首页 > 最新文献

IEEE Transactions on Information Forensics and Security最新文献

英文 中文
Time Updatable Policy-Based Chameleon Hash for Traceable and Accountable Redactable Blockchain 基于时间更新策略的变色龙哈希,用于可跟踪和可负责的可读区块链
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3655919
Ke Huang, Xiong Li, Fatemeh Rezaeibagha, Linghao Zhang, Xiaosong Zhang
{"title":"Time Updatable Policy-Based Chameleon Hash for Traceable and Accountable Redactable Blockchain","authors":"Ke Huang, Xiong Li, Fatemeh Rezaeibagha, Linghao Zhang, Xiaosong Zhang","doi":"10.1109/tifs.2026.3655919","DOIUrl":"https://doi.org/10.1109/tifs.2026.3655919","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"179 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Corruption-Invariant Components and Cross-Modal Correspondence for Unsupervised Visible-Infrared Person Re-Identification 无监督可见-红外人再识别的学习腐蚀不变分量和跨模态对应
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3658991
Long Chen, Rui Sun, Xuebin Wang, Guoxi Huang, Jingjing Wu, Wei Jia
{"title":"Learning Corruption-Invariant Components and Cross-Modal Correspondence for Unsupervised Visible-Infrared Person Re-Identification","authors":"Long Chen, Rui Sun, Xuebin Wang, Guoxi Huang, Jingjing Wu, Wei Jia","doi":"10.1109/tifs.2026.3658991","DOIUrl":"https://doi.org/10.1109/tifs.2026.3658991","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"117 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PyraMal: Byte-level Malware Detection and Classification via Pyramid Feature Map 金字塔:字节级恶意软件检测和分类通过金字塔特征图
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3658992
Wanhu Nie, Changsheng Zhu
{"title":"PyraMal: Byte-level Malware Detection and Classification via Pyramid Feature Map","authors":"Wanhu Nie, Changsheng Zhu","doi":"10.1109/tifs.2026.3658992","DOIUrl":"https://doi.org/10.1109/tifs.2026.3658992","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"117 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fixed-Length Dense Fingerprint Representation with Alignment and Robust Enhancement 基于对齐和鲁棒增强的定长密集指纹表示
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3658990
Zhiyu Pan, Xiongjun Guan, Yongjie Duan, Jianjiang Feng, Jie Zhou
{"title":"Fixed-Length Dense Fingerprint Representation with Alignment and Robust Enhancement","authors":"Zhiyu Pan, Xiongjun Guan, Yongjie Duan, Jianjiang Feng, Jie Zhou","doi":"10.1109/tifs.2026.3658990","DOIUrl":"https://doi.org/10.1109/tifs.2026.3658990","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"17 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wolf in Sheep’s Clothing: Unveiling a Stealthy Backdoor Attack in Subgraph Federated Learning 披着羊皮的狼:揭示子图联邦学习中的秘密后门攻击
IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/TIFS.2026.3659045
Hao Yu;Wenjing Yang;Chuan Ma;Lingyuan Meng;Liang Du;Tao Xiang;Xinwang Liu;Kunlun He
Subgraph Federated Learning (FL) has emerged as a promising paradigm for node classification tasks wherein subgraphs derived from a global graph are distributed across multiple devices to mitigate data leakage risks. Similar to other FL systems, subgraph FL faces significant security challenges, particularly from backdoor attacks, an area that remains extensively underexplored. Existing attacks typically follow a two-phase strategy to implant backdoors. However, in subgraph FL, such attacks often lead to Divergence Amplification, a phenomenon characterized by significant parameter discrepancies between normal and backdoored models, thereby compromising attack stealthiness. To tackle this challenge, we propose BEEF, a Backdoor attack with an End-to-End Framework designed for effectiveness, stealth, and durability. Unlike conventional methods, BEEF incorporates a dedicated trigger generator, which is jointly trained with a backdoored model. To increase its stealthiness, BEEF crafts adversarial perturbations as triggers that provoke misclassification while leaving the model’s parameters entirely untouched. Furthermore, by calibrating a subset of low-salience parameters associated with backdoor activation, BEEF ensures stable performance and sustained effectiveness across FL rounds. Comprehensive evaluations across eight datasets, four models, five state-of-the-art attacks, and six aggregation methods demonstrate BEEF’s effectiveness in deceiving GNNs while maintaining minimal impact on normal data performance. Additionally, we adapt BEEF to federated graph classification tasks, broadening its applicability and practicality.
子图联邦学习(FL)已经成为节点分类任务的一个很有前途的范例,其中从全局图派生的子图分布在多个设备上,以减轻数据泄漏风险。与其他FL系统类似,子图FL面临着重大的安全挑战,特别是来自后门攻击的挑战,这是一个尚未充分开发的领域。现有的攻击通常遵循两阶段策略来植入后门。然而,在子图FL中,这种攻击通常会导致发散放大,这种现象的特征是正常模型和后门模型之间的参数存在显著差异,从而影响攻击的隐身性。为了应对这一挑战,我们提出了BEEF,这是一种带有端到端框架的后门攻击,旨在提高有效性、隐蔽性和持久性。与传统方法不同的是,BEEF集成了一个专用的触发发生器,它与一个后门模型共同训练。为了增加其隐蔽性,BEEF将对抗性扰动作为触发因素,引发错误分类,同时保持模型参数完全不变。此外,通过校准与后门激活相关的低显著性参数子集,BEEF确保了整个FL回合的稳定性能和持续有效性。对8个数据集、4个模型、5种最先进的攻击和6种聚合方法的综合评估表明,BEEF在欺骗gnn方面是有效的,同时对正常数据性能的影响最小。此外,我们将BEEF应用于联邦图分类任务,扩大了它的适用性和实用性。
{"title":"A Wolf in Sheep’s Clothing: Unveiling a Stealthy Backdoor Attack in Subgraph Federated Learning","authors":"Hao Yu;Wenjing Yang;Chuan Ma;Lingyuan Meng;Liang Du;Tao Xiang;Xinwang Liu;Kunlun He","doi":"10.1109/TIFS.2026.3659045","DOIUrl":"10.1109/TIFS.2026.3659045","url":null,"abstract":"Subgraph Federated Learning (FL) has emerged as a promising paradigm for node classification tasks wherein subgraphs derived from a global graph are distributed across multiple devices to mitigate data leakage risks. Similar to other FL systems, subgraph FL faces significant security challenges, particularly from backdoor attacks, an area that remains extensively underexplored. Existing attacks typically follow a two-phase strategy to implant backdoors. However, in subgraph FL, such attacks often lead to Divergence Amplification, a phenomenon characterized by significant parameter discrepancies between normal and backdoored models, thereby compromising attack stealthiness. To tackle this challenge, we propose BEEF, a Backdoor attack with an End-to-End Framework designed for effectiveness, stealth, and durability. Unlike conventional methods, BEEF incorporates a dedicated trigger generator, which is jointly trained with a backdoored model. To increase its stealthiness, BEEF crafts adversarial perturbations as triggers that provoke misclassification while leaving the model’s parameters entirely untouched. Furthermore, by calibrating a subset of low-salience parameters associated with backdoor activation, BEEF ensures stable performance and sustained effectiveness across FL rounds. Comprehensive evaluations across eight datasets, four models, five state-of-the-art attacks, and six aggregation methods demonstrate BEEF’s effectiveness in deceiving GNNs while maintaining minimal impact on normal data performance. Additionally, we adapt BEEF to federated graph classification tasks, broadening its applicability and practicality.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"21 ","pages":"1842-1857"},"PeriodicalIF":8.0,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anchor-based Multimodal Verification: A Dynamic Query Framework for Fake News Forensics in Short Videos 基于主播的多模态验证:短视频假新闻取证的动态查询框架
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3658995
Pijian Li, Qingbao Huang, Feng Shuang, Yi Cai, Haonan Cheng, Qing Li
{"title":"Anchor-based Multimodal Verification: A Dynamic Query Framework for Fake News Forensics in Short Videos","authors":"Pijian Li, Qingbao Huang, Feng Shuang, Yi Cai, Haonan Cheng, Qing Li","doi":"10.1109/tifs.2026.3658995","DOIUrl":"https://doi.org/10.1109/tifs.2026.3658995","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"40 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SecCSI: Securing Wireless Environment with RIS against CSI-Forgery Attacks SecCSI:利用RIS保护无线环境免受csi伪造攻击
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-28 DOI: 10.1109/tifs.2026.3659002
Yicheng Liu, Zhao Li, Kang G. Shin, Zheng Yan, Jia Liu, Siwei Le
{"title":"SecCSI: Securing Wireless Environment with RIS against CSI-Forgery Attacks","authors":"Yicheng Liu, Zhao Li, Kang G. Shin, Zheng Yan, Jia Liu, Siwei Le","doi":"10.1109/tifs.2026.3659002","DOIUrl":"https://doi.org/10.1109/tifs.2026.3659002","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"17 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146070466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting Adversarial Transferability with Low-Cost Optimization via Maximin Expected Flatness 基于最大期望平坦度的低成本优化提高对抗可转移性
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-27 DOI: 10.1109/tifs.2026.3658188
Chunlin Qiu, Ang Li, Yiheng Duan, Shenyi Zhang, Yuanjie Zhang, Lingchen Zhao, Qian Wang
{"title":"Boosting Adversarial Transferability with Low-Cost Optimization via Maximin Expected Flatness","authors":"Chunlin Qiu, Ang Li, Yiheng Duan, Shenyi Zhang, Yuanjie Zhang, Lingchen Zhao, Qian Wang","doi":"10.1109/tifs.2026.3658188","DOIUrl":"https://doi.org/10.1109/tifs.2026.3658188","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"87 1","pages":"1-1"},"PeriodicalIF":6.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146056320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adversarial Diffusion Model: Generating High Quality and Undetectable Images from Scratch 对抗扩散模型:从头开始生成高质量和不可检测的图像
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-27 DOI: 10.1109/tifs.2026.3657841
Haoyue Wang, Sheng Li, Zhenxing Qian, Xinpeng Zhang
{"title":"Adversarial Diffusion Model: Generating High Quality and Undetectable Images from Scratch","authors":"Haoyue Wang, Sheng Li, Zhenxing Qian, Xinpeng Zhang","doi":"10.1109/tifs.2026.3657841","DOIUrl":"https://doi.org/10.1109/tifs.2026.3657841","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"1 1","pages":"1-1"},"PeriodicalIF":6.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146056322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Validation Of Information-Theoretic Physical Layer Security 信息论物理层安全的实验验证
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-27 DOI: 10.1109/tifs.2026.3657885
Johannes Voichtleitner, Moritz Wiese, Anna Frank, Holger Boche
{"title":"Experimental Validation Of Information-Theoretic Physical Layer Security","authors":"Johannes Voichtleitner, Moritz Wiese, Anna Frank, Holger Boche","doi":"10.1109/tifs.2026.3657885","DOIUrl":"https://doi.org/10.1109/tifs.2026.3657885","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"105 1","pages":"1-1"},"PeriodicalIF":6.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146056325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Information Forensics and Security
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1