In this paper, a novel topology for the multiway filtering power divider with a large power dividing ratio (PDR) is proposed. A three-line coupled structure and a λ/2 open-ended stub are introduced between the input port and the power dividing junction to reduce the requirement for high impedance in the low-power path and obtain filtering performance. The PDR is significantly enhanced, and the out-of-band rejection is improved. Meanwhile, a wideband port-to-port isolation is achieved through the isolation network. To verify the validity of the proposed methodology, two three-way wideband filtering power dividers with the power ratios of 5:3:2 and 8:1:1 are designed. The simulated and measured results demonstrate that the 5:3:2 (8:1:1) power divider has the bandwidth of 51.57% (48.5%) with the return loss less than −15 dB and the isolation bandwidth 80% (102%) with reference to −20 dB.
{"title":"Three-Way Wideband Filtering Power Dividers With Enhanced Power Dividing Ratio and High Isolation","authors":"Tai-lai Zhang, Lei Liu, Yu Zuo, Zheng-bin Wang","doi":"10.1049/mia2.70023","DOIUrl":"10.1049/mia2.70023","url":null,"abstract":"<p>In this paper, a novel topology for the multiway filtering power divider with a large power dividing ratio (PDR) is proposed. A three-line coupled structure and a λ/2 open-ended stub are introduced between the input port and the power dividing junction to reduce the requirement for high impedance in the low-power path and obtain filtering performance. The PDR is significantly enhanced, and the out-of-band rejection is improved. Meanwhile, a wideband port-to-port isolation is achieved through the isolation network. To verify the validity of the proposed methodology, two three-way wideband filtering power dividers with the power ratios of 5:3:2 and 8:1:1 are designed. The simulated and measured results demonstrate that the 5:3:2 (8:1:1) power divider has the bandwidth of 51.57% (48.5%) with the return loss less than −15 dB and the isolation bandwidth 80% (102%) with reference to −20 dB.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"19 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.70023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143856693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenjia Wang, Jinchun Gao, Paolo Manfredi, Igor S. Stievano
As elastic electrical connectors, fuzz buttons provide a vertical and solderless electrical interconnection in microwave modules to enhance the integration. However, prolonged use in harsh environments poses a risk of potential failure in electronic components, potentially compromising communication system reliability. This work studies the impact of fuzz button degradation in harsh environments on analog modulation (AM) and pseudo random binary sequence (PRBS) signal transmission using theoretical analysis and experimental testing. Accelerated tests are designed to obtain the fuzz button samples with different degradation levels. The surface morphology observation and elemental analysis are conducted to analyse the degradation mechanism. In addition, a transmission channel with fuzz button interconnections is designed and the corresponding equivalent circuit model is developed. Based on the proposed circuit model, the effects of fuzz button degradation on the integrity of both AM signal and PRBS signal are investigated by analysing the metrics such as waveform, eye diagram and bit error rate (BER) of the output signal. In addition, the effects of the carrier frequency of AM signals, and the transmission rate of the PRBS signals on signal transmission are also investigated. The simulation results of the circuit model show good agreements with experimental tests. The research results provide a better understanding regarding the potentially corrosive effects of harsh environments on fuzz button connectors and the negative effects on the signal integrity. Moreover, the research results provide comprehensive data support for identifying key features that are used for the development of machine learning models for fault diagnosis and localisation in radio frequency (RF) circuits with fuzz button interconnections.
{"title":"Impact of Fuzz Button Degradation on AM and PRBS Signal Transmission","authors":"Wenjia Wang, Jinchun Gao, Paolo Manfredi, Igor S. Stievano","doi":"10.1049/mia2.70022","DOIUrl":"10.1049/mia2.70022","url":null,"abstract":"<p>As elastic electrical connectors, fuzz buttons provide a vertical and solderless electrical interconnection in microwave modules to enhance the integration. However, prolonged use in harsh environments poses a risk of potential failure in electronic components, potentially compromising communication system reliability. This work studies the impact of fuzz button degradation in harsh environments on analog modulation (AM) and pseudo random binary sequence (PRBS) signal transmission using theoretical analysis and experimental testing. Accelerated tests are designed to obtain the fuzz button samples with different degradation levels. The surface morphology observation and elemental analysis are conducted to analyse the degradation mechanism. In addition, a transmission channel with fuzz button interconnections is designed and the corresponding equivalent circuit model is developed. Based on the proposed circuit model, the effects of fuzz button degradation on the integrity of both AM signal and PRBS signal are investigated by analysing the metrics such as waveform, eye diagram and bit error rate (BER) of the output signal. In addition, the effects of the carrier frequency of AM signals, and the transmission rate of the PRBS signals on signal transmission are also investigated. The simulation results of the circuit model show good agreements with experimental tests. The research results provide a better understanding regarding the potentially corrosive effects of harsh environments on fuzz button connectors and the negative effects on the signal integrity. Moreover, the research results provide comprehensive data support for identifying key features that are used for the development of machine learning models for fault diagnosis and localisation in radio frequency (RF) circuits with fuzz button interconnections.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"19 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.70022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143850991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos David Morales Peña, Audric Boiteau, Christophe Morlaas, Alexandre Chabory, Romain Pascaud, Marjorie Grzeskowiak, Gautier Mazingue
A Huygens source dielectric resonator antenna (DRA) with unidirectional radiation pattern is presented. It consists of a coaxial probe exciting a rectangular, homogeneous and uniaxial anisotropic dielectric resonator (DR). To obtain a Huygens source radiation pattern, a pair of quasi-TM and TE modes are combined by controlling the permittivity tensor of the DR. A prototype operating at 2.5 GHz has been designed. The DR is made up of periodic anisotropic unit cells on a subwavelength scale and fabricated using a three-dimensional (3-D) printer. The simulated and measured results are in reasonable agreement. A relative impedance bandwidth of