Hye-Jin Han, Hagyeong Kim, Hyun Gyu Yu, Jong Uk Park, Joo Hee Bae, Ji Hwan Lee, Jong Kwang Hong, Jong Youn Baik
In the previous study, the culture medium was treated with nicotinamide adenine dinucleotide (NAD+) under the hypothesis that NAD+ regeneration is a major factor causing excessive lactate accumulation in Chinese hamster ovary (CHO) cells. The NAD+ treatment improved metabolism by not only reducing the Warburg effect but also enhancing oxidative phosphorylation, leading to enhanced antibody production. Building on this, four NAD+ precursors – nicotinamide mononucleotide (NMN), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide (NAM) – were tested to elevate intracellular NAD+ levels more economically. First, the ability of CHO cells to utilize both the salvage and Preiss-Handler pathways for NAD+ biosynthesis was verified, and then the effect of NAD+ precursors on CHO cell cultures was evaluated. These precursors increased intracellular NAD+ levels by up to 70.6% compared to the non-treated group. Culture analysis confirmed that all the precursors induced metabolic changes and that NMN, NA, and NR improved productivity akin to NAD+ treatment, with comparable integral viable cell density. Despite the positive effects such as the increase in the specific productivity and changes in cellular glucose metabolism, none of the precursors surpassed direct NAD+ treatment in antibody titer, presumably due to the reduction in nucleoside availability, as evidenced by the decrease in ATP levels in the NAD+ precursor-treated groups. These results underscore the complexity of cellular metabolism as well as the necessity for further investigation to optimize NAD+ precursor treatment strategies, potentially with the supplementation of nucleoside precursors. Our findings suggest a feasible approach for improving CHO cell culture performances by using NAD+ precursors as medium and feed components for the biopharmaceutical production.
之前的研究假设 NAD+ 的再生是导致中国仓鼠卵巢(CHO)细胞乳酸过度积累的主要因素,因此用烟酰胺腺嘌呤二核苷酸(NAD+)处理了培养基。NAD+ 处理不仅降低了沃伯格效应,还增强了氧化磷酸化,从而改善了新陈代谢,提高了抗体的产生。在此基础上,我们测试了四种 NAD+ 前体--烟酰胺单核苷酸(NMN)、烟酸(NA)、烟酰胺核苷酸(NR)和烟酰胺(NAM)--以更经济地提高细胞内 NAD+ 水平。首先,验证了 CHO 细胞利用挽救途径和 Preiss-Handler 途径进行 NAD+ 生物合成的能力,然后评估了 NAD+ 前体对 CHO 细胞培养的影响。与未处理组相比,这些前体使细胞内的 NAD+ 水平提高了 70.6%。培养分析证实,所有前体都诱导了新陈代谢的变化,NMN、NA 和 NR 与 NAD+ 处理类似,都提高了生产率,且具有可比的整体存活细胞密度。尽管前体具有提高特定生产率和改变细胞葡萄糖代谢等积极作用,但在抗体滴度方面没有一种前体超过直接 NAD+ 处理,这可能是由于核苷可用性的降低,NAD+ 前体处理组中 ATP 水平的降低就证明了这一点。这些结果凸显了细胞代谢的复杂性,以及进一步研究优化 NAD+ 前体治疗策略的必要性,有可能需要补充核苷前体。我们的研究结果表明,使用 NAD+ 前体作为生物制药生产的培养基和饲料成分,是提高 CHO 细胞培养性能的可行方法。
{"title":"Evaluation of NAD+ precursors for improved metabolism and productivity of antibody-producing CHO cell","authors":"Hye-Jin Han, Hagyeong Kim, Hyun Gyu Yu, Jong Uk Park, Joo Hee Bae, Ji Hwan Lee, Jong Kwang Hong, Jong Youn Baik","doi":"10.1002/biot.202400311","DOIUrl":"10.1002/biot.202400311","url":null,"abstract":"<p>In the previous study, the culture medium was treated with nicotinamide adenine dinucleotide (NAD<sup>+</sup>) under the hypothesis that NAD<sup>+</sup> regeneration is a major factor causing excessive lactate accumulation in Chinese hamster ovary (CHO) cells. The NAD<sup>+</sup> treatment improved metabolism by not only reducing the Warburg effect but also enhancing oxidative phosphorylation, leading to enhanced antibody production. Building on this, four NAD<sup>+</sup> precursors – nicotinamide mononucleotide (NMN), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide (NAM) – were tested to elevate intracellular NAD+ levels more economically. First, the ability of CHO cells to utilize both the salvage and Preiss-Handler pathways for NAD<sup>+</sup> biosynthesis was verified, and then the effect of NAD<sup>+</sup> precursors on CHO cell cultures was evaluated. These precursors increased intracellular NAD<sup>+</sup> levels by up to 70.6% compared to the non-treated group. Culture analysis confirmed that all the precursors induced metabolic changes and that NMN, NA, and NR improved productivity akin to NAD<sup>+</sup> treatment, with comparable integral viable cell density. Despite the positive effects such as the increase in the specific productivity and changes in cellular glucose metabolism, none of the precursors surpassed direct NAD<sup>+</sup> treatment in antibody titer, presumably due to the reduction in nucleoside availability, as evidenced by the decrease in ATP levels in the NAD<sup>+</sup> precursor-treated groups. These results underscore the complexity of cellular metabolism as well as the necessity for further investigation to optimize NAD<sup>+</sup> precursor treatment strategies, potentially with the supplementation of nucleoside precursors. Our findings suggest a feasible approach for improving CHO cell culture performances by using NAD<sup>+</sup> precursors as medium and feed components for the biopharmaceutical production.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400311","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant-derived β-glucosidases hold promise for glycoside biosynthesis via reverse hydrolysis because of their excellent glucose tolerance and robust stability. However, their poor heterologous expression hinders the development of large-scale production and applications. In this study, we overexpressed apple seed β-glucosidase (ASG II) in Komagataella phaffii and enhanced its production from 289 to 4322 U L−1 through expression cassette engineering and protein engineering. Upon scaling up to a 5-L high cell-density fermentation, the resultant mutant ASG IIV80A achieved a maximum protein concentration and activity in the secreted supernatant of 2.3 g L−1 and 41.4 kU L−1, respectively. The preparative biosynthesis of salidroside by ASG IIV80A exhibited a high space-time yield of 33.1 g L−1 d−1, which is so far the highest level by plant-derived β-glucosidase. Our work addresses the long-standing challenge of the heterologous expression of plant-derived β-glucosidase in microorganisms and presents new avenues for the efficient production of salidroside and other natural glycosides.
植物来源的 β-葡萄糖苷酶因其出色的葡萄糖耐受性和强大的稳定性,有望通过反向水解进行糖苷生物合成。然而,它们的异源表达能力较差,阻碍了大规模生产和应用的发展。在本研究中,我们在 Komagataella phaffii 中过表达了苹果种子β-葡萄糖苷酶(ASG II),并通过表达盒工程和蛋白质工程将其产量从 289 U L-1 提高到 4322 U L-1。在扩大到 5 升高细胞密度发酵时,产生的突变体 ASG IIV80A 在分泌上清液中达到的最大蛋白质浓度和活性分别为 2.3 g L-1 和 41.4 kU L-1。ASG IIV80A制备性生物合成水杨梅苷的时空产量高达33.1 g L-1 d-1,这是迄今为止植物源β-葡萄糖苷酶的最高水平。我们的工作解决了植物源β-葡萄糖苷酶在微生物中异源表达这一长期难题,为高效生产水杨梅苷和其他天然苷类提供了新途径。
{"title":"Facilitating secretory expression of apple seed β-glucosidase in Komagataella phaffii for the efficient preparation of salidroside","authors":"Xin-Yi Lu, Ming-Yuan Lai, Peng Qin, Yu-Cong Zheng, Jia-Yi Liao, Zhi-Jun Zhang, Jian-He Xu, Hui-Lei Yu","doi":"10.1002/biot.202400347","DOIUrl":"10.1002/biot.202400347","url":null,"abstract":"<p>Plant-derived β-glucosidases hold promise for glycoside biosynthesis via reverse hydrolysis because of their excellent glucose tolerance and robust stability. However, their poor heterologous expression hinders the development of large-scale production and applications. In this study, we overexpressed apple seed β-glucosidase (ASG II) in <i>Komagataella phaffii</i> and enhanced its production from 289 to 4322 U L<sup>−1</sup> through expression cassette engineering and protein engineering. Upon scaling up to a 5-L high cell-density fermentation, the resultant mutant ASG II<sub>V80A</sub> achieved a maximum protein concentration and activity in the secreted supernatant of 2.3 g L<sup>−1</sup> and 41.4 kU L<sup>−1</sup>, respectively. The preparative biosynthesis of salidroside by ASG II<sub>V80A</sub> exhibited a high space-time yield of 33.1 g L<sup>−1</sup> d<sup>−1</sup>, which is so far the highest level by plant-derived β-glucosidase. Our work addresses the long-standing challenge of the heterologous expression of plant-derived β-glucosidase in microorganisms and presents new avenues for the efficient production of salidroside and other natural glycosides.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}