首页 > 最新文献

IEEE Transactions on Power Systems最新文献

英文 中文
A Data-Driven Method for Fast and Accurate Identification of the Wideband Oscillations in Renewable Power Systems 一种快速准确识别可再生能源系统宽带振荡的数据驱动方法
IF 6.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-26 DOI: 10.1109/tpwrs.2025.3637236
Lingyun Gao, Lei Chen, Xiaorong Xie, Vladimir Terzija, Zhicong Chen
{"title":"A Data-Driven Method for Fast and Accurate Identification of the Wideband Oscillations in Renewable Power Systems","authors":"Lingyun Gao, Lei Chen, Xiaorong Xie, Vladimir Terzija, Zhicong Chen","doi":"10.1109/tpwrs.2025.3637236","DOIUrl":"https://doi.org/10.1109/tpwrs.2025.3637236","url":null,"abstract":"","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"255 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributed Load Restoration for Integrated Transmission and Distribution Systems with a Robust Model Projection Method 基于鲁棒模型投影法的输配电综合系统分布式负荷恢复
IF 6.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-26 DOI: 10.1109/tpwrs.2025.3637849
Gang Zhang, Jianqiang Yu, Feng Zhang, Hongda Liu, Lei Ding, Xin Zhang, He Yin
{"title":"Distributed Load Restoration for Integrated Transmission and Distribution Systems with a Robust Model Projection Method","authors":"Gang Zhang, Jianqiang Yu, Feng Zhang, Hongda Liu, Lei Ding, Xin Zhang, He Yin","doi":"10.1109/tpwrs.2025.3637849","DOIUrl":"https://doi.org/10.1109/tpwrs.2025.3637849","url":null,"abstract":"","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"22 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Polyhedral Approximation for Enhancing the Distributionally Robust Optimization of Uncertain Power Systems 增强不确定电力系统分布鲁棒优化的自适应多面体逼近
IF 6.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-21 DOI: 10.1109/tpwrs.2025.3635527
Ke Zhang, Xu Wang, Mohammad Shahidehpour, Chuanwen Jiang, Zhaohao Ding
{"title":"Adaptive Polyhedral Approximation for Enhancing the Distributionally Robust Optimization of Uncertain Power Systems","authors":"Ke Zhang, Xu Wang, Mohammad Shahidehpour, Chuanwen Jiang, Zhaohao Ding","doi":"10.1109/tpwrs.2025.3635527","DOIUrl":"https://doi.org/10.1109/tpwrs.2025.3635527","url":null,"abstract":"","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"13 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145567885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient GPU-Based Halpern Accelerating Algorithm for Large-Scale DC Optimal Power Flow 基于gpu的大规模直流最优潮流的Halpern加速算法
IF 6.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-21 DOI: 10.1109/tpwrs.2025.3635652
Qi Wang, Guojun Zhang, Yue Yang, Chao Ren, Wenchuan Wu, Xinyuan Zhao, Mikael Skoglund, Defeng Sun
{"title":"An Efficient GPU-Based Halpern Accelerating Algorithm for Large-Scale DC Optimal Power Flow","authors":"Qi Wang, Guojun Zhang, Yue Yang, Chao Ren, Wenchuan Wu, Xinyuan Zhao, Mikael Skoglund, Defeng Sun","doi":"10.1109/tpwrs.2025.3635652","DOIUrl":"https://doi.org/10.1109/tpwrs.2025.3635652","url":null,"abstract":"","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"9 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145567886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon-Aware Computing for Data Centers with Probabilistic Performance Guarantees 具有概率性能保证的数据中心碳感知计算
IF 6.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-17 DOI: 10.1109/tpwrs.2025.3630499
Sophie Hall, Francesco Micheli, Giuseppe Belgioioso, Ana Radovanović, Florian Dörfler
{"title":"Carbon-Aware Computing for Data Centers with Probabilistic Performance Guarantees","authors":"Sophie Hall, Francesco Micheli, Giuseppe Belgioioso, Ana Radovanović, Florian Dörfler","doi":"10.1109/tpwrs.2025.3630499","DOIUrl":"https://doi.org/10.1109/tpwrs.2025.3630499","url":null,"abstract":"","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"178 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145535874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-Driven Power Flow Linearization via Hybrid Regression and Classification for Accurately Enforcing Network Constraints 基于混合回归和分类的数据驱动潮流线性化方法精确执行网络约束
IF 7.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-17 DOI: 10.1109/TPWRS.2025.3633105
Zhenfei Tan;Xiaoyuan Xu;Han Wang;Zheng Yan;Mohammad Shahidehpour
This letter proposes a novel power flow (PF) linearization method for accurately enforcing network constraints in optimal dispatch problems. Unlike conventional linearization methods that focus on reducing PF solution errors, the proposed method aims to enhance the decision feasibility of network-constrained dispatch problems modeled with linear PF equations. A data-driven framework based on hybrid regression and classification is developed to determine coefficients of the linear PF equation. This problem is equivalent to minimizing a weighted sum of the root-mean-square error and hinge loss, which compels the linear PF model to enforce network constraints accurately. Simulations with various system scales verify that the proposed PF linearization method outperforms existing ones in terms of decision feasibility and optimality.
本文提出了一种新的潮流线性化方法,用于在最优调度问题中精确执行网络约束。与传统的线性化方法不同,本文提出的方法旨在提高用线性PF方程建模的网络约束调度问题的决策可行性。提出了一种基于混合回归和分类的数据驱动框架来确定线性PF方程的系数。这个问题相当于最小化均方根误差和铰链损失的加权和,这迫使线性PF模型准确地执行网络约束。各种系统规模的仿真验证了所提出的线性化方法在决策可行性和最优性方面优于现有的线性化方法。
{"title":"Data-Driven Power Flow Linearization via Hybrid Regression and Classification for Accurately Enforcing Network Constraints","authors":"Zhenfei Tan;Xiaoyuan Xu;Han Wang;Zheng Yan;Mohammad Shahidehpour","doi":"10.1109/TPWRS.2025.3633105","DOIUrl":"10.1109/TPWRS.2025.3633105","url":null,"abstract":"This letter proposes a novel power flow (PF) linearization method for accurately enforcing network constraints in optimal dispatch problems. Unlike conventional linearization methods that focus on reducing PF solution errors, the proposed method aims to enhance the decision feasibility of network-constrained dispatch problems modeled with linear PF equations. A data-driven framework based on hybrid regression and classification is developed to determine coefficients of the linear PF equation. This problem is equivalent to minimizing a weighted sum of the root-mean-square error and hinge loss, which compels the linear PF model to enforce network constraints accurately. Simulations with various system scales verify that the proposed PF linearization method outperforms existing ones in terms of decision feasibility and optimality.","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"41 1","pages":"793-796"},"PeriodicalIF":7.2,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145535415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Generic Scene-Dependent Credibility Evaluation Framework for Machine Learning-Based Transient Stability Assessment of Power Systems 基于机器学习的电力系统暂态稳定评估通用场景依赖可信度评估框架
IF 7.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-14 DOI: 10.1109/TPWRS.2025.3633106
Jiacheng Liu;Jun Liu;Tao Ding;Chao Ren;Rudai Yan
Machine learning (ML)-based transient stability assessment (TSA) provides extraordinary accuracy performance while limited by potential misjudgment risks. To address this issue, this letter originally develops a generic scene-dependent credibility evaluation (SCE) framework. The variance upper bound of ML model prediction error is inferred using an improved localized generalization error estimation (ILGEE) method, and the probability density of system stability is furtherly described as a Gaussian distribution incorporating Neumann boundary condition. Then the scene-dependent credibility index (SCI) is ultimately derived and defined as the information entropy implying the uncertainty of TSA results. Case studies verify the validity of the SCE framework and demonstrate the promising 100% accurate TSA performance with critical proposed SCI as 0.93.
基于机器学习(ML)的暂态稳定性评估(TSA)提供了非凡的准确性,但受到潜在误判风险的限制。为了解决这个问题,这封信最初开发了一个通用的场景依赖可信度评估(SCE)框架。采用改进的局部泛化误差估计(ILGEE)方法推导了ML模型预测误差的方差上界,并将系统稳定性的概率密度进一步描述为包含Neumann边界条件的高斯分布。最后导出了场景相关可信度指数(SCI),并将其定义为表征TSA结果不确定性的信息熵。案例研究验证了SCE框架的有效性,并展示了有希望的100%准确的TSA性能,关键建议SCI为0.93。
{"title":"A Generic Scene-Dependent Credibility Evaluation Framework for Machine Learning-Based Transient Stability Assessment of Power Systems","authors":"Jiacheng Liu;Jun Liu;Tao Ding;Chao Ren;Rudai Yan","doi":"10.1109/TPWRS.2025.3633106","DOIUrl":"10.1109/TPWRS.2025.3633106","url":null,"abstract":"Machine learning (ML)-based transient stability assessment (TSA) provides extraordinary accuracy performance while limited by potential misjudgment risks. To address this issue, this letter originally develops a generic scene-dependent credibility evaluation (SCE) framework. The variance upper bound of ML model prediction error is inferred using an improved localized generalization error estimation (ILGEE) method, and the probability density of system stability is furtherly described as a Gaussian distribution incorporating Neumann boundary condition. Then the scene-dependent credibility index (SCI) is ultimately derived and defined as the information entropy implying the uncertainty of TSA results. Case studies verify the validity of the SCE framework and demonstrate the promising 100% accurate TSA performance with critical proposed SCI as 0.93.","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"41 1","pages":"773-776"},"PeriodicalIF":7.2,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145515708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Newtonian Power Flow 量子牛顿能量流
IF 7.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-14 DOI: 10.1109/TPWRS.2025.3632611
Ruoyan Fan;Chaofan Lin;Peng Zhang
This letter introduces a novel quantum Newtonian power flow (QNPF) algorithm. The QNPF features a more general quantum circuit that can process non-Hermitian matrices with fewer required qubits and eliminates the need for iterative optimization of gate parameters. Our contributions include: 1) Developing a quantum state-based Newton's power flow framework to enhance accuracy, convergence, and versatility; 2) Integrating quantum singular value transformation to efficiently solve each iteration of QNPF with scalable quantum circuits; and 3) Devising a block-rescaling technique to ensure computational accuracy in ill-conditioned cases. Test results validate the accuracy, scalability and numerical stability of QNPF, underscoring its potential to advance quantum power flow computation.
本文介绍了一种新的量子牛顿潮流(QNPF)算法。QNPF具有更通用的量子电路,可以用更少的量子比特处理非厄米矩阵,并且消除了对门参数迭代优化的需要。我们的贡献包括:1)开发基于量子态的牛顿功率流框架,以提高准确性,收敛性和多功能性;2)利用可扩展量子电路集成量子奇异值变换,高效求解QNPF的每次迭代;3)设计一种块重缩放技术,以保证病态情况下的计算精度。测试结果验证了QNPF的准确性、可扩展性和数值稳定性,强调了其在推进量子潮流计算方面的潜力。
{"title":"Quantum Newtonian Power Flow","authors":"Ruoyan Fan;Chaofan Lin;Peng Zhang","doi":"10.1109/TPWRS.2025.3632611","DOIUrl":"10.1109/TPWRS.2025.3632611","url":null,"abstract":"This letter introduces a novel quantum Newtonian power flow (QNPF) algorithm. The QNPF features a more general quantum circuit that can process non-Hermitian matrices with fewer required qubits and eliminates the need for iterative optimization of gate parameters. Our contributions include: 1) Developing a quantum state-based Newton's power flow framework to enhance accuracy, convergence, and versatility; 2) Integrating quantum singular value transformation to efficiently solve each iteration of QNPF with scalable quantum circuits; and 3) Devising a block-rescaling technique to ensure computational accuracy in ill-conditioned cases. Test results validate the accuracy, scalability and numerical stability of QNPF, underscoring its potential to advance quantum power flow computation.","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"41 1","pages":"777-780"},"PeriodicalIF":7.2,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145515711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SCADA-Based Detection and Analysis of Oscillations with Inferential Statistics 基于scada的振动检测与推理统计分析
IF 6.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-11 DOI: 10.1109/tpwrs.2025.3631766
Salman S. Shiuab, Vaithianathan Mani Venkatasubramanian, Venkata K. Jandhyala, Gilles Torresan
{"title":"SCADA-Based Detection and Analysis of Oscillations with Inferential Statistics","authors":"Salman S. Shiuab, Vaithianathan Mani Venkatasubramanian, Venkata K. Jandhyala, Gilles Torresan","doi":"10.1109/tpwrs.2025.3631766","DOIUrl":"https://doi.org/10.1109/tpwrs.2025.3631766","url":null,"abstract":"","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"1 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145491861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Period Adaptive Robust Scheduling of Flexibility Providers With Diverse Response Delays 具有不同响应延迟的柔性供应商的多周期自适应鲁棒调度
IF 6.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-11-11 DOI: 10.1109/tpwrs.2025.3631373
Jingshi Cui, Yi Guo, Chenye Wu
{"title":"Multi-Period Adaptive Robust Scheduling of Flexibility Providers With Diverse Response Delays","authors":"Jingshi Cui, Yi Guo, Chenye Wu","doi":"10.1109/tpwrs.2025.3631373","DOIUrl":"https://doi.org/10.1109/tpwrs.2025.3631373","url":null,"abstract":"","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"171 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145491860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Power Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1