Pub Date : 2024-09-01Epub Date: 2024-05-28DOI: 10.1007/s11626-024-00924-0
Bo Deng, Xuegang He, Zhaoheng Wang, Jihe Kang, Guangzhi Zhang, Lei Li, Xuewen Kang
HSP70 exhibits neuroprotective, antioxidant, and anti-apoptotic properties, which are crucial in preventing spinal cord injury (SCI) induced by oxidative stress and apoptosis. In this study, we assessed the potential protective effects and underlying mechanisms of HSP70 on tert-butyl hydroperoxide (TBHP)-damaged PC12 cells in an in vitro model of SCI. To establish the model, PC12 cells were subjected to oxidative damage induced by TBHP, followed by overexpression of HSP70. Cell viability was assessed using the CCK8 kit, intracellular reactive oxygen species level was evaluated using a commercial kit, cell apoptosis was detected using the Annexin V-APC/7-ADD Apoptosis Detection Kit, and the oxidative stress level was determined using SOD and MDA assay kits. Western blot analysis was used to detect the expression levels of Bax, cleaved caspase-3, and Bcl-2 proteins. Furthermore, immunofluorescence staining and Western bolt were used to detect the expression levels of proteins associated with the Nrf2/HO-1 signaling pathway. We found that HSP70 overexpression reduced apoptosis and oxidative stress in TBHP-induced PC12 cells. Furthermore, it activated the Nrf2/HO-1 signaling pathway. In addition, the Nrf2 inhibitor ML385 attenuated the protective effects of HSP70 on TBHP-induced PC12 cells. In conclusion, HSP70 can partially alleviate TBHP-induced apoptosis and oxidative stress in PC12 cells by promoting the Nrf2/HO-1 signaling pathway.
{"title":"HSP70 protects PC12 cells against TBHP-induced apoptosis and oxidative stress by activating the Nrf2/HO-1 signaling pathway.","authors":"Bo Deng, Xuegang He, Zhaoheng Wang, Jihe Kang, Guangzhi Zhang, Lei Li, Xuewen Kang","doi":"10.1007/s11626-024-00924-0","DOIUrl":"10.1007/s11626-024-00924-0","url":null,"abstract":"<p><p>HSP70 exhibits neuroprotective, antioxidant, and anti-apoptotic properties, which are crucial in preventing spinal cord injury (SCI) induced by oxidative stress and apoptosis. In this study, we assessed the potential protective effects and underlying mechanisms of HSP70 on tert-butyl hydroperoxide (TBHP)-damaged PC12 cells in an in vitro model of SCI. To establish the model, PC12 cells were subjected to oxidative damage induced by TBHP, followed by overexpression of HSP70. Cell viability was assessed using the CCK8 kit, intracellular reactive oxygen species level was evaluated using a commercial kit, cell apoptosis was detected using the Annexin V-APC/7-ADD Apoptosis Detection Kit, and the oxidative stress level was determined using SOD and MDA assay kits. Western blot analysis was used to detect the expression levels of Bax, cleaved caspase-3, and Bcl-2 proteins. Furthermore, immunofluorescence staining and Western bolt were used to detect the expression levels of proteins associated with the Nrf2/HO-1 signaling pathway. We found that HSP70 overexpression reduced apoptosis and oxidative stress in TBHP-induced PC12 cells. Furthermore, it activated the Nrf2/HO-1 signaling pathway. In addition, the Nrf2 inhibitor ML385 attenuated the protective effects of HSP70 on TBHP-induced PC12 cells. In conclusion, HSP70 can partially alleviate TBHP-induced apoptosis and oxidative stress in PC12 cells by promoting the Nrf2/HO-1 signaling pathway.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"868-878"},"PeriodicalIF":1.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cervus nippon (sika deer) are widely distributed throughout eastern Asia. Deer possess a variety of antibodies against several zoonotic pathogens, indicating that they act as reservoir of zoonoses. In this study, we reported the characterization of cultured cells derived from sika deer and evaluated their susceptibility to arthropod-borne viruses to clarify their usefulness in virological studies. Cells derived from testicular tissue in Dulbecco's modified eagle medium with 16% fetal bovine serum started growing as primary cultured cells. The diploid cells consisted of 68 chromosomes, consistent with those of Japanese sika deer previously reported. The phylogenetic analysis showed the cells formed a robust clade with Japanese population of C. nippon, indicating that the cultured cells established in this study were originated from the Japanese sika deer. The cells immortalized by the simian virus 40 T-antigen were predominantly spindle-shaped cells exhibiting adhesive properties, and cultivated at 37°C and 5% CO2, which are common culture conditions for many mammalian cell lines. Western blotting analysis indicated that the cultured cells were multiple types of cells that coexist, including at least epithelial, fibroblast, and also Leydig cells. We confirmed that the cells have susceptibility to several arboviruses distributed in Japan: Getah virus, Japanese encephalitis virus, Oz virus, and severe fever with thrombocytopenia syndrome virus, but not to Tarumiz tick virus. From these results, the cells contribute to clarify the role of sika deer as a reservoir of zoonoses in nature and deer-associated experimental research at the cellular and molecular levels.
梅花鹿广泛分布于亚洲东部。梅花鹿体内有多种针对人畜共患病病原体的抗体,这表明梅花鹿是人畜共患病的储库。在这项研究中,我们报告了梅花鹿培养细胞的特征,并评估了它们对节肢动物传播病毒的敏感性,以明确它们在病毒学研究中的作用。从睾丸组织中提取的细胞在含有 16% 胎牛血清的杜氏改良老鹰培养基中作为原代培养细胞开始生长。二倍体细胞由 68 条染色体组成,与之前报道的日本梅花鹿细胞一致。系统进化分析表明,这些细胞与日本梅花鹿种群形成了一个强大的支系,表明本研究建立的培养细胞来源于日本梅花鹿。用猿猴病毒 40 T 抗原永生的细胞主要是纺锤形细胞,具有粘附性,在 37°C 和 5% CO2 条件下培养,这是许多哺乳动物细胞系的常见培养条件。Western 印迹分析表明,培养的细胞是多种类型共存的细胞,至少包括上皮细胞、成纤维细胞和雷迪格细胞。我们证实,这些细胞对分布在日本的几种虫媒病毒具有易感性:Getah病毒、日本脑炎病毒、Oz病毒和严重发热伴血小板减少综合征病毒,但对Tarumiz蜱病毒不敏感。从这些结果来看,细胞有助于在细胞和分子水平上阐明梅花鹿在自然界和与鹿相关的实验研究中作为人畜共患病储库的作用。
{"title":"Characterization and arbovirus susceptibility of cultured CERNI cells derived from sika deer (Cervus nippon).","authors":"Makoto Takeishi, Shigeru Morikawa, Ryusei Kuwata, Mitsumori Kawaminami, Hiroshi Shimoda, Haruhiko Isawa, Ken Maeda, Yasuhiro Yoshikawa","doi":"10.1007/s11626-024-00933-z","DOIUrl":"10.1007/s11626-024-00933-z","url":null,"abstract":"<p><p>Cervus nippon (sika deer) are widely distributed throughout eastern Asia. Deer possess a variety of antibodies against several zoonotic pathogens, indicating that they act as reservoir of zoonoses. In this study, we reported the characterization of cultured cells derived from sika deer and evaluated their susceptibility to arthropod-borne viruses to clarify their usefulness in virological studies. Cells derived from testicular tissue in Dulbecco's modified eagle medium with 16% fetal bovine serum started growing as primary cultured cells. The diploid cells consisted of 68 chromosomes, consistent with those of Japanese sika deer previously reported. The phylogenetic analysis showed the cells formed a robust clade with Japanese population of C. nippon, indicating that the cultured cells established in this study were originated from the Japanese sika deer. The cells immortalized by the simian virus 40 T-antigen were predominantly spindle-shaped cells exhibiting adhesive properties, and cultivated at 37°C and 5% CO<sub>2</sub>, which are common culture conditions for many mammalian cell lines. Western blotting analysis indicated that the cultured cells were multiple types of cells that coexist, including at least epithelial, fibroblast, and also Leydig cells. We confirmed that the cells have susceptibility to several arboviruses distributed in Japan: Getah virus, Japanese encephalitis virus, Oz virus, and severe fever with thrombocytopenia syndrome virus, but not to Tarumiz tick virus. From these results, the cells contribute to clarify the role of sika deer as a reservoir of zoonoses in nature and deer-associated experimental research at the cellular and molecular levels.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"935-948"},"PeriodicalIF":1.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-24DOI: 10.1007/s11626-024-00936-w
Meg Nakazawa, Itsuma Nagao, Yoko M Ambrosini
Recent advancements in canine intestinal organoid research have paved the way for the development of enhanced in vitro models, crucial for exploring intestinal physiology and diseases. Despite these strides, there is a notable gap in creating specific in vitro models that focus on intestinal inflammation. Our study aims to bridge this gap by investigating the impact of proinflammatory cytokines on canine intestinal epithelial cells (IECs) within the context of organoid models. Canine intestinal organoids were treated with proinflammatory cytokines TNF-α, IFN-γ, and IL-1β. The expression of stem cell markers Lgr5, Sox9, Hopx, and Olfm4 was evaluated through RT-qPCR, while membrane integrity was assessed using immunofluorescence staining for tight junction proteins and transport assays for permeability. IFN-γ significantly decreased Lgr5 expression, a key intestinal stem cell marker, at both 24 and 48 h post-treatment (p=0.030 and p=0.002, respectively). Conversely, TNF-α increased Olfm4 expression during the same intervals (p=0.018 and p=0.011, respectively). A reduction in EdU-positive cells, indicative of decreased cell proliferation, was observed following IFN-γ treatment. Additionally, a decrease in tight junction proteins E-cadherin and ZO-1 (p<0.001 and p=0.003, respectively) and increased permeability in IECs (p=0.012) were noted, particularly following treatment with IFN-γ. The study highlights the profound impact of proinflammatory cytokines on canine IECs, influencing both stem cell dynamics and membrane integrity. These insights shed light on the intricate cellular processes underlying inflammation in the gut and open avenues for more in-depth research into the long-term effects of inflammation on intestinal health.
{"title":"Proinflammatory cytokines suppress stemness-related properties and expression of tight junction in canine intestinal organoids.","authors":"Meg Nakazawa, Itsuma Nagao, Yoko M Ambrosini","doi":"10.1007/s11626-024-00936-w","DOIUrl":"10.1007/s11626-024-00936-w","url":null,"abstract":"<p><p>Recent advancements in canine intestinal organoid research have paved the way for the development of enhanced in vitro models, crucial for exploring intestinal physiology and diseases. Despite these strides, there is a notable gap in creating specific in vitro models that focus on intestinal inflammation. Our study aims to bridge this gap by investigating the impact of proinflammatory cytokines on canine intestinal epithelial cells (IECs) within the context of organoid models. Canine intestinal organoids were treated with proinflammatory cytokines TNF-α, IFN-γ, and IL-1β. The expression of stem cell markers Lgr5, Sox9, Hopx, and Olfm4 was evaluated through RT-qPCR, while membrane integrity was assessed using immunofluorescence staining for tight junction proteins and transport assays for permeability. IFN-γ significantly decreased Lgr5 expression, a key intestinal stem cell marker, at both 24 and 48 h post-treatment (p=0.030 and p=0.002, respectively). Conversely, TNF-α increased Olfm4 expression during the same intervals (p=0.018 and p=0.011, respectively). A reduction in EdU-positive cells, indicative of decreased cell proliferation, was observed following IFN-γ treatment. Additionally, a decrease in tight junction proteins E-cadherin and ZO-1 (p<0.001 and p=0.003, respectively) and increased permeability in IECs (p=0.012) were noted, particularly following treatment with IFN-γ. The study highlights the profound impact of proinflammatory cytokines on canine IECs, influencing both stem cell dynamics and membrane integrity. These insights shed light on the intricate cellular processes underlying inflammation in the gut and open avenues for more in-depth research into the long-term effects of inflammation on intestinal health.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"916-925"},"PeriodicalIF":1.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}