Pub Date : 2024-11-01DOI: 10.1109/TIFS.2024.3488506
Edward Kwadwo Boahen;Rexford Nii Ayitey Sosu;Selasi Kwame Ocansey;Qinbao Xu;Changda Wang
Online Social Networks (OSNs) face escalating security threats that imperil user privacy. Conventional Deep Learning methods, relying predominantly on fixed learning rates, encounter limitations when capturing the nuanced intricacies of OSN traffic that arise from shifting user behaviors, diverse content types, and evolving interaction patterns because of social trending topics changes. To tackle these challenges, our paper delves into the diverse variations and transitions from a uniform approach, where a single method is employed for various types of data, to a multi-variation methodology. This methodology dynamically adapts to the special characteristics of each data type, resulting in more effective data representation while alleviating the limitations associated with fixed-rate calibration. Therefore, we devise the Adaptive Swarm Reinforcement Learning (ASRL) method that leverages adaptive learning to intricately analyze a wide range of user interactions, endowing our proposed method with the capacity to flexibly adjust to the constantly shifting OSN patterns. The experiments show that the proposed ASRL method achieves an accuracy of 98.59% in detecting a range of threat patterns, surpassing other prevalent methods by an average of 5% across the datasets from Facebook, Google+, and Twitter. Meanwhile, ASRL logs suspicious activities to identify the intruder for forensic analysis. The implementation of our proposed method is now publicly accessible at https://github.com/don2c/asrl_Project