Positron emission tomography (PET) in nuclear medicine is especially used for diagnosis in clinical oncology, and PET/CT examination using 18F-FDG is very useful for staging and therapy evaluation of cancer. The excellent property of PET diagnosis is that the functional information of cells can be evaluated quantitatively, but it also has the problem that its quantitative value fluctuates depending on image reconstruction conditions and body movements/respiratory movements. In this paper, we summarize the PET research that has been conducted so far in clinical oncology, and also introduce our researches for improve the quantitativeness.
The questionnaire survey was conducted in 2020 to investigate the working conditions of qualified medical physicists in Japan. We developed a web-based system for administering the questionnaire and surveyed 1,228 qualified medical physicists. The number of received responses was 405. We summarized the results of the survey by job category. The obtained results showed that most of the people working as certified medical physicists met the following conditions: (1) position of healthcare occupation, (2) direct supervisor is a medical doctor or a medical physicist, (3) licensed or passed an examination for a Class I Radiation Protection Supervisor, (4) without the license of professional radiotherapy technologist, (5) master's or doctor's degree, (6) being assigned to the section that is different from the radiological technologist section. The average annual salary was approximately 600,000 yen higher for those employed as medical physicists than for those employed as radiotherapy technologists. The percentage of work performed by a certified medical physicist in radiation therapy greatly varies depending on whether the physicist is dedicated to treatment planning and equipment quality control. Alternatively, the proportion of the true duties of medical physicists in charge of radiation therapy, as considered by qualified medical physicists in radiation therapy, was the same regardless of whether they were working full-time or not. The results of this survey updated the working status of certified medical physicists in Japan. We will continue to conduct the survey periodically and update the information to contribute to the improvement of the working conditions of medical physicists and policy recommendations.
Photo neutrons are generated from high-energy medical X-ray linacs via photo-nuclear reactions with the materials of target and collimator as well as therapeutic X-rays. Such photo neutrons sometimes make unwanted influences and are not negligible for the aspects of radiation protection and radiation control. In this article, fundamental principle of such photo-neutron generation is briefly explained. The side effects induced by the photo neutrons are summarized. In addition, some techniques of the detection and measurement of photo neutrons are introduced.