Pub Date : 2023-06-01DOI: 10.1007/s00251-022-01280-7
Edward J Hollox, Sandra Louzada
Glycophorins are transmembrane proteins of red blood cells (RBCs), heavily glycosylated on their external-facing surface. In humans, there are four glycophorin proteins, glycophorins A, B, C and D. Glycophorins A and B are encoded by two similar genes GYPA and GYPB, and glycophorin C and glycophorin D are encoded by a single gene, GYPC. The exact function of glycophorins remains unclear. However, given their abundance on the surface of RBCs, it is likely that they serve as a substrate for glycosylation, giving the RBC a negatively charged, complex glycan "coat". GYPB and GYPE (a closely related pseudogene) were generated from GYPA by two duplication events involving a 120-kb genomic segment between 10 and 15 million years ago. Non-allelic homologous recombination between these 120-kb repeats generates a variety of duplication alleles and deletion alleles, which have been systematically catalogued from genomic sequence data. One allele, called DUP4, encodes the Dantu NE blood type and is strongly protective against malaria as it alters the surface tension of the RBC membrane. Glycophorins interact with other infectious pathogens, including viruses, as well as the malarial parasite Plasmodium falciparum, but the role of glycophorin variation in mediating the effects of these pathogens remains underexplored.
{"title":"Genetic variation of glycophorins and infectious disease.","authors":"Edward J Hollox, Sandra Louzada","doi":"10.1007/s00251-022-01280-7","DOIUrl":"https://doi.org/10.1007/s00251-022-01280-7","url":null,"abstract":"<p><p>Glycophorins are transmembrane proteins of red blood cells (RBCs), heavily glycosylated on their external-facing surface. In humans, there are four glycophorin proteins, glycophorins A, B, C and D. Glycophorins A and B are encoded by two similar genes GYPA and GYPB, and glycophorin C and glycophorin D are encoded by a single gene, GYPC. The exact function of glycophorins remains unclear. However, given their abundance on the surface of RBCs, it is likely that they serve as a substrate for glycosylation, giving the RBC a negatively charged, complex glycan \"coat\". GYPB and GYPE (a closely related pseudogene) were generated from GYPA by two duplication events involving a 120-kb genomic segment between 10 and 15 million years ago. Non-allelic homologous recombination between these 120-kb repeats generates a variety of duplication alleles and deletion alleles, which have been systematically catalogued from genomic sequence data. One allele, called DUP4, encodes the Dantu NE blood type and is strongly protective against malaria as it alters the surface tension of the RBC membrane. Glycophorins interact with other infectious pathogens, including viruses, as well as the malarial parasite Plasmodium falciparum, but the role of glycophorin variation in mediating the effects of these pathogens remains underexplored.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"75 3","pages":"201-206"},"PeriodicalIF":3.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9511628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s00251-022-01286-1
Arman A Bashirova, Wojciech Kasprzak, Colm O'hUigin, Mary Carrington
The leukocyte immunoglobulin-like receptor (LILR)B3 and LILRA6 genes encode homologous myeloid inhibitory and activating orphan receptors, respectively. Both genes exhibit a strikingly high level of polymorphism at the amino acid level and LILRA6 (but not LILRB3) displays copy number variation (CNV). Although multiple alleles have been reported for both genes, limited data is available on frequencies of these alleles among humans. We have sequenced LILRB3/A6 exons encoding signal peptides and ectodomains in 91 healthy blood donors of European descent who carry one or two copies of LILRA6 per diploid genome. Analysis of haplotypes among individuals with two LILRA6 copies, representing the majority in this cohort (N = 86), shows that common LILRB3 and LILRA6 alleles encode some distinct amino acid sequences in homologous regions of the receptors, which could potentially impact their respective functions differentially. Comparison of sequences in individuals with one vs. two copies of LILRA6 supports non-allelic homologous recombination between LILRB3 and LILRA6 as a mechanism for generating LILRA6 CNV and LILRB3 diversity. These data characterize LILRB3/LILRA6 genetic variation in more detail than previously described and underscore the need to determine their ligands.
{"title":"Distinct frequency patterns of LILRB3 and LILRA6 allelic variants in Europeans.","authors":"Arman A Bashirova, Wojciech Kasprzak, Colm O'hUigin, Mary Carrington","doi":"10.1007/s00251-022-01286-1","DOIUrl":"https://doi.org/10.1007/s00251-022-01286-1","url":null,"abstract":"<p><p>The leukocyte immunoglobulin-like receptor (LILR)B3 and LILRA6 genes encode homologous myeloid inhibitory and activating orphan receptors, respectively. Both genes exhibit a strikingly high level of polymorphism at the amino acid level and LILRA6 (but not LILRB3) displays copy number variation (CNV). Although multiple alleles have been reported for both genes, limited data is available on frequencies of these alleles among humans. We have sequenced LILRB3/A6 exons encoding signal peptides and ectodomains in 91 healthy blood donors of European descent who carry one or two copies of LILRA6 per diploid genome. Analysis of haplotypes among individuals with two LILRA6 copies, representing the majority in this cohort (N = 86), shows that common LILRB3 and LILRA6 alleles encode some distinct amino acid sequences in homologous regions of the receptors, which could potentially impact their respective functions differentially. Comparison of sequences in individuals with one vs. two copies of LILRA6 supports non-allelic homologous recombination between LILRB3 and LILRA6 as a mechanism for generating LILRA6 CNV and LILRB3 diversity. These data characterize LILRB3/LILRA6 genetic variation in more detail than previously described and underscore the need to determine their ligands.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"75 3","pages":"263-267"},"PeriodicalIF":3.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9521047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s00251-023-01295-8
Marina Brand, Can Keşmir
Vaccination clearly decreases coronavirus disease 2019 (COVID-19) mortality; however, they also impose selection pressure on the virus, which promotes the evolution of immune escape variants. For example, despite the high vaccination level in especially Western countries, the Omicron variant caused millions of breakthrough infections, suggesting that the highly mutated spike protein in the Omicron variant can escape antibody immunity much more efficiently than the other variants of concern (VOCs). In this study, we investigated the resistance/susceptibility of T helper cell responses that are necessary for generating efficient long-lasting antibody immunity, in several VOCs. By predicting T helper cell epitopes on the spike protein for most common HLA-DRB1 alleles worldwide, we found that although most of high frequency HLA-DRB1 alleles have several potential T helper cell epitopes, few alleles like HLA-DRB1 13:01 and 11:01 are not predicted to have any significant T helper cell responses after vaccination. Using these predictions, a population based on realistic human leukocyte antigen-II (HLA-II) frequencies were simulated to visualize the T helper cell immunity on the population level. While a small fraction of this population had alarmingly little predicted CD4 T cell epitopes, the majority had several epitopes that should be enough to generate efficient B cell responses. Moreover, we show that VOC spike mutations hardly affect T helper epitopes and mainly occur in other residues of the spike protein. These results suggest that lack of long-lasting antibody responses is not likely due to loss of T helper cell epitopes in new VOCs.
疫苗接种明显降低2019冠状病毒病(COVID-19)死亡率;然而,它们也对病毒施加了选择压力,这促进了免疫逃逸变异的进化。例如,尽管特别是西方国家的疫苗接种水平很高,但Omicron变体引起了数百万例突破性感染,这表明Omicron变体中高度突变的刺突蛋白可以比其他相关变体(VOCs)更有效地逃避抗体免疫。在这项研究中,我们研究了在几种挥发性有机化合物中产生有效持久抗体免疫所必需的T辅助细胞反应的抗性/易感性。通过预测世界上最常见的HLA-DRB1等位基因刺突蛋白上的T辅助细胞表位,我们发现尽管大多数高频HLA-DRB1等位基因有几个潜在的T辅助细胞表位,但少数等位基因如HLA-DRB1 13:01和11:01在接种后没有预测任何显著的T辅助细胞应答。利用这些预测,模拟了一个基于现实人类白细胞抗原- ii (HLA-II)频率的群体,以可视化群体水平上的T辅助细胞免疫。虽然一小部分人的CD4 T细胞表位少得惊人,但大多数人有几个表位,应该足以产生有效的B细胞反应。此外,我们发现VOC刺突突变几乎不影响T辅助表位,主要发生在刺突蛋白的其他残基上。这些结果表明,在新的VOCs中,缺乏持久的抗体反应不太可能是由于辅助性T细胞表位的丢失。
{"title":"Evolution of SARS-CoV-2-specific CD4<sup>+</sup> T cell epitopes.","authors":"Marina Brand, Can Keşmir","doi":"10.1007/s00251-023-01295-8","DOIUrl":"https://doi.org/10.1007/s00251-023-01295-8","url":null,"abstract":"<p><p>Vaccination clearly decreases coronavirus disease 2019 (COVID-19) mortality; however, they also impose selection pressure on the virus, which promotes the evolution of immune escape variants. For example, despite the high vaccination level in especially Western countries, the Omicron variant caused millions of breakthrough infections, suggesting that the highly mutated spike protein in the Omicron variant can escape antibody immunity much more efficiently than the other variants of concern (VOCs). In this study, we investigated the resistance/susceptibility of T helper cell responses that are necessary for generating efficient long-lasting antibody immunity, in several VOCs. By predicting T helper cell epitopes on the spike protein for most common HLA-DRB1 alleles worldwide, we found that although most of high frequency HLA-DRB1 alleles have several potential T helper cell epitopes, few alleles like HLA-DRB1 13:01 and 11:01 are not predicted to have any significant T helper cell responses after vaccination. Using these predictions, a population based on realistic human leukocyte antigen-II (HLA-II) frequencies were simulated to visualize the T helper cell immunity on the population level. While a small fraction of this population had alarmingly little predicted CD4 T cell epitopes, the majority had several epitopes that should be enough to generate efficient B cell responses. Moreover, we show that VOC spike mutations hardly affect T helper epitopes and mainly occur in other residues of the spike protein. These results suggest that lack of long-lasting antibody responses is not likely due to loss of T helper cell epitopes in new VOCs.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"75 3","pages":"283-293"},"PeriodicalIF":3.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887569/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10322368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s00251-023-01300-0
Anshika Srivastava, Jill A Hollenbach
{"title":"Correction to: The immunogenetics of COVID-19.","authors":"Anshika Srivastava, Jill A Hollenbach","doi":"10.1007/s00251-023-01300-0","DOIUrl":"https://doi.org/10.1007/s00251-023-01300-0","url":null,"abstract":"","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"75 3","pages":"321"},"PeriodicalIF":3.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9878380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s00251-022-01284-3
Anshika Srivastava, Jill A Hollenbach
The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.
{"title":"The immunogenetics of COVID-19.","authors":"Anshika Srivastava, Jill A Hollenbach","doi":"10.1007/s00251-022-01284-3","DOIUrl":"https://doi.org/10.1007/s00251-022-01284-3","url":null,"abstract":"<p><p>The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"75 3","pages":"309-320"},"PeriodicalIF":3.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9518355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s00251-023-01294-9
Julia Maret Hermens, Can Kesmir
Infection with SARS-CoV-2 causes wide range of disease severities from asymptomatic to life-threatening disease. Understanding the contribution of immunological traits in immunity against SARS-CoV-2 and in protection against severe COVID-19 could result in effective measures to prevent development of severe disease. While the role of cytokines and antibodies has been thoroughly studied, this is not the case for T cells. In this review, the association between T cells and COVID-19 disease severity and protection upon reexposure is discussed. While infiltration of overactivated cytotoxic T cells might be harmful in the infected tissue, fast responding T cells are important in the protection against severe COVID-19. This protection could even be viable in the long term as long-living memory T cells seem to be stabilized and mutations do not appear to have a large impact on T cell responses. Thus, after vaccination and infections, memory T cells should be able to help prevent onset of severe disease for most cases. Considering this, it would be useful to add N or M proteins in vaccinations, alongside the S protein which is currently used, as this results in a broader T cell response.
{"title":"Role of T cells in severe COVID-19 disease, protection, and long term immunity.","authors":"Julia Maret Hermens, Can Kesmir","doi":"10.1007/s00251-023-01294-9","DOIUrl":"https://doi.org/10.1007/s00251-023-01294-9","url":null,"abstract":"<p><p>Infection with SARS-CoV-2 causes wide range of disease severities from asymptomatic to life-threatening disease. Understanding the contribution of immunological traits in immunity against SARS-CoV-2 and in protection against severe COVID-19 could result in effective measures to prevent development of severe disease. While the role of cytokines and antibodies has been thoroughly studied, this is not the case for T cells. In this review, the association between T cells and COVID-19 disease severity and protection upon reexposure is discussed. While infiltration of overactivated cytotoxic T cells might be harmful in the infected tissue, fast responding T cells are important in the protection against severe COVID-19. This protection could even be viable in the long term as long-living memory T cells seem to be stabilized and mutations do not appear to have a large impact on T cell responses. Thus, after vaccination and infections, memory T cells should be able to help prevent onset of severe disease for most cases. Considering this, it would be useful to add N or M proteins in vaccinations, alongside the S protein which is currently used, as this results in a broader T cell response.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"75 3","pages":"295-307"},"PeriodicalIF":3.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9521546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-04-21DOI: 10.1007/s00251-023-01306-8
Stephen Tukwasibwe, Gerald Mboowa, Ivan Sserwadda, Joaniter I Nankabirwa, Emmanuel Arinaitwe, Isaac Ssewanyana, Yoweri Taremwa, Gerald Tumusiime, Moses R Kamya, Prasanna Jagannathan, Annettee Nakimuli
In modern medicine, vaccination is one of the most effective public health strategies to prevent infectious diseases. Indisputably, vaccines have saved millions of lives by reducing the burden of many serious infections such as polio, tuberculosis, measles, pneumonia, and tetanus. Despite the recent recommendation by the World Health Organization (WHO) to roll out RTS,S/AS01, this malaria vaccine still faces major challenges of variability in its efficacy partly due to high genetic variation in humans and malaria parasites. Immune responses to malaria vary between individuals and populations. Human genetic variation in immune system genes is the probable cause for this heterogeneity. In this review, we will focus on human genetic factors that determine variable responses to vaccination and how variation in immune system genes affect the immunogenicity and efficacy of the RTS,S/AS01 vaccine.
{"title":"Impact of high human genetic diversity in Africa on immunogenicity and efficacy of RTS,S/AS01 vaccine.","authors":"Stephen Tukwasibwe, Gerald Mboowa, Ivan Sserwadda, Joaniter I Nankabirwa, Emmanuel Arinaitwe, Isaac Ssewanyana, Yoweri Taremwa, Gerald Tumusiime, Moses R Kamya, Prasanna Jagannathan, Annettee Nakimuli","doi":"10.1007/s00251-023-01306-8","DOIUrl":"10.1007/s00251-023-01306-8","url":null,"abstract":"<p><p>In modern medicine, vaccination is one of the most effective public health strategies to prevent infectious diseases. Indisputably, vaccines have saved millions of lives by reducing the burden of many serious infections such as polio, tuberculosis, measles, pneumonia, and tetanus. Despite the recent recommendation by the World Health Organization (WHO) to roll out RTS,S/AS01, this malaria vaccine still faces major challenges of variability in its efficacy partly due to high genetic variation in humans and malaria parasites. Immune responses to malaria vary between individuals and populations. Human genetic variation in immune system genes is the probable cause for this heterogeneity. In this review, we will focus on human genetic factors that determine variable responses to vaccination and how variation in immune system genes affect the immunogenicity and efficacy of the RTS,S/AS01 vaccine.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"75 3","pages":"207-214"},"PeriodicalIF":2.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9513091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s00251-022-01282-5
Elijah Kolawole Oladipo, Olawumi Elizabeth Akindiya, Glory Jesudara Oluwasanya, Gideon Mayowa Akanbi, Seun Elijah Olufemi, Daniel Adewole Adediran, Favour Oluwadara Bamigboye, Rasidat Oyindamola Aremu, Kehinde Temitope Kolapo, Jerry Ayobami Oluwasegun, Hezekiah Oluwajoba Awobiyi, Esther Moradeyo Jimah, Boluwatife Ayobami Irewolede, Elizabeth Oluwatoyin Folakanmi, Odunola Abimbola Olubodun, Samuel Adebowale Akintibubo, Foluso Daniel Odunlami, Taiwo Ooreoluwa Ojo, Omodamola Paulina Akinro, Oluwaseun Samuel Hezikiah, Adenike Titilayo Olayinka, Grace Asegunloluwa Abiala, Akindele Felix Idowu, James Akinwunmi Ogunniran, Mary Omotoyinbo Ikuomola, Hadijat Motunrayo Adegoke, Usman Abiodun Idowu, Oluwaseyi Paul Olaniyan, Olutoyin Omolara Bamigboye, Sunday Babatunde Akinde, Musa Oladayo Babalola
The bacteria Vibrio cholerae causes cholera, an acute diarrheal infection that can lead to dehydration and even death. Over 100,000 people die each year as a result of epidemic diseases; vaccination has emerged as a successful strategy for combating cholera. This study uses bioinformatics tools to create a multi-epitope vaccine against cholera infection using five structural polyproteins from the V. cholerae (CTB, TCPA, TCPF, OMPU, and OMPW). The antigenic retrieved protein sequence were analyzed using BCPred and IEDB bioinformatics tools to predict B cell and T cell epitopes, respectively, which were then linked with flexible linkers together with an adjuvant to boost it immunogenicity. The construct has a theoretical PI of 6.09, a molecular weight of 53.85 kDa, and an estimated half-life for mammalian reticulocytes in vitro of 4.4 h. These results demonstrate the construct's longevity. The vaccine design was docked against the human toll-like receptor (TLR) to evaluate compatibility and effectiveness; also other additional post-vaccination assessments were carried out on the designed vaccine. Through in silico cloning, its expression was determined. The results show that it has a CAI value of 0.1 and GC contents of 58.97% which established the adequate expression and downstream processing of the vaccine construct, and our research demonstrated that the multi-epitope subunit vaccine exhibits antigenic characteristics. Additionally, we carried out an in silico immunological simulation to examine the immune reaction to an injection. Our results strongly suggest that the vaccine candidate on further validation would induce immune response against the V. cholerae infection.
{"title":"Bioinformatics analysis of structural protein to approach a vaccine candidate against Vibrio cholerae infection.","authors":"Elijah Kolawole Oladipo, Olawumi Elizabeth Akindiya, Glory Jesudara Oluwasanya, Gideon Mayowa Akanbi, Seun Elijah Olufemi, Daniel Adewole Adediran, Favour Oluwadara Bamigboye, Rasidat Oyindamola Aremu, Kehinde Temitope Kolapo, Jerry Ayobami Oluwasegun, Hezekiah Oluwajoba Awobiyi, Esther Moradeyo Jimah, Boluwatife Ayobami Irewolede, Elizabeth Oluwatoyin Folakanmi, Odunola Abimbola Olubodun, Samuel Adebowale Akintibubo, Foluso Daniel Odunlami, Taiwo Ooreoluwa Ojo, Omodamola Paulina Akinro, Oluwaseun Samuel Hezikiah, Adenike Titilayo Olayinka, Grace Asegunloluwa Abiala, Akindele Felix Idowu, James Akinwunmi Ogunniran, Mary Omotoyinbo Ikuomola, Hadijat Motunrayo Adegoke, Usman Abiodun Idowu, Oluwaseyi Paul Olaniyan, Olutoyin Omolara Bamigboye, Sunday Babatunde Akinde, Musa Oladayo Babalola","doi":"10.1007/s00251-022-01282-5","DOIUrl":"https://doi.org/10.1007/s00251-022-01282-5","url":null,"abstract":"<p><p>The bacteria Vibrio cholerae causes cholera, an acute diarrheal infection that can lead to dehydration and even death. Over 100,000 people die each year as a result of epidemic diseases; vaccination has emerged as a successful strategy for combating cholera. This study uses bioinformatics tools to create a multi-epitope vaccine against cholera infection using five structural polyproteins from the V. cholerae (CTB, TCPA, TCPF, OMPU, and OMPW). The antigenic retrieved protein sequence were analyzed using BCPred and IEDB bioinformatics tools to predict B cell and T cell epitopes, respectively, which were then linked with flexible linkers together with an adjuvant to boost it immunogenicity. The construct has a theoretical PI of 6.09, a molecular weight of 53.85 kDa, and an estimated half-life for mammalian reticulocytes in vitro of 4.4 h. These results demonstrate the construct's longevity. The vaccine design was docked against the human toll-like receptor (TLR) to evaluate compatibility and effectiveness; also other additional post-vaccination assessments were carried out on the designed vaccine. Through in silico cloning, its expression was determined. The results show that it has a CAI value of 0.1 and GC contents of 58.97% which established the adequate expression and downstream processing of the vaccine construct, and our research demonstrated that the multi-epitope subunit vaccine exhibits antigenic characteristics. Additionally, we carried out an in silico immunological simulation to examine the immune reaction to an injection. Our results strongly suggest that the vaccine candidate on further validation would induce immune response against the V. cholerae infection.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"75 2","pages":"99-114"},"PeriodicalIF":3.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9716527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10268564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s00251-023-01297-6
Erick C Castelli, Gabriela Sato Paes, Isabelle Mira da Silva, Philippe Moreau, Eduardo A Donadi
The physiological expression of HLA-G is mainly observed in the placenta, playing an essential role in maternal-fetal tolerance. Among the HLA-G mRNA alternative transcripts, the one lacking 92 bases at the HLA-G 3' untranslated region (3'UTR), the 92bDel transcript, is more stable, is associated with increased HLA-G soluble levels, and was observed in individuals presenting a 14 bp insertion (14 bp+) at the 3'UTR. We investigated the presence of the 92bDel transcript in placenta samples, correlating its expression levels with the HLA-G polymorphisms at the 3'UTR. The 14 bp+ allele correlates with the presence of the 92bDel transcript. However, the polymorphism triggering this alternative splicing is the + 3010/C allele (rs1710, allele C). Most 14 bp+ haplotypes (UTR-2/-5/-7) present allele + 3010/C. However, 14 bp- haplotypes such as UTR-3 are also associated with + 3010/C, and the 92bDel transcript can be detected in homozygous samples for the 14 bp- allele carrying at least one copy of UTR-3. The UTR-3 haplotype is associated with alleles G*01:04 and the HLA-G lineage HG0104, which is a high-expressing lineage. The only HLA-G lineage that is not likely to produce this transcript is HG010101, associated with the + 3010/G allele. This functional difference may be advantageous, considering the high worldwide frequency of the HG010101 lineage. Therefore, HLA-G lineages are functionally distinct regarding the 92bDel transcript expression, and the 3010/C allele triggers the alternative splicing that produces this shorter and more stable transcript.
{"title":"The + 3010/C single nucleotide polymorphism (rs1710) at the HLA-G 3' untranslated region is associated with a short transcript exhibiting a deletion of 92 nucleotides.","authors":"Erick C Castelli, Gabriela Sato Paes, Isabelle Mira da Silva, Philippe Moreau, Eduardo A Donadi","doi":"10.1007/s00251-023-01297-6","DOIUrl":"https://doi.org/10.1007/s00251-023-01297-6","url":null,"abstract":"<p><p>The physiological expression of HLA-G is mainly observed in the placenta, playing an essential role in maternal-fetal tolerance. Among the HLA-G mRNA alternative transcripts, the one lacking 92 bases at the HLA-G 3' untranslated region (3'UTR), the 92bDel transcript, is more stable, is associated with increased HLA-G soluble levels, and was observed in individuals presenting a 14 bp insertion (14 bp<sup>+</sup>) at the 3'UTR. We investigated the presence of the 92bDel transcript in placenta samples, correlating its expression levels with the HLA-G polymorphisms at the 3'UTR. The 14 bp<sup>+</sup> allele correlates with the presence of the 92bDel transcript. However, the polymorphism triggering this alternative splicing is the + 3010/C allele (rs1710, allele C). Most 14 bp<sup>+</sup> haplotypes (UTR-2/-5/-7) present allele + 3010/C. However, 14 bp<sup>-</sup> haplotypes such as UTR-3 are also associated with + 3010/C, and the 92bDel transcript can be detected in homozygous samples for the 14 bp- allele carrying at least one copy of UTR-3. The UTR-3 haplotype is associated with alleles G*01:04 and the HLA-G lineage HG0104, which is a high-expressing lineage. The only HLA-G lineage that is not likely to produce this transcript is HG010101, associated with the + 3010/G allele. This functional difference may be advantageous, considering the high worldwide frequency of the HG010101 lineage. Therefore, HLA-G lineages are functionally distinct regarding the 92bDel transcript expression, and the 3010/C allele triggers the alternative splicing that produces this shorter and more stable transcript.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"75 2","pages":"155-160"},"PeriodicalIF":3.2,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9196769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}