首页 > 最新文献

IEEE Transactions on Information Forensics and Security最新文献

英文 中文
Sparse VMamba: Robust Spatio-Temporal Information Modeling for Event Camera Person Re-Identification 稀疏vamba:事件相机人物再识别的鲁棒时空信息建模
IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/TIFS.2026.3658994
Wenjiao Dong;Xi Yang;Nannan Wang
Event camera-based person re-identification (Re-ID) effectively addresses the challenges faced by traditional Re-ID systems, such as privacy leakage, low-light imaging degradation, and motion blur. However, traditional Convolutional Neural Networks (CNNs) struggle to model long-range spatio-temporal dependencies, while the Transformer architecture encounters fundamental conflicts with second-order computational complexity and the high temporal resolution of event streams. Additionally, sparse data leads to wasted computational resources and diluted effective data. In contrast, the Mamba architecture, with its long-term modeling capability and linear complexity, is better suited for event stream data. Therefore, we innovatively explore the potential of VMamba in event camera-based person Re-ID; however, directly using VMamba does not fully leverage the temporal asynchronicity and spatial sparsity inherent in event data. To address this, we design a novel Sparse VMamba framework to construct a more robust spatio-temporal information extraction mechanism. First, we develop a Spatio-Temporal Information Modeling (STIM) module that simultaneously employs CNNs and Gated Recurrent Units (GRUs) for modeling spatial and temporal information. Then, we enhance the robustness of sparse data feature extraction using two strategies: on one hand, we utilize Anti-Noise Contour Enhancement (ANCE) module to improve motion contour features and mitigate sensor pulse noise; on the other hand, we implement Direction-Aware Sparse Perception (DASP) module to encourage the model to extract robust person descriptors. Results on the Event-ReID-v1 and Event-ReID-v2 datasets validate the effectiveness of our approach.
基于事件摄像机的人物再识别(Re-ID)有效地解决了传统Re-ID系统所面临的挑战,如隐私泄露、弱光成像退化和运动模糊。然而,传统的卷积神经网络(cnn)难以模拟远程时空依赖关系,而Transformer架构遇到了与二阶计算复杂性和事件流的高时间分辨率的根本冲突。此外,稀疏数据会导致计算资源的浪费和有效数据的稀释。相反,具有长期建模能力和线性复杂性的Mamba体系结构更适合于事件流数据。因此,我们创新性地探索vamba在基于事件摄像头的人员Re-ID中的潜力;然而,直接使用vamba并不能充分利用事件数据中固有的时间异步性和空间稀疏性。为了解决这个问题,我们设计了一种新的稀疏vammba框架来构建一个更健壮的时空信息提取机制。首先,我们开发了一个时空信息建模(STIM)模块,该模块同时使用cnn和门控循环单元(gru)来建模时空信息。然后,我们采用两种策略来增强稀疏数据特征提取的鲁棒性:一方面,我们利用抗噪声轮廓增强(ANCE)模块来改善运动轮廓特征和减轻传感器脉冲噪声;另一方面,我们实现了方向感知稀疏感知(DASP)模块,以促进模型提取鲁棒的人物描述符。Event-ReID-v1和Event-ReID-v2数据集上的结果验证了我们方法的有效性。
{"title":"Sparse VMamba: Robust Spatio-Temporal Information Modeling for Event Camera Person Re-Identification","authors":"Wenjiao Dong;Xi Yang;Nannan Wang","doi":"10.1109/TIFS.2026.3658994","DOIUrl":"10.1109/TIFS.2026.3658994","url":null,"abstract":"Event camera-based person re-identification (Re-ID) effectively addresses the challenges faced by traditional Re-ID systems, such as privacy leakage, low-light imaging degradation, and motion blur. However, traditional Convolutional Neural Networks (CNNs) struggle to model long-range spatio-temporal dependencies, while the Transformer architecture encounters fundamental conflicts with second-order computational complexity and the high temporal resolution of event streams. Additionally, sparse data leads to wasted computational resources and diluted effective data. In contrast, the Mamba architecture, with its long-term modeling capability and linear complexity, is better suited for event stream data. Therefore, we innovatively explore the potential of VMamba in event camera-based person Re-ID; however, directly using VMamba does not fully leverage the temporal asynchronicity and spatial sparsity inherent in event data. To address this, we design a novel Sparse VMamba framework to construct a more robust spatio-temporal information extraction mechanism. First, we develop a Spatio-Temporal Information Modeling (STIM) module that simultaneously employs CNNs and Gated Recurrent Units (GRUs) for modeling spatial and temporal information. Then, we enhance the robustness of sparse data feature extraction using two strategies: on one hand, we utilize Anti-Noise Contour Enhancement (ANCE) module to improve motion contour features and mitigate sensor pulse noise; on the other hand, we implement Direction-Aware Sparse Perception (DASP) module to encourage the model to extract robust person descriptors. Results on the Event-ReID-v1 and Event-ReID-v2 datasets validate the effectiveness of our approach.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"21 ","pages":"1889-1901"},"PeriodicalIF":8.0,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Gradient Analysis to Norm Control: Rethinking Triplet Loss for Gait Recognition 从梯度分析到范数控制:重新思考步态识别中的三联体损失
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3658989
Guozhen Peng, Yunhong Wang, Zhuguanyu Wu, Shaoxiong Zhang, Yuwei Zhao, Ruiyi Zhan, Annan Li
{"title":"From Gradient Analysis to Norm Control: Rethinking Triplet Loss for Gait Recognition","authors":"Guozhen Peng, Yunhong Wang, Zhuguanyu Wu, Shaoxiong Zhang, Yuwei Zhao, Ruiyi Zhan, Annan Li","doi":"10.1109/tifs.2026.3658989","DOIUrl":"https://doi.org/10.1109/tifs.2026.3658989","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"272 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STELLAR: Similarity-based Satellite Federated Learning for Malicious Traffic Recognition 恒星:基于相似度的恶意流量识别卫星联合学习
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3659044
Yubo Li, Li Zhang, Kai Li, Haoru Su
{"title":"STELLAR: Similarity-based Satellite Federated Learning for Malicious Traffic Recognition","authors":"Yubo Li, Li Zhang, Kai Li, Haoru Su","doi":"10.1109/tifs.2026.3659044","DOIUrl":"https://doi.org/10.1109/tifs.2026.3659044","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"19 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DeSA: Decentralized Secure Aggregation for Federated Learning in Zero-Trust D2D Networks 零信任D2D网络中联邦学习的分散安全聚合
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3658996
Lingling Wang, Zhongkai Lu, Meng Li, Jingjing Wang, Keke Gai, Xiaofeng Chen
{"title":"DeSA: Decentralized Secure Aggregation for Federated Learning in Zero-Trust D2D Networks","authors":"Lingling Wang, Zhongkai Lu, Meng Li, Jingjing Wang, Keke Gai, Xiaofeng Chen","doi":"10.1109/tifs.2026.3658996","DOIUrl":"https://doi.org/10.1109/tifs.2026.3658996","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"117 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realhybrid: A Hybrid Blockchain Consensus with Node-Level Switching Realhybrid:一种带有节点级交换的混合区块链共识
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3659046
Hao Yang, Jing Chen, Junjie Shi, Meng Jia, Ruiying Du, Kun He
{"title":"Realhybrid: A Hybrid Blockchain Consensus with Node-Level Switching","authors":"Hao Yang, Jing Chen, Junjie Shi, Meng Jia, Ruiying Du, Kun He","doi":"10.1109/tifs.2026.3659046","DOIUrl":"https://doi.org/10.1109/tifs.2026.3659046","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"40 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time Updatable Policy-Based Chameleon Hash for Traceable and Accountable Redactable Blockchain 基于时间更新策略的变色龙哈希,用于可跟踪和可负责的可读区块链
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3655919
Ke Huang, Xiong Li, Fatemeh Rezaeibagha, Linghao Zhang, Xiaosong Zhang
{"title":"Time Updatable Policy-Based Chameleon Hash for Traceable and Accountable Redactable Blockchain","authors":"Ke Huang, Xiong Li, Fatemeh Rezaeibagha, Linghao Zhang, Xiaosong Zhang","doi":"10.1109/tifs.2026.3655919","DOIUrl":"https://doi.org/10.1109/tifs.2026.3655919","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"179 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Corruption-Invariant Components and Cross-Modal Correspondence for Unsupervised Visible-Infrared Person Re-Identification 无监督可见-红外人再识别的学习腐蚀不变分量和跨模态对应
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3658991
Long Chen, Rui Sun, Xuebin Wang, Guoxi Huang, Jingjing Wu, Wei Jia
{"title":"Learning Corruption-Invariant Components and Cross-Modal Correspondence for Unsupervised Visible-Infrared Person Re-Identification","authors":"Long Chen, Rui Sun, Xuebin Wang, Guoxi Huang, Jingjing Wu, Wei Jia","doi":"10.1109/tifs.2026.3658991","DOIUrl":"https://doi.org/10.1109/tifs.2026.3658991","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"117 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PyraMal: Byte-level Malware Detection and Classification via Pyramid Feature Map 金字塔:字节级恶意软件检测和分类通过金字塔特征图
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3658992
Wanhu Nie, Changsheng Zhu
{"title":"PyraMal: Byte-level Malware Detection and Classification via Pyramid Feature Map","authors":"Wanhu Nie, Changsheng Zhu","doi":"10.1109/tifs.2026.3658992","DOIUrl":"https://doi.org/10.1109/tifs.2026.3658992","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"117 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fixed-Length Dense Fingerprint Representation with Alignment and Robust Enhancement 基于对齐和鲁棒增强的定长密集指纹表示
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3658990
Zhiyu Pan, Xiongjun Guan, Yongjie Duan, Jianjiang Feng, Jie Zhou
{"title":"Fixed-Length Dense Fingerprint Representation with Alignment and Robust Enhancement","authors":"Zhiyu Pan, Xiongjun Guan, Yongjie Duan, Jianjiang Feng, Jie Zhou","doi":"10.1109/tifs.2026.3658990","DOIUrl":"https://doi.org/10.1109/tifs.2026.3658990","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"17 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wolf in Sheep’s Clothing: Unveiling a Stealthy Backdoor Attack in Subgraph Federated Learning 披着羊皮的狼:揭示子图联邦学习中的秘密后门攻击
IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/TIFS.2026.3659045
Hao Yu;Wenjing Yang;Chuan Ma;Lingyuan Meng;Liang Du;Tao Xiang;Xinwang Liu;Kunlun He
Subgraph Federated Learning (FL) has emerged as a promising paradigm for node classification tasks wherein subgraphs derived from a global graph are distributed across multiple devices to mitigate data leakage risks. Similar to other FL systems, subgraph FL faces significant security challenges, particularly from backdoor attacks, an area that remains extensively underexplored. Existing attacks typically follow a two-phase strategy to implant backdoors. However, in subgraph FL, such attacks often lead to Divergence Amplification, a phenomenon characterized by significant parameter discrepancies between normal and backdoored models, thereby compromising attack stealthiness. To tackle this challenge, we propose BEEF, a Backdoor attack with an End-to-End Framework designed for effectiveness, stealth, and durability. Unlike conventional methods, BEEF incorporates a dedicated trigger generator, which is jointly trained with a backdoored model. To increase its stealthiness, BEEF crafts adversarial perturbations as triggers that provoke misclassification while leaving the model’s parameters entirely untouched. Furthermore, by calibrating a subset of low-salience parameters associated with backdoor activation, BEEF ensures stable performance and sustained effectiveness across FL rounds. Comprehensive evaluations across eight datasets, four models, five state-of-the-art attacks, and six aggregation methods demonstrate BEEF’s effectiveness in deceiving GNNs while maintaining minimal impact on normal data performance. Additionally, we adapt BEEF to federated graph classification tasks, broadening its applicability and practicality.
子图联邦学习(FL)已经成为节点分类任务的一个很有前途的范例,其中从全局图派生的子图分布在多个设备上,以减轻数据泄漏风险。与其他FL系统类似,子图FL面临着重大的安全挑战,特别是来自后门攻击的挑战,这是一个尚未充分开发的领域。现有的攻击通常遵循两阶段策略来植入后门。然而,在子图FL中,这种攻击通常会导致发散放大,这种现象的特征是正常模型和后门模型之间的参数存在显著差异,从而影响攻击的隐身性。为了应对这一挑战,我们提出了BEEF,这是一种带有端到端框架的后门攻击,旨在提高有效性、隐蔽性和持久性。与传统方法不同的是,BEEF集成了一个专用的触发发生器,它与一个后门模型共同训练。为了增加其隐蔽性,BEEF将对抗性扰动作为触发因素,引发错误分类,同时保持模型参数完全不变。此外,通过校准与后门激活相关的低显著性参数子集,BEEF确保了整个FL回合的稳定性能和持续有效性。对8个数据集、4个模型、5种最先进的攻击和6种聚合方法的综合评估表明,BEEF在欺骗gnn方面是有效的,同时对正常数据性能的影响最小。此外,我们将BEEF应用于联邦图分类任务,扩大了它的适用性和实用性。
{"title":"A Wolf in Sheep’s Clothing: Unveiling a Stealthy Backdoor Attack in Subgraph Federated Learning","authors":"Hao Yu;Wenjing Yang;Chuan Ma;Lingyuan Meng;Liang Du;Tao Xiang;Xinwang Liu;Kunlun He","doi":"10.1109/TIFS.2026.3659045","DOIUrl":"10.1109/TIFS.2026.3659045","url":null,"abstract":"Subgraph Federated Learning (FL) has emerged as a promising paradigm for node classification tasks wherein subgraphs derived from a global graph are distributed across multiple devices to mitigate data leakage risks. Similar to other FL systems, subgraph FL faces significant security challenges, particularly from backdoor attacks, an area that remains extensively underexplored. Existing attacks typically follow a two-phase strategy to implant backdoors. However, in subgraph FL, such attacks often lead to Divergence Amplification, a phenomenon characterized by significant parameter discrepancies between normal and backdoored models, thereby compromising attack stealthiness. To tackle this challenge, we propose BEEF, a Backdoor attack with an End-to-End Framework designed for effectiveness, stealth, and durability. Unlike conventional methods, BEEF incorporates a dedicated trigger generator, which is jointly trained with a backdoored model. To increase its stealthiness, BEEF crafts adversarial perturbations as triggers that provoke misclassification while leaving the model’s parameters entirely untouched. Furthermore, by calibrating a subset of low-salience parameters associated with backdoor activation, BEEF ensures stable performance and sustained effectiveness across FL rounds. Comprehensive evaluations across eight datasets, four models, five state-of-the-art attacks, and six aggregation methods demonstrate BEEF’s effectiveness in deceiving GNNs while maintaining minimal impact on normal data performance. Additionally, we adapt BEEF to federated graph classification tasks, broadening its applicability and practicality.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"21 ","pages":"1842-1857"},"PeriodicalIF":8.0,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Information Forensics and Security
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1