Pub Date : 2024-11-20DOI: 10.1109/TIT.2024.3503500
Adam Wills;Ting-Chun Lin;Min-Hsiu Hsieh
In this work, we continue the search for quantum locally testable codes (qLTCs) of new parameters by presenting three constructions that can make new qLTCs from old. The first analyses the soundness of a quantum code under Hastings’ weight reduction construction for qLDPC codes to give a weight reduction procedure for qLTCs. Secondly, we describe a novel ‘soundness amplification’ procedure for qLTCs which can increase the soundness of any qLTC to a constant while preserving its distance and dimension, with an impact only felt on its locality. Finally, we apply the AEL distance amplification construction to the case of qLTCs for the first time which can turn a high-distance qLTC into one with linear distance, at the expense of other parameters. These constructions can be used on as-yet undiscovered qLTCs to obtain new parameters, but we also find a number of present applications to prove the existence of codes in previously unknown parameter regimes. In particular, applications of these operations to the hypersphere product code and the hemicubic code yield many previously unknown parameters. In addition, applications of all three results are described to an upcoming work.
{"title":"Tradeoff Constructions for Quantum Locally Testable Codes","authors":"Adam Wills;Ting-Chun Lin;Min-Hsiu Hsieh","doi":"10.1109/TIT.2024.3503500","DOIUrl":"https://doi.org/10.1109/TIT.2024.3503500","url":null,"abstract":"In this work, we continue the search for quantum locally testable codes (qLTCs) of new parameters by presenting three constructions that can make new qLTCs from old. The first analyses the soundness of a quantum code under Hastings’ weight reduction construction for qLDPC codes to give a weight reduction procedure for qLTCs. Secondly, we describe a novel ‘soundness amplification’ procedure for qLTCs which can increase the soundness of any qLTC to a constant while preserving its distance and dimension, with an impact only felt on its locality. Finally, we apply the AEL distance amplification construction to the case of qLTCs for the first time which can turn a high-distance qLTC into one with linear distance, at the expense of other parameters. These constructions can be used on as-yet undiscovered qLTCs to obtain new parameters, but we also find a number of present applications to prove the existence of codes in previously unknown parameter regimes. In particular, applications of these operations to the hypersphere product code and the hemicubic code yield many previously unknown parameters. In addition, applications of all three results are described to an upcoming work.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 1","pages":"426-458"},"PeriodicalIF":2.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1109/TIT.2024.3500578
Joseph M. Renes
A fundamental quantity of interest in Shannon theory, classical or quantum, is the error exponent of a given channel W and rate R: the constant $E(W,R)$