,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145023182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}