首页 > 最新文献

IEEE Transactions on Information Forensics and Security最新文献

英文 中文
Hybrid Password Hardening Encryption 混合密码加固加密
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-31 DOI: 10.1109/tifs.2025.3650025
Zixuan Ding, Ding Wang
{"title":"Hybrid Password Hardening Encryption","authors":"Zixuan Ding, Ding Wang","doi":"10.1109/tifs.2025.3650025","DOIUrl":"https://doi.org/10.1109/tifs.2025.3650025","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"94 1","pages":"1-1"},"PeriodicalIF":6.8,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145893724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glint: Localization of Gray Violations in Untrusted and Unreliable SRv6 Networks Glint:不可信和不可靠SRv6网络中灰色违规的定位
IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-31 DOI: 10.1109/TIFS.2025.3649962
Kaiyang Zhao;Han Zhang;Yahui Li;Xingang Shi;Zhiliang Wang;Xia Yin;Jiankun Hu;Jianping Wu
In the Segment Routing over IPv6 (SRv6) network, a wide range of network events (e.g., attacks, intrusions, violations, malicious route announcements) may occur. Network management requires real-time monitoring of untrusted and unreliable environments (e.g., unsafe components and devices). Early localization of abnormal links causing violations in the SRv6 network helps minimize the compensation required for service unavailability. However, the overhead of the state-of-the-art methods does not scale efficiently to large-scale SRv6 networks and exhibit poor robustness to addressing various disturbances from unreliable networks. To cope with these challenges, we propose $textsf {Glint}$ , an in-band network telemetry framework to localize abnormal links in SRv6 networks. The key idea of $textsf {Glint}$ is sampling part of the information while the overall information is known. $textsf {Glint}$ provides probabilistic in-band collection to gather segment-level telemetry data, reducing overhead and improving efficiency. $textsf {Glint}$ also proposes distributed verification-based detection to enhance the trustworthiness of security assessments, further improving robustness against disturbances. In addition, we design selective telemetry that reduces telemetry reports while preserving security-relevant visibility. Our evaluations demonstrate that, compared to the state-of-the-art frameworks, $textsf {Glint}$ significantly reduces header bandwidth overhead by 75.6% and memory overhead by 48.7% while reducing false positives. We also implement $textsf {Glint}$ on the Intel Tofino switch, achieving over a 50% reduction in hardware resource consumption compared to existing methods.
在SRv6 (Segment Routing over IPv6)网络中,可能会发生各种各样的网络事件(如攻击、入侵、违规、恶意路由公告)。网络管理需要实时监控不可信和不可靠的环境(例如,不安全的组件和设备)。尽早定位SRv6网络中导致违规的异常链路,可以最大限度地减少业务不可用的补偿。然而,最先进的方法的开销不能有效地扩展到大规模的SRv6网络,并且在处理来自不可靠网络的各种干扰时表现出较差的鲁棒性。为了应对这些挑战,我们提出了$textsf {Glint}$,这是一个带内网络遥测框架,用于定位SRv6网络中的异常链路。$textsf {Glint}$的关键思想是在已知整体信息的情况下对部分信息进行采样。$textsf {Glint}$提供带内概率收集,以收集段级遥测数据,减少开销并提高效率。$textsf {Glint}$还提出了基于分布式验证的检测,以增强安全评估的可信度,进一步提高对干扰的鲁棒性。此外,我们设计了选择性遥测,减少遥测报告,同时保持与安全相关的可见性。我们的评估表明,与最先进的框架相比,$textsf {Glint}$显著降低了报头带宽开销75.6%和内存开销48.7%,同时减少了误报。我们还在Intel Tofino交换机上实现了$textsf {Glint}$,与现有方法相比,硬件资源消耗减少了50%以上。
{"title":"Glint: Localization of Gray Violations in Untrusted and Unreliable SRv6 Networks","authors":"Kaiyang Zhao;Han Zhang;Yahui Li;Xingang Shi;Zhiliang Wang;Xia Yin;Jiankun Hu;Jianping Wu","doi":"10.1109/TIFS.2025.3649962","DOIUrl":"10.1109/TIFS.2025.3649962","url":null,"abstract":"In the Segment Routing over IPv6 (SRv6) network, a wide range of network events (e.g., attacks, intrusions, violations, malicious route announcements) may occur. Network management requires real-time monitoring of untrusted and unreliable environments (e.g., unsafe components and devices). Early localization of abnormal links causing violations in the SRv6 network helps minimize the compensation required for service unavailability. However, the overhead of the state-of-the-art methods does not scale efficiently to large-scale SRv6 networks and exhibit poor robustness to addressing various disturbances from unreliable networks. To cope with these challenges, we propose <inline-formula> <tex-math>$textsf {Glint}$ </tex-math></inline-formula>, an in-band network telemetry framework to localize abnormal links in SRv6 networks. The key idea of <inline-formula> <tex-math>$textsf {Glint}$ </tex-math></inline-formula> is sampling part of the information while the overall information is known. <inline-formula> <tex-math>$textsf {Glint}$ </tex-math></inline-formula> provides probabilistic in-band collection to gather segment-level telemetry data, reducing overhead and improving efficiency. <inline-formula> <tex-math>$textsf {Glint}$ </tex-math></inline-formula> also proposes distributed verification-based detection to enhance the trustworthiness of security assessments, further improving robustness against disturbances. In addition, we design selective telemetry that reduces telemetry reports while preserving security-relevant visibility. Our evaluations demonstrate that, compared to the state-of-the-art frameworks, <inline-formula> <tex-math>$textsf {Glint}$ </tex-math></inline-formula> significantly reduces header bandwidth overhead by 75.6% and memory overhead by 48.7% while reducing false positives. We also implement <inline-formula> <tex-math>$textsf {Glint}$ </tex-math></inline-formula> on the Intel Tofino switch, achieving over a 50% reduction in hardware resource consumption compared to existing methods.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"21 ","pages":"812-826"},"PeriodicalIF":8.0,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145893726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semantic Entity Alignment and Non-Corresponding Reasoning for Text-to-Image Person Re-Identification 文本-图像人物再识别的语义实体对齐与非对应推理
IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-29 DOI: 10.1109/TIFS.2025.3649361
Wanru Peng;Houjin Chen;Yanfeng Li;Jia Sun;Luyifu Chen
With the rapid development of intelligent surveillance technology, the massive amount of multimodal data (e.g., videos, images, and text) has imposed higher demands on efficient information retrieval and security. Traditional single-modal retrieval methods struggle to meet practical requirements, making multimodal image-text retrieval a research hotspot in this field. Existing approaches, however, still face challenges in fine-grained semantic alignment and suffer from rigid matching mechanisms. To address these issues, this paper introduces SeaNcr, a novel framework that integrates cross-modal semantic entity alignment with non-correspondence reasoning. Our method constructs class-level entity representations enhanced by saliency-guided masking to capture discriminative semantic features. A pseudo-frozen asynchronous optimization strategy is introduced to maintain semantic consistency across modalities by associating stable entity representations with dynamically updated encoder features. Moreover, to overcome rigid matching, we design a non-correspondence reasoning module that jointly leverages intra-modal similarity and cross-modal mutual nearest neighbor constraints, optimizing matching flexibility and generalization. Extensive experiments validate that SeaNcr significantly enhances cross-modal feature representation and retrieval robustness, achieving state-of-the-art performance on multiple person re-identification benchmarks.
随着智能监控技术的快速发展,海量的多模态数据(如视频、图像、文字等)对信息的高效检索和安全性提出了更高的要求。传统的单模态检索方法难以满足实际需求,使得多模态图像-文本检索成为该领域的研究热点。然而,现有的方法在细粒度语义对齐方面仍然面临挑战,并且受到严格匹配机制的影响。为了解决这些问题,本文引入了SeaNcr,这是一个集成了跨模态语义实体对齐和非对应推理的新框架。我们的方法构建了类级实体表示,通过显著性引导掩蔽来增强,以捕获判别语义特征。引入了一种伪冻结异步优化策略,通过将稳定的实体表示与动态更新的编码器特征相关联来保持模态之间的语义一致性。此外,为了克服刚性匹配,我们设计了一个非对应推理模块,该模块联合利用模态内相似性和跨模态相互近邻约束,优化了匹配的灵活性和泛化性。大量实验验证了SeaNcr显著增强了跨模态特征表示和检索鲁棒性,在多人再识别基准上实现了最先进的性能。
{"title":"Semantic Entity Alignment and Non-Corresponding Reasoning for Text-to-Image Person Re-Identification","authors":"Wanru Peng;Houjin Chen;Yanfeng Li;Jia Sun;Luyifu Chen","doi":"10.1109/TIFS.2025.3649361","DOIUrl":"https://doi.org/10.1109/TIFS.2025.3649361","url":null,"abstract":"With the rapid development of intelligent surveillance technology, the massive amount of multimodal data (e.g., videos, images, and text) has imposed higher demands on efficient information retrieval and security. Traditional single-modal retrieval methods struggle to meet practical requirements, making multimodal image-text retrieval a research hotspot in this field. Existing approaches, however, still face challenges in fine-grained semantic alignment and suffer from rigid matching mechanisms. To address these issues, this paper introduces SeaNcr, a novel framework that integrates cross-modal semantic entity alignment with non-correspondence reasoning. Our method constructs class-level entity representations enhanced by saliency-guided masking to capture discriminative semantic features. A pseudo-frozen asynchronous optimization strategy is introduced to maintain semantic consistency across modalities by associating stable entity representations with dynamically updated encoder features. Moreover, to overcome rigid matching, we design a non-correspondence reasoning module that jointly leverages intra-modal similarity and cross-modal mutual nearest neighbor constraints, optimizing matching flexibility and generalization. Extensive experiments validate that SeaNcr significantly enhances cross-modal feature representation and retrieval robustness, achieving state-of-the-art performance on multiple person re-identification benchmarks.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"21 ","pages":"772-783"},"PeriodicalIF":8.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145929599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcing Adversarial Transferability via Negative Class Guided Example Generation 通过负类引导的例子生成强化对抗可转移性
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-26 DOI: 10.1109/tifs.2025.3648871
Hegui Zhu, Wenqi Cui, Yue Yan, Ning Han
{"title":"Reinforcing Adversarial Transferability via Negative Class Guided Example Generation","authors":"Hegui Zhu, Wenqi Cui, Yue Yan, Ning Han","doi":"10.1109/tifs.2025.3648871","DOIUrl":"https://doi.org/10.1109/tifs.2025.3648871","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"70 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145844727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network-Layer Differential Fuzzing for Ethereum 以太坊网络层差分模糊测试
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-26 DOI: 10.1109/tifs.2025.3648565
Fudong Wu, Qianhong Wu, Jia-Ju Bai, Bo Qin, Zhenyu Guan, Willy Susilo
{"title":"Network-Layer Differential Fuzzing for Ethereum","authors":"Fudong Wu, Qianhong Wu, Jia-Ju Bai, Bo Qin, Zhenyu Guan, Willy Susilo","doi":"10.1109/tifs.2025.3648565","DOIUrl":"https://doi.org/10.1109/tifs.2025.3648565","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"1 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145844731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Dataset Copyright Evasion Attack against Personalized Text-to-Image Diffusion Models 针对个性化文本到图像扩散模型的数据集版权规避攻击研究
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-26 DOI: 10.1109/tifs.2025.3648660
Kuofeng Gao, Yufei Zhu, Yiming Li, Jiawang Bai, Yong Yang, Zhifeng Li, Shu-Tao Xia
{"title":"Towards Dataset Copyright Evasion Attack against Personalized Text-to-Image Diffusion Models","authors":"Kuofeng Gao, Yufei Zhu, Yiming Li, Jiawang Bai, Yong Yang, Zhifeng Li, Shu-Tao Xia","doi":"10.1109/tifs.2025.3648660","DOIUrl":"https://doi.org/10.1109/tifs.2025.3648660","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"183 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145844728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection 恶意软件检测中对抗样本零阶优化的新公式
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-26 DOI: 10.1109/tifs.2025.3648867
Marco Rando, Luca Demetrio, Lorenzo Rosasco, Fabio Roli
{"title":"A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection","authors":"Marco Rando, Luca Demetrio, Lorenzo Rosasco, Fabio Roli","doi":"10.1109/tifs.2025.3648867","DOIUrl":"https://doi.org/10.1109/tifs.2025.3648867","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"29 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145844732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting Shared Adversarial Features for Dynamic Attacks in Large Vision-Language Models 利用共享对抗特征进行大型视觉语言模型中的动态攻击
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-26 DOI: 10.1109/tifs.2025.3648873
Yaguan Qian, Xucheng Zhu, Qiqi Bao, Fei Yu, Shouling Ji, Zhaoquan Gu, Wei Wang, Bin Wang, Zhen Lei
{"title":"Exploiting Shared Adversarial Features for Dynamic Attacks in Large Vision-Language Models","authors":"Yaguan Qian, Xucheng Zhu, Qiqi Bao, Fei Yu, Shouling Ji, Zhaoquan Gu, Wei Wang, Bin Wang, Zhen Lei","doi":"10.1109/tifs.2025.3648873","DOIUrl":"https://doi.org/10.1109/tifs.2025.3648873","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"4 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145844729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Subgraph-based Normality for Interpretable Graph-level Anomaly Detection 基于子图的正态性学习用于可解释图级异常检测
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-26 DOI: 10.1109/tifs.2025.3647221
Ge Zhang, Zhenyu Yang, Jia Wu, Pengfei Jiao, Jian Yang, Hao Peng, Xixun Lin
{"title":"Learning Subgraph-based Normality for Interpretable Graph-level Anomaly Detection","authors":"Ge Zhang, Zhenyu Yang, Jia Wu, Pengfei Jiao, Jian Yang, Hao Peng, Xixun Lin","doi":"10.1109/tifs.2025.3647221","DOIUrl":"https://doi.org/10.1109/tifs.2025.3647221","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"12 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145844730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SSAA: Secure Semi-Asynchronous Aggregation for Decentralized Federated Learning on Heterogeneous Devices SSAA:异构设备上分散联邦学习的安全半异步聚合
IF 6.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-25 DOI: 10.1109/tifs.2025.3648540
Ling Li, Cheng Guo, Xinyu Tang, Kim-Kwang Raymond Choo, Yining Liu
{"title":"SSAA: Secure Semi-Asynchronous Aggregation for Decentralized Federated Learning on Heterogeneous Devices","authors":"Ling Li, Cheng Guo, Xinyu Tang, Kim-Kwang Raymond Choo, Yining Liu","doi":"10.1109/tifs.2025.3648540","DOIUrl":"https://doi.org/10.1109/tifs.2025.3648540","url":null,"abstract":"","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"27 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145830165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Information Forensics and Security
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1