首页 > 最新文献

Infection and Immunity最新文献

英文 中文
Echinococcus multilocularis serpin regulates macrophage polarization and reduces gut dysbiosis in colitis. 多棘球蚴血清素调节巨噬细胞极化并减轻结肠炎中的肠道菌群失调。
IF 2.9 3区 医学 Q3 IMMUNOLOGY Pub Date : 2024-08-13 Epub Date: 2024-07-22 DOI: 10.1128/iai.00232-24
Xiaolu Li, Yihui Liu, Yang Zou, Jiayun Zhang, Yugui Wang, Yingying Ding, Zhiqi Shi, Xiaola Guo, Shaohua Zhang, Hong Yin, Aijiang Guo, Shuai Wang

Helminths serve as principal regulators in modulating host immune responses, and their excretory-secretory proteins are recognized as potential therapeutic agents for inflammatory bowel disease. Nevertheless, our comprehension of the mechanisms underlying immunoregulation remains restricted. This investigation delves into the immunomodulatory role of a secretory protein serpin (Emu-serpin), within the larval stage of Echinococcus multilocularis. Our observations indicate that Emu-serpin effectively alleviates dextran sulfate sodium-induced colitis, yielding a substantial reduction in immunopathology and an augmentation of anti-inflammatory cytokines. Furthermore, this suppressive regulatory effect is concomitant with the reduction of gut microbiota dysbiosis linked to colitis, as evidenced by a marked impediment to the expansion of the pathobiont taxa Enterobacteriaceae. In vivo experiments demonstrate that Emu-serpin facilitates the expansion of M2 phenotype macrophages while concurrently diminishing M1 phenotype macrophages, alongside an elevation in anti-inflammatory cytokine levels. Subsequent in vitro investigations involving RAW264.7 and bone marrow macrophages reveal that Emu-serpin induces a conversion of M2 macrophage populations from a pro-inflammatory to an anti-inflammatory phenotype through direct inhibition. Adoptive transfer experiments reveal the peritoneal macrophages induced by Emu-serpin alleviate colitis and gut microbiota dysbiosis. In summary, these findings propose that Emu-serpin holds the potential to regulate macrophage polarization and maintain gut microbiota homeostasis in colitis, establishing it as a promising candidate for developing helminth therapy for preventing inflammatory diseases.

蠕虫是调节宿主免疫反应的主要调节剂,其排泄分泌蛋白被认为是治疗炎症性肠病的潜在药物。然而,我们对免疫调节机制的了解仍然有限。这项研究深入探讨了分泌蛋白丝蛋白(Emu-serpin)在多棘球蚴幼虫阶段的免疫调节作用。我们的观察结果表明,Emu-serpin 能有效缓解葡聚糖硫酸钠诱导的结肠炎,大幅减少免疫病理反应,增加抗炎细胞因子。此外,这种抑制性调节作用还能同时减轻与结肠炎有关的肠道微生物群失调,病原菌类群肠杆菌科的扩张受到明显阻碍就是证明。体内实验表明,Emu-serpin 可促进 M2 表型巨噬细胞的扩张,同时减少 M1 表型巨噬细胞,并提高抗炎细胞因子的水平。随后进行的涉及 RAW264.7 和骨髓巨噬细胞的体外研究表明,Emu-serpin 通过直接抑制作用诱导 M2 巨噬细胞群从促炎表型转变为抗炎表型。采纳转移实验显示,Emu-serpin诱导的腹腔巨噬细胞可缓解结肠炎和肠道微生物群失调。总之,这些研究结果表明,Emu-serpin 具有调节巨噬细胞极化和维持结肠炎中肠道微生物群平衡的潜力,使其成为开发螺旋体疗法以预防炎症性疾病的有希望的候选物质。
{"title":"<i>Echinococcus multilocularis</i> serpin regulates macrophage polarization and reduces gut dysbiosis in colitis.","authors":"Xiaolu Li, Yihui Liu, Yang Zou, Jiayun Zhang, Yugui Wang, Yingying Ding, Zhiqi Shi, Xiaola Guo, Shaohua Zhang, Hong Yin, Aijiang Guo, Shuai Wang","doi":"10.1128/iai.00232-24","DOIUrl":"10.1128/iai.00232-24","url":null,"abstract":"<p><p>Helminths serve as principal regulators in modulating host immune responses, and their excretory-secretory proteins are recognized as potential therapeutic agents for inflammatory bowel disease. Nevertheless, our comprehension of the mechanisms underlying immunoregulation remains restricted. This investigation delves into the immunomodulatory role of a secretory protein serpin (<i>Emu</i>-serpin), within the larval stage of <i>Echinococcus multilocularis</i>. Our observations indicate that <i>Emu</i>-serpin effectively alleviates dextran sulfate sodium-induced colitis, yielding a substantial reduction in immunopathology and an augmentation of anti-inflammatory cytokines. Furthermore, this suppressive regulatory effect is concomitant with the reduction of gut microbiota dysbiosis linked to colitis, as evidenced by a marked impediment to the expansion of the pathobiont taxa Enterobacteriaceae. <i>In vivo</i> experiments demonstrate that <i>Emu</i>-serpin facilitates the expansion of M2 phenotype macrophages while concurrently diminishing M1 phenotype macrophages, alongside an elevation in anti-inflammatory cytokine levels. Subsequent <i>in vitro</i> investigations involving RAW264.7 and bone marrow macrophages reveal that <i>Emu</i>-serpin induces a conversion of M2 macrophage populations from a pro-inflammatory to an anti-inflammatory phenotype through direct inhibition. Adoptive transfer experiments reveal the peritoneal macrophages induced by <i>Emu</i>-serpin alleviate colitis and gut microbiota dysbiosis. In summary, these findings propose that <i>Emu</i>-serpin holds the potential to regulate macrophage polarization and maintain gut microbiota homeostasis in colitis, establishing it as a promising candidate for developing helminth therapy for preventing inflammatory diseases.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
α-Hemolysin-mediated endothelial injury contributes to the development of Staphylococcus aureus-induced dermonecrosis. α-溶血素介导的内皮损伤是金黄色葡萄球菌诱导的硬皮病发展的原因之一。
IF 2.9 3区 医学 Q3 IMMUNOLOGY Pub Date : 2024-08-13 Epub Date: 2024-07-02 DOI: 10.1128/iai.00133-24
Ching Yang, Frank H Robledo-Avila, Santiago Partida-Sanchez, Christopher P Montgomery

Staphylococcus aureus α-hemolysin (Hla) is a pore-forming toxin critical for the pathogenesis of skin and soft tissue infections, which causes the pathognomonic lesion of cutaneous necrosis (dermonecrosis) in mouse models. To determine the mechanism by which dermonecrosis develops during S. aureus skin infection, mice were given control serum, Hla-neutralizing antiserum, or an inhibitor of Hla receptor [A-disintegrin and metalloprotease 10 (ADAM10) inhibitor] followed by subcutaneous infection by S. aureus, and the lesions were evaluated using immunohistochemistry and immunofluorescence. Hla induced apoptosis in the vascular endothelium at 6 hours post-infection (hpi), followed by apoptosis in keratinocytes at 24 hpi. The loss of vascular endothelial (VE)-cadherin expression preceded the loss of epithelial-cadherin expression. Hla also induced hypoxia in the keratinocytes at 24 hpi following vascular injury. Treatment with Hla-neutralizing antibody or ADAM10 inhibitor attenuated early cleavage of VE-cadherin, cutaneous hypoxia, and dermonecrosis. These findings suggest that Hla-mediated vascular injury with cutaneous hypoxia underlies the pathogenesis of S. aureus-induced dermonecrosis.

金黄色葡萄球菌α溶血素(Hla)是一种孔隙形成毒素,对皮肤和软组织感染的发病机制至关重要,在小鼠模型中会导致皮肤坏死(坏死组织)的病理标志性病变。为了确定金黄色葡萄球菌皮肤感染时发生坏死的机制,给小鼠注射对照血清、Hla中和抗血清或Hla受体抑制剂[A-二整合素和金属蛋白酶10(ADAM10)抑制剂],然后用金黄色葡萄球菌进行皮下感染,并用免疫组化和免疫荧光对病变进行评估。Hla 在感染后 6 小时诱导血管内皮细胞凋亡,随后在感染后 24 小时诱导角质形成细胞凋亡。血管内皮(VE)-cadherin表达的丧失先于上皮-cadherin表达的丧失。在血管损伤后24小时,Hla还诱导角质形成细胞缺氧。用Hla中和抗体或ADAM10抑制剂治疗可减轻VE-cadherin的早期裂解、皮肤缺氧和坏死。这些研究结果表明,Hla介导的血管损伤和皮肤缺氧是金黄色葡萄球菌诱导的硬皮病的发病机制。
{"title":"α-Hemolysin-mediated endothelial injury contributes to the development of <i>Staphylococcus aureus</i>-induced dermonecrosis.","authors":"Ching Yang, Frank H Robledo-Avila, Santiago Partida-Sanchez, Christopher P Montgomery","doi":"10.1128/iai.00133-24","DOIUrl":"10.1128/iai.00133-24","url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> α-hemolysin (Hla) is a pore-forming toxin critical for the pathogenesis of skin and soft tissue infections, which causes the pathognomonic lesion of cutaneous necrosis (dermonecrosis) in mouse models. To determine the mechanism by which dermonecrosis develops during <i>S. aureus</i> skin infection, mice were given control serum, Hla-neutralizing antiserum, or an inhibitor of Hla receptor [A-disintegrin and metalloprotease 10 (ADAM10) inhibitor] followed by subcutaneous infection by <i>S. aureus,</i> and the lesions were evaluated using immunohistochemistry and immunofluorescence. Hla induced apoptosis in the vascular endothelium at 6 hours post-infection (hpi), followed by apoptosis in keratinocytes at 24 hpi. The loss of vascular endothelial (VE)-cadherin expression preceded the loss of epithelial-cadherin expression. Hla also induced hypoxia in the keratinocytes at 24 hpi following vascular injury. Treatment with Hla-neutralizing antibody or ADAM10 inhibitor attenuated early cleavage of VE-cadherin, cutaneous hypoxia, and dermonecrosis. These findings suggest that Hla-mediated vascular injury with cutaneous hypoxia underlies the pathogenesis of <i>S. aureus</i>-induced dermonecrosis.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virus-like particles displaying the mature C-terminal domain of filamentous hemagglutinin are immunogenic and protective against Bordetella pertussis respiratory infection in mice. 显示丝状血凝素成熟 C 端结构域的病毒样颗粒对小鼠百日咳博德特氏菌呼吸道感染具有免疫原性和保护作用。
IF 2.9 3区 医学 Q3 IMMUNOLOGY Pub Date : 2024-08-13 Epub Date: 2024-07-18 DOI: 10.1128/iai.00270-24
Gage M Pyles, Annalisa B Huckaby, Maria de la Paz Gutierrez, William T Witt, Margalida Mateu-Borrás, Spencer R Dublin, Carleena Rocuskie-Marker, Bethany N Sesti, Kerrington Peasak, Graham J Bitzer, Nathaniel Rader, Kelly L Weaver, Dylan T Boehm, Nicholas Fitzgerald, Joshua Chapman, Samuel Ulicny, F Heath Damron, Mariette Barbier

Bordetella pertussis, the bacterium responsible for whooping cough, remains a significant public health challenge despite the existing licensed pertussis vaccines. Current acellular pertussis vaccines, though having favorable reactogenicity and efficacy profiles, involve complex and costly production processes. In addition, acellular vaccines have functional challenges such as short-lasting duration of immunity and limited antigen coverage. Filamentous hemagglutinin (FHA) is an adhesin of B. pertussis that is included in all multivalent pertussis vaccine formulations. Antibodies to FHA have been shown to prevent bacterial attachment to respiratory epithelial cells, and T cell responses to FHA facilitate cell-mediated immunity. In this study, FHA's mature C-terminal domain (MCD) was evaluated as a novel vaccine antigen. MCD was conjugated to virus-like particles via SpyTag-SpyCatcher technology. Prime-boost vaccine studies were performed in mice to characterize immunogenicity and protection against the intranasal B. pertussis challenge. MCD-SpyVLP was more immunogenic than SpyTag-MCD antigen alone, and in Tohama I strain challenge studies, improved protection against challenge was observed in the lungs at day 3 and in the trachea and nasal wash at day 7 post-challenge. Furthermore, a B. pertussis strain encoding genetically inactivated pertussis toxin was used to evaluate MCD-SpyVLP vaccine immunity. Mice vaccinated with MCD-SpyVLP had significantly lower respiratory bacterial burden at both days 3 and 7 post-challenge compared to mock-vaccinated animals. Overall, these data support the use of SpyTag-SpyCatcher VLPs as a platform for use in vaccine development against B. pertussis and other pathogens.

百日咳是由百日咳杆菌引起的,尽管现有的百日咳疫苗已获得许可,但百日咳仍然是一项重大的公共卫生挑战。目前的无细胞百日咳疫苗虽然具有良好的反应性和有效性,但生产过程复杂且成本高昂。此外,无细胞疫苗还存在免疫持续时间短、抗原覆盖范围有限等功能性难题。丝状血凝素(FHA)是百日咳杆菌的一种黏附素,所有多价百日咳疫苗配方中都含有这种黏附素。研究表明,FHA 抗体可阻止细菌附着在呼吸道上皮细胞上,而 FHA 的 T 细胞反应可促进细胞介导免疫。本研究将 FHA 的成熟 C 端结构域 (MCD) 作为新型疫苗抗原进行了评估。MCD 通过 SpyTag-SpyCatcher 技术与病毒样颗粒共轭。在小鼠体内进行了原代强化疫苗研究,以确定免疫原性和对鼻内百日咳挑战的保护作用。MCD-SpyVLP的免疫原性比单独使用SpyTag-MCD抗原更强,而且在Tohama I株挑战研究中,在挑战后第3天的肺部以及第7天的气管和鼻腔冲洗中都观察到了更好的保护作用。此外,还使用编码基因灭活百日咳毒素的百日咳菌株来评估 MCD-SpyVLP 疫苗的免疫力。与模拟接种的动物相比,接种了 MCD-SpyVLP 疫苗的小鼠在挑战后第 3 天和第 7 天的呼吸道细菌负荷都明显较低。总之,这些数据支持使用 SpyTag-SpyCatcher VLP 作为百日咳杆菌和其他病原体疫苗开发的平台。
{"title":"Virus-like particles displaying the mature C-terminal domain of filamentous hemagglutinin are immunogenic and protective against <i>Bordetella pertussis</i> respiratory infection in mice.","authors":"Gage M Pyles, Annalisa B Huckaby, Maria de la Paz Gutierrez, William T Witt, Margalida Mateu-Borrás, Spencer R Dublin, Carleena Rocuskie-Marker, Bethany N Sesti, Kerrington Peasak, Graham J Bitzer, Nathaniel Rader, Kelly L Weaver, Dylan T Boehm, Nicholas Fitzgerald, Joshua Chapman, Samuel Ulicny, F Heath Damron, Mariette Barbier","doi":"10.1128/iai.00270-24","DOIUrl":"10.1128/iai.00270-24","url":null,"abstract":"<p><p><i>Bordetella pertussis,</i> the bacterium responsible for whooping cough, remains a significant public health challenge despite the existing licensed pertussis vaccines. Current acellular pertussis vaccines, though having favorable reactogenicity and efficacy profiles, involve complex and costly production processes. In addition, acellular vaccines have functional challenges such as short-lasting duration of immunity and limited antigen coverage. Filamentous hemagglutinin (FHA) is an adhesin of <i>B. pertussis</i> that is included in all multivalent pertussis vaccine formulations. Antibodies to FHA have been shown to prevent bacterial attachment to respiratory epithelial cells, and T cell responses to FHA facilitate cell-mediated immunity. In this study, FHA's mature C-terminal domain (MCD) was evaluated as a novel vaccine antigen. MCD was conjugated to virus-like particles via SpyTag-SpyCatcher technology. Prime-boost vaccine studies were performed in mice to characterize immunogenicity and protection against the intranasal <i>B. pertussis</i> challenge. MCD-SpyVLP was more immunogenic than SpyTag-MCD antigen alone, and in Tohama I strain challenge studies, improved protection against challenge was observed in the lungs at day 3 and in the trachea and nasal wash at day 7 post-challenge. Furthermore, a <i>B. pertussis</i> strain encoding genetically inactivated pertussis toxin was used to evaluate MCD-SpyVLP vaccine immunity. Mice vaccinated with MCD-SpyVLP had significantly lower respiratory bacterial burden at both days 3 and 7 post-challenge compared to mock-vaccinated animals. Overall, these data support the use of SpyTag-SpyCatcher VLPs as a platform for use in vaccine development against <i>B. pertussis</i> and other pathogens.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ER-transiting bacterial toxins amplify STING innate immune responses and elicit ER stress. ER转运细菌毒素会放大STING先天性免疫反应并引发ER应激。
IF 2.9 3区 医学 Q3 IMMUNOLOGY Pub Date : 2024-08-13 Epub Date: 2024-07-26 DOI: 10.1128/iai.00300-24
Catherine Schlenker, Katharina Richard, Sofia Skobelkina, R Paige Mathena, Darren J Perkins

The cGAS/STING sensor system drives innate immune responses to intracellular microbial double-stranded DNA (dsDNA) and bacterial cyclic nucleotide second messengers (e.g., c-di-AMP). STING-dependent cell-intrinsic responses can increase resistance to microbial infection and speed pathogen clearance. Correspondingly, STING activation and signaling are known to be targeted for suppression by effectors from several bacterial pathogens. Whether STING responses are also positively regulated through sensing of specific bacterial effectors is less clear. We find that STING activation through dsDNA, by its canonical ligand 2'-3' cGAMP, or the small molecule DMXAA is potentiated following intracellular delivery of the AB5 toxin family member pertussis toxin from Bordetella pertussis or the B subunit of cholera toxin from Vibrio cholerae. Entry of pertussis toxin or cholera toxin B into mouse macrophages triggers markers of endoplasmic reticulum (ER) stress and enhances ligand-dependent STING responses at the level of STING receptor activation in a manner that is independent of toxin enzymatic activity. Our results provide an example in which STING responses integrate information about the presence of relevant ER-transiting bacterial toxins into the innate inflammatory response and may help to explain the in vivo adjuvant effects of catalytically inactive toxins.

cGAS/STING 传感系统驱动细胞内微生物双链 DNA(dsDNA)和细菌环核苷酸第二信使(如 c-di-AMP)的先天免疫反应。STING 依赖性细胞内在反应可增强对微生物感染的抵抗力,加快病原体的清除。相应地,已知 STING 的激活和信号传导会被几种细菌病原体的效应物抑制。至于 STING 反应是否也会通过感知特定细菌效应物而受到正向调控,目前还不太清楚。我们发现,在细胞内输送百日咳杆菌的 AB5 毒素家族成员百日咳毒素或霍乱弧菌的霍乱毒素 B 亚基后,STING 通过 dsDNA、其规范配体 2'-3' cGAMP 或小分子 DMXAA 被激活。百日咳毒素或霍乱毒素 B 进入小鼠巨噬细胞会触发内质网(ER)应激标记,并在 STING 受体活化水平上增强配体依赖性 STING 反应,而这种方式与毒素酶活性无关。我们的研究结果提供了一个实例,说明 STING 反应将有关 ER 转运细菌毒素存在的信息整合到先天性炎症反应中,并可能有助于解释催化活性毒素的体内佐剂效应。
{"title":"ER-transiting bacterial toxins amplify STING innate immune responses and elicit ER stress.","authors":"Catherine Schlenker, Katharina Richard, Sofia Skobelkina, R Paige Mathena, Darren J Perkins","doi":"10.1128/iai.00300-24","DOIUrl":"10.1128/iai.00300-24","url":null,"abstract":"<p><p>The cGAS/STING sensor system drives innate immune responses to intracellular microbial double-stranded DNA (dsDNA) and bacterial cyclic nucleotide second messengers (e.g., c-di-AMP). STING-dependent cell-intrinsic responses can increase resistance to microbial infection and speed pathogen clearance. Correspondingly, STING activation and signaling are known to be targeted for suppression by effectors from several bacterial pathogens. Whether STING responses are also positively regulated through sensing of specific bacterial effectors is less clear. We find that STING activation through dsDNA, by its canonical ligand 2'-3' cGAMP, or the small molecule DMXAA is potentiated following intracellular delivery of the AB<sub>5</sub> toxin family member pertussis toxin from <i>Bordetella pertussis</i> or the B subunit of cholera toxin from <i>Vibrio cholerae</i>. Entry of pertussis toxin or cholera toxin B into mouse macrophages triggers markers of endoplasmic reticulum (ER) stress and enhances ligand-dependent STING responses at the level of STING receptor activation in a manner that is independent of toxin enzymatic activity. Our results provide an example in which STING responses integrate information about the presence of relevant ER-transiting bacterial toxins into the innate inflammatory response and may help to explain the <i>in vivo</i> adjuvant effects of catalytically inactive toxins.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycoplasma hyopneumoniae inhibits the unfolded protein response to prevent host macrophage apoptosis and M2 polarization. 肺炎支原体抑制未折叠蛋白反应,防止宿主巨噬细胞凋亡和 M2 极化。
IF 2.9 3区 医学 Q3 IMMUNOLOGY Pub Date : 2024-08-12 DOI: 10.1128/iai.00051-24
Tong Liu, Yujuan Zhang, Huanjun Zhao, Qi Wu, Jiuqing Xin, Qiao Pan

Enzootic pneumonia caused by Mycoplasma hyopneumoniae (M. hyopneumoniae) has inflicted substantial economic losses on the global pig industry. The progression of M. hyopneumoniae induced-pneumonia is associated with lung immune cell infiltration and extensive proinflammatory cytokine secretion. Our previous study established that M. hyopneumoniae disrupts the host unfolded protein response (UPR), a process vital for the survival and immune function of macrophages. In this study, we demonstrated that M. hyopneumoniae targets the UPR- and caspase-12-mediated endoplasmic reticulum (ER)-associated classical intrinsic apoptotic pathway to interfere with host cell apoptosis signaling, thereby preserving the survival of host tracheal epithelial cells (PTECs) and alveolar macrophages (PAMs) during the early stages of infection. Even in the presence of apoptosis inducers, host cells infected with M. hyopneumoniae exhibited an anti-apoptotic potential. Further analyses revealed that M. hyopneumoniae suppresses the three UPR branches and their induced apoptosis. Interestingly, while UPR activation typically drives host macrophages toward an M2 polarization phenotype, M. hyopneumoniae specifically obstructs this process to maintain a proinflammatory phenotype in the host macrophages. Overall, our findings propose that M. hyopneumoniae inhibits the host UPR to sustain macrophage survival and a proinflammatory phenotype, which may be implicated in its pathogenesis in inducing host pneumonia.

肺炎支原体(M. hyopneumoniae)引起的流行性肺炎给全球养猪业造成了巨大的经济损失。肺炎支原体诱发肺炎的进展与肺部免疫细胞浸润和大量促炎细胞因子分泌有关。我们之前的研究证实,肺炎霉菌会破坏宿主的未折叠蛋白反应(UPR),而这一过程对巨噬细胞的存活和免疫功能至关重要。在这项研究中,我们证明了肺炎霉菌以 UPR 和 caspase-12 介导的内质网(ER)相关经典内在凋亡途径为目标,干扰宿主细胞的凋亡信号,从而在感染的早期阶段保护宿主气管上皮细胞(PTECs)和肺泡巨噬细胞(PAMs)的存活。即使存在凋亡诱导剂,感染了肺炎双球菌的宿主细胞也表现出抗凋亡潜能。进一步的分析表明,肺炎霉菌抑制了三个 UPR 分支及其诱导的细胞凋亡。有趣的是,UPR 激活通常会促使宿主巨噬细胞向 M2 极化表型发展,而肺炎霉菌则会特异性地阻碍这一过程,从而维持宿主巨噬细胞的促炎表型。总之,我们的研究结果表明,肺炎霉菌抑制宿主的 UPR 以维持巨噬细胞的存活和促炎表型,这可能与其诱发宿主肺炎的发病机制有关。
{"title":"<i>Mycoplasma hyopneumoniae</i> inhibits the unfolded protein response to prevent host macrophage apoptosis and M2 polarization.","authors":"Tong Liu, Yujuan Zhang, Huanjun Zhao, Qi Wu, Jiuqing Xin, Qiao Pan","doi":"10.1128/iai.00051-24","DOIUrl":"https://doi.org/10.1128/iai.00051-24","url":null,"abstract":"<p><p>Enzootic pneumonia caused by <i>Mycoplasma hyopneumoniae</i> (<i>M. hyopneumoniae</i>) has inflicted substantial economic losses on the global pig industry. The progression of <i>M. hyopneumoniae</i> induced-pneumonia is associated with lung immune cell infiltration and extensive proinflammatory cytokine secretion. Our previous study established that <i>M. hyopneumoniae</i> disrupts the host unfolded protein response (UPR), a process vital for the survival and immune function of macrophages. In this study, we demonstrated that <i>M. hyopneumoniae</i> targets the UPR- and caspase-12-mediated endoplasmic reticulum (ER)-associated classical intrinsic apoptotic pathway to interfere with host cell apoptosis signaling, thereby preserving the survival of host tracheal epithelial cells (PTECs) and alveolar macrophages (PAMs) during the early stages of infection. Even in the presence of apoptosis inducers, host cells infected with <i>M. hyopneumoniae</i> exhibited an anti-apoptotic potential. Further analyses revealed that <i>M. hyopneumoniae</i> suppresses the three UPR branches and their induced apoptosis. Interestingly, while UPR activation typically drives host macrophages toward an M2 polarization phenotype, <i>M. hyopneumoniae</i> specifically obstructs this process to maintain a proinflammatory phenotype in the host macrophages. Overall, our findings propose that <i>M. hyopneumoniae</i> inhibits the host UPR to sustain macrophage survival and a proinflammatory phenotype, which may be implicated in its pathogenesis in inducing host pneumonia.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of butyrate on group B Streptococcus-induced intestinal barrier disruption. 丁酸盐对 B 群链球菌引起的肠屏障破坏的影响
IF 2.9 3区 医学 Q3 IMMUNOLOGY Pub Date : 2024-08-12 DOI: 10.1128/iai.00200-24
Kristen Dominguez, Alexia N Pearah, April K Lindon, Leigh-Anne M Worthington, Rico R Carter, Nichol John-Lewis Edwards, Thao T B Ho, Sophie E Darch, Tara M Randis

Group B Streptococcus (Streptococcus agalactiae; GBS) is a leading cause of neonatal sepsis worldwide. As a pathobiont of the intestinal tract, it is capable of translocating across barriers leading to invasive disease. Neonatal susceptibility to invasive disease stems from immature intestinal barriers. GBS intestinal colonization induces major transcriptomic changes in the intestinal epithelium related to barrier function. Butyrate, a microbial metabolite produced by fermentation of dietary fiber, bolsters intestinal barrier function against enteric pathogens, and these effects can be transferred in utero via the placenta to the developing fetus. Our aim was to determine if butyrate mitigates GBS disruption of intestinal barriers. We used human intestinal epithelial cell (IEC) lines to evaluate the impact of butyrate on GBS-induced cell death and GBS adhesion and invasion. IECs and human fetal tissue-derived enteroids were used to evaluate monolayer permeability. We evaluated the impact of maternal butyrate treatment (mButyrate) using our established mouse model of neonatal GBS intestinal colonization and late-onset sepsis. We found that butyrate reduces GBS-induced cell death, GBS invasion, monolayer permeability, and translocation in vitro. In mice, mButyrate decreases GBS intestinal burden in offspring. Our results demonstrate the importance of bacterial metabolites, such as butyrate, in their potential to bolster epithelial barrier function and mitigate neonatal sepsis risk.IMPORTANCEGroup B Streptococcus (GBS) is a leading cause of neonatal morbidity and mortality. It is a commensal of the intestines that can translocate across barriers leading to sepsis in vulnerable newborns. With the rise in antibiotic-resistant strains and no licensed vaccine, there is an urgent need for preventative strategies. Butyrate, a short-chain fatty acid metabolized in the gut, enhances barrier function against pathogens. Importantly, butyrate is transferred in utero, conferring these benefits to infants. Here, we demonstrate that butyrate reduces GBS colonization and epithelial invasion. These effects were not microbiome-driven, suggesting butyrate directly impacts epithelial barrier function. Our results highlight the potential impact of maternal dietary metabolites, like butyrate, as a strategy to mitigate neonatal sepsis risk.

B 群链球菌(无乳链球菌;GBS)是全球新生儿败血症的主要病因。作为肠道的致病菌,它能够跨越屏障,导致侵袭性疾病。新生儿易患侵袭性疾病的原因是肠道屏障尚未发育成熟。GBS 的肠道定植会诱导肠上皮细胞发生与屏障功能有关的重大转录组变化。丁酸盐是膳食纤维发酵产生的一种微生物代谢产物,可增强肠道屏障功能,抵御肠道病原体,这些作用可在子宫内通过胎盘传递给发育中的胎儿。我们的目的是确定丁酸盐是否能减轻 GBS 对肠道屏障的破坏。我们使用人类肠上皮细胞(IEC)系来评估丁酸盐对 GBS 诱导的细胞死亡以及 GBS 粘附和侵袭的影响。我们使用 IEC 和源自人类胎儿组织的肠液来评估单层渗透性。我们利用已建立的新生儿 GBS 肠道定植和晚期败血症小鼠模型评估了母体丁酸盐治疗(mButyrate)的影响。我们发现,丁酸盐可减少 GBS 诱导的体外细胞死亡、GBS 入侵、单层渗透性和转运。在小鼠体内,丁酸盐可减少后代肠道中 GBS 的负担。我们的研究结果表明了细菌代谢产物(如丁酸盐)在增强上皮屏障功能和降低新生儿败血症风险方面的重要性。重要意义B组链球菌(GBS)是新生儿发病和死亡的主要原因。它是肠道中的一种共生菌,可以跨越屏障,导致易感新生儿败血症。随着抗生素耐药菌株的增加,而目前还没有获得许可的疫苗,因此迫切需要制定预防策略。丁酸盐是一种在肠道中代谢的短链脂肪酸,可增强屏障功能,抵御病原体。重要的是,丁酸盐可在子宫内转移,从而为婴儿带来这些益处。在这里,我们证明了丁酸盐能减少肠道GBS定植和上皮侵袭。这些影响不是由微生物驱动的,表明丁酸盐能直接影响上皮屏障功能。我们的研究结果凸显了母体膳食代谢物(如丁酸盐)作为降低新生儿败血症风险策略的潜在影响。
{"title":"The impact of butyrate on group B <i>Streptococcus</i>-induced intestinal barrier disruption.","authors":"Kristen Dominguez, Alexia N Pearah, April K Lindon, Leigh-Anne M Worthington, Rico R Carter, Nichol John-Lewis Edwards, Thao T B Ho, Sophie E Darch, Tara M Randis","doi":"10.1128/iai.00200-24","DOIUrl":"https://doi.org/10.1128/iai.00200-24","url":null,"abstract":"<p><p>Group B Streptococcus (<i>Streptococcus agalactiae</i>; GBS) is a leading cause of neonatal sepsis worldwide. As a pathobiont of the intestinal tract, it is capable of translocating across barriers leading to invasive disease. Neonatal susceptibility to invasive disease stems from immature intestinal barriers. GBS intestinal colonization induces major transcriptomic changes in the intestinal epithelium related to barrier function. Butyrate, a microbial metabolite produced by fermentation of dietary fiber, bolsters intestinal barrier function against enteric pathogens, and these effects can be transferred <i>in utero</i> via the placenta to the developing fetus. Our aim was to determine if butyrate mitigates GBS disruption of intestinal barriers. We used human intestinal epithelial cell (IEC) lines to evaluate the impact of butyrate on GBS-induced cell death and GBS adhesion and invasion. IECs and human fetal tissue-derived enteroids were used to evaluate monolayer permeability. We evaluated the impact of maternal butyrate treatment (mButyrate) using our established mouse model of neonatal GBS intestinal colonization and late-onset sepsis. We found that butyrate reduces GBS-induced cell death, GBS invasion, monolayer permeability, and translocation <i>in vitro</i>. In mice, mButyrate decreases GBS intestinal burden in offspring. Our results demonstrate the importance of bacterial metabolites, such as butyrate, in their potential to bolster epithelial barrier function and mitigate neonatal sepsis risk.IMPORTANCEGroup B <i>Streptococcus</i> (GBS) is a leading cause of neonatal morbidity and mortality. It is a commensal of the intestines that can translocate across barriers leading to sepsis in vulnerable newborns. With the rise in antibiotic-resistant strains and no licensed vaccine, there is an urgent need for preventative strategies. Butyrate, a short-chain fatty acid metabolized in the gut, enhances barrier function against pathogens. Importantly, butyrate is transferred <i>in utero</i>, conferring these benefits to infants. Here, we demonstrate that butyrate reduces GBS colonization and epithelial invasion. These effects were not microbiome-driven, suggesting butyrate directly impacts epithelial barrier function. Our results highlight the potential impact of maternal dietary metabolites, like butyrate, as a strategy to mitigate neonatal sepsis risk.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The host GTPase Dynamin 2 modulates apical junction structure to control cell-to-cell spread of Listeria monocytogenes. 宿主 GTPase Dynamin 2 可调节顶端连接结构,从而控制李斯特菌在细胞间的传播。
IF 2.9 3区 医学 Q3 IMMUNOLOGY Pub Date : 2024-08-12 DOI: 10.1128/iai.00136-24
Serena Tijoriwalla, Thiloma Liyanage, Thilina U B Herath, Nicole Lee, Attika Rehman, Antonella Gianfelice, Keith Ireton

The food-borne pathogen Listeria monocytogenes uses actin-based motility to generate plasma membrane protrusions that mediate the spread of bacteria between host cells. In polarized epithelial cells, efficient protrusion formation by L. monocytogenes requires the secreted bacterial protein InlC, which binds to a carboxyl-terminal Src homology 3 (SH3) domain in the human scaffolding protein Tuba. This interaction antagonizes Tuba, thereby diminishing cortical tension at the apical junctional complex and enhancing L. monocytogenes protrusion formation and spread. Tuba contains five SH3 domains apart from the domain that interacts with InlC. Here, we show that human GTPase Dynamin 2 associates with two SH3 domains in the amino-terminus of Tuba and acts together with this scaffolding protein to control the spread of L. monocytogenes. Genetic or pharmacological inhibition of Dynamin 2 or knockdown of Tuba each restored normal protrusion formation and spread to a bacterial strain deleted for the inlC gene (∆inlC). Dynamin 2 localized to apical junctions in uninfected human cells and protrusions in cells infected with L. monocytogenes. Localization of Dynamin 2 to junctions and protrusions depended on Tuba. Knockdown of Dynamin 2 or Tuba diminished junctional linearity, indicating a role for these proteins in controlling cortical tension. Infection with L. monocytogenes induced InlC-dependent displacement of Dynamin 2 from junctions, suggesting a possible mechanism of antagonism of this GTPase. Collectively, our results show that Dynamin 2 cooperates with Tuba to promote intercellular tension that restricts the spread of ∆inlC Listeria. By expressing InlC, wild-type L. monocytogenes overcomes this restriction.

食源性病原体单核细胞增生李斯特菌利用肌动蛋白运动产生质膜突起,从而介导细菌在宿主细胞间传播。在极化上皮细胞中,单核细胞增多性李斯特氏菌有效的突起形成需要分泌的细菌蛋白 InlC,它与人类支架蛋白 Tuba 中的羧基末端 Src 同源 3(SH3)结构域结合。这种相互作用可拮抗 Tuba,从而降低顶端连接复合体的皮层张力,促进单核细胞增多性乳酸杆菌突起的形成和扩散。除了与 InlC 相互作用的结构域外,Tuba 还含有五个 SH3 结构域。在这里,我们发现人类 GTPase Dynamin 2 与 Tuba 氨基末端的两个 SH3 结构域结合,并与这一支架蛋白一起控制单核细胞增多性乳酸杆菌的扩散。通过基因或药物抑制 Dynamin 2 或敲除 Tuba,可使缺失 inlC 基因的细菌菌株(ΔinlC)恢复正常的突起形成和扩散。在未感染的人体细胞中,Dynamin 2定位于顶端连接处,而在感染了单核细胞增多症的细胞中,Dynamin 2定位于突起处。Dynamin 2在连接处和突起处的定位取决于Tuba。敲除Dynamin 2或Tuba会降低连接的线性度,这表明这些蛋白在控制皮层张力方面发挥作用。感染单核细胞增生性酵母菌会诱导依赖 InlC 的 Dynamin 2 从连接处移位,这表明这种 GTP 酶可能存在拮抗作用。总之,我们的研究结果表明,Dynamin 2 与 Tuba 合作促进细胞间张力,从而限制了 ∆inlC 李斯特菌的扩散。通过表达 InlC,野生型李斯特菌克服了这种限制。
{"title":"The host GTPase Dynamin 2 modulates apical junction structure to control cell-to-cell spread of <i>Listeria monocytogenes</i>.","authors":"Serena Tijoriwalla, Thiloma Liyanage, Thilina U B Herath, Nicole Lee, Attika Rehman, Antonella Gianfelice, Keith Ireton","doi":"10.1128/iai.00136-24","DOIUrl":"https://doi.org/10.1128/iai.00136-24","url":null,"abstract":"<p><p>The food-borne pathogen <i>Listeria monocytogenes</i> uses actin-based motility to generate plasma membrane protrusions that mediate the spread of bacteria between host cells. In polarized epithelial cells, efficient protrusion formation by <i>L. monocytogenes</i> requires the secreted bacterial protein InlC, which binds to a carboxyl-terminal Src homology 3 (SH3) domain in the human scaffolding protein Tuba. This interaction antagonizes Tuba, thereby diminishing cortical tension at the apical junctional complex and enhancing <i>L. monocytogenes</i> protrusion formation and spread. Tuba contains five SH3 domains apart from the domain that interacts with InlC. Here, we show that human GTPase Dynamin 2 associates with two SH3 domains in the amino-terminus of Tuba and acts together with this scaffolding protein to control the spread of <i>L. monocytogenes</i>. Genetic or pharmacological inhibition of Dynamin 2 or knockdown of Tuba each restored normal protrusion formation and spread to a bacterial strain deleted for the <i>inlC</i> gene (∆<i>inlC</i>). Dynamin 2 localized to apical junctions in uninfected human cells and protrusions in cells infected with <i>L. monocytogenes</i>. Localization of Dynamin 2 to junctions and protrusions depended on Tuba. Knockdown of Dynamin 2 or Tuba diminished junctional linearity, indicating a role for these proteins in controlling cortical tension. Infection with <i>L. monocytogenes</i> induced InlC-dependent displacement of Dynamin 2 from junctions, suggesting a possible mechanism of antagonism of this GTPase. Collectively, our results show that Dynamin 2 cooperates with Tuba to promote intercellular tension that restricts the spread of ∆<i>inlC Listeria</i>. By expressing InlC, wild-type <i>L. monocytogenes</i> overcomes this restriction.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactate promotes the biofilm-to-invasive-planktonic transition in Salmonella enterica serovar Typhimurium via the de novo purine pathway. 乳酸盐通过新生嘌呤途径促进伤寒沙门氏菌从生物膜到侵袭性浮游生物的转变。
IF 2.9 3区 医学 Q3 IMMUNOLOGY Pub Date : 2024-08-12 DOI: 10.1128/iai.00266-24
Francisco J Albicoro, Shingo Bessho, Kaitlyn Grando, Sophia Olubajo, Vincent Tam, Çagla Tükel

Salmonella enterica serovar Typhimurium (S. Typhimurium) infection triggers an inflammatory response that changes the concentration of metabolites in the gut impacting the luminal environment. Some of these environmental adjustments are conducive to S. Typhimurium growth, such as the increased concentrations of nitrate and tetrathionate or the reduced levels of Clostridia-produced butyrate. We recently demonstrated that S. Typhimurium can form biofilms within the host environment and respond to nitrate as a signaling molecule, enabling it to transition between sessile and planktonic states. To investigate whether S. Typhimurium utilizes additional metabolites to regulate its behavior, our study delved into the impact of inflammatory metabolites on biofilm formation. The results revealed that lactate, the most prevalent metabolite in the inflammatory environment, impedes biofilm development by reducing intracellular c-di-GMP levels, suppressing the expression of curli and cellulose, and increasing the expression of flagellar genes. A transcriptomic analysis determined that the expression of the de novo purine pathway increases during high lactate conditions, and a transposon mutagenesis genetic screen identified that PurA and PurG, in particular, play a significant role in the inhibition of curli expression and biofilm formation. Lactate also increases the transcription of the type III secretion system genes involved in tissue invasion. Finally, we show that the pyruvate-modulated two-component system BtsSR is activated in the presence of high lactate, which suggests that lactate-derived pyruvate activates BtsSR system after being exported from the cytosol. All these findings propose that lactate is an important inflammatory metabolite used by S. Typhimurium to transition from a biofilm to a motile state and fine-tune its virulence.IMPORTANCEWhen colonizing the gut, Salmonella enterica serovar Typhimurium (S. Typhimurium) adopts a dynamic lifestyle that alternates between a virulent planktonic state and a multicellular biofilm state. The coexistence of biofilm formers and planktonic S. Typhimurium in the gut suggests the presence of regulatory mechanisms that control planktonic-to-sessile transition. The signals triggering the transition of S. Typhimurium between these two lifestyles are not fully explored. In this work, we demonstrated that in the presence of lactate, the most dominant host-derived metabolite in the inflamed gut, there is a reduction of c-di-GMP in S. Typhimurium, which subsequently inhibits biofilm formation and induces the expression of its invasion machinery, motility genes, and de novo purine metabolic pathway genes. Furthermore, high levels of lactate activate the BtsSR two-component system. Collectively, this work presents new insights toward the comprehension of host metabolism and gut microenvironment roles in the regulation o

伤寒沙门氏菌(S. Typhimurium)感染会引发炎症反应,从而改变肠道中代谢物的浓度,影响腔内环境。其中一些环境调整有利于伤寒杆菌的生长,如硝酸盐和四硫酸盐浓度的增加或梭菌产生的丁酸盐浓度的降低。我们最近证明,伤寒杆菌能在宿主环境中形成生物膜,并对作为信号分子的硝酸盐做出反应,使其能在无梗和浮游状态之间转换。为了研究伤寒杆菌是否利用其他代谢物来调节其行为,我们的研究深入探讨了炎症代谢物对生物膜形成的影响。研究结果表明,炎症环境中最常见的代谢物乳酸盐通过降低细胞内 c-di-GMP 水平、抑制卷曲和纤维素的表达以及增加鞭毛基因的表达来阻碍生物膜的形成。转录组分析表明,在高乳酸盐条件下,新生嘌呤途径的表达增加,转座子诱变基因筛选发现,特别是 PurA 和 PurG,在抑制 curli 表达和生物膜形成方面起着重要作用。乳酸盐还能增加参与组织侵袭的 III 型分泌系统基因的转录。最后,我们发现丙酮酸调控的双组分系统 BtsSR 在高乳酸存在下被激活,这表明乳酸衍生的丙酮酸从细胞质输出后激活了 BtsSR 系统。所有这些发现表明,乳酸是鼠伤寒沙门氏菌从生物膜状态过渡到运动状态并微调其毒力的重要炎性代谢产物。重要意义鼠伤寒沙门氏菌(S. Typhimurium)在肠道定殖时,会采用一种动态的生活方式,在毒性浮游生物状态和多细胞生物膜状态之间交替。生物膜形成者和浮游鼠伤寒杆菌在肠道中的共存表明,存在着控制浮游动物向无脊椎动物过渡的调节机制。目前还没有充分探讨触发伤寒杆菌在这两种生活方式之间转换的信号。在这项工作中,我们证明了在乳酸盐(发炎肠道中最主要的宿主衍生代谢物)存在的情况下,伤寒杆菌体内的 c-di-GMP 会减少,从而抑制生物膜的形成,并诱导其侵袭机制、运动基因和新生嘌呤代谢途径基因的表达。此外,高水平的乳酸盐会激活 BtsSR 双组分系统。总之,这项研究为理解宿主新陈代谢和肠道微环境在感染期间调控鼠伤寒杆菌生物学中的作用提供了新的视角。
{"title":"Lactate promotes the biofilm-to-invasive-planktonic transition in <i>Salmonella enterica</i> serovar Typhimurium via the <i>de novo</i> purine pathway.","authors":"Francisco J Albicoro, Shingo Bessho, Kaitlyn Grando, Sophia Olubajo, Vincent Tam, Çagla Tükel","doi":"10.1128/iai.00266-24","DOIUrl":"https://doi.org/10.1128/iai.00266-24","url":null,"abstract":"<p><p><i>Salmonella enterica</i> serovar Typhimurium (<i>S</i>. Typhimurium) infection triggers an inflammatory response that changes the concentration of metabolites in the gut impacting the luminal environment. Some of these environmental adjustments are conducive to <i>S</i>. Typhimurium growth, such as the increased concentrations of nitrate and tetrathionate or the reduced levels of Clostridia-produced butyrate. We recently demonstrated that <i>S</i>. Typhimurium can form biofilms within the host environment and respond to nitrate as a signaling molecule, enabling it to transition between sessile and planktonic states. To investigate whether <i>S</i>. Typhimurium utilizes additional metabolites to regulate its behavior, our study delved into the impact of inflammatory metabolites on biofilm formation. The results revealed that lactate, the most prevalent metabolite in the inflammatory environment, impedes biofilm development by reducing intracellular c-di-GMP levels, suppressing the expression of curli and cellulose, and increasing the expression of flagellar genes. A transcriptomic analysis determined that the expression of the <i>de novo</i> purine pathway increases during high lactate conditions, and a transposon mutagenesis genetic screen identified that PurA and PurG, in particular, play a significant role in the inhibition of curli expression and biofilm formation. Lactate also increases the transcription of the type III secretion system genes involved in tissue invasion. Finally, we show that the pyruvate-modulated two-component system BtsSR is activated in the presence of high lactate, which suggests that lactate-derived pyruvate activates BtsSR system after being exported from the cytosol. All these findings propose that lactate is an important inflammatory metabolite used by <i>S</i>. Typhimurium to transition from a biofilm to a motile state and fine-tune its virulence.IMPORTANCEWhen colonizing the gut, <i>Salmonella enterica</i> serovar Typhimurium (<i>S</i>. Typhimurium) adopts a dynamic lifestyle that alternates between a virulent planktonic state and a multicellular biofilm state. The coexistence of biofilm formers and planktonic <i>S</i>. Typhimurium in the gut suggests the presence of regulatory mechanisms that control planktonic-to-sessile transition. The signals triggering the transition of <i>S</i>. Typhimurium between these two lifestyles are not fully explored. In this work, we demonstrated that in the presence of lactate, the most dominant host-derived metabolite in the inflamed gut, there is a reduction of c-di-GMP in <i>S</i>. Typhimurium, which subsequently inhibits biofilm formation and induces the expression of its invasion machinery, motility genes, and <i>de novo</i> purine metabolic pathway genes. Furthermore, high levels of lactate activate the BtsSR two-component system. Collectively, this work presents new insights toward the comprehension of host metabolism and gut microenvironment roles in the regulation o","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The plasmid-encoded members of paralogous gene family 52 are dispensable to the enzootic cycle of Borrelia burgdorferi. 旁系基因家族 52 的质粒编码成员对布氏杆菌的流行周期是不可或缺的。
IF 2.9 3区 医学 Q3 IMMUNOLOGY Pub Date : 2024-08-09 DOI: 10.1128/iai.00214-24
Ashley M Groshong, Nora E Gibbons, Brendan P Moore, William T Bellamy, Jon S Blevins

Lyme disease, the leading vector-borne disease in the United States and Europe, develops after infection with Borrelia burgdorferi sensu lato bacteria. Transmission of the spirochete from the tick vector to a vertebrate host requires global changes in gene expression that are controlled, in part, by the Rrp2/RpoN/RpoS alternative sigma factor cascade. Transcriptional studies defining the B. burgdorferi RpoS regulon have suggested that RpoS activates the transcription of paralogous family 52 (PFam52) genes. In strain B31, PFam52 genes (bbi42, bbk53, and bbq03) encode a set of conserved hypothetical proteins with >89% amino acid identity that are predicted to be surface-localized. Extensive homology among members of paralogous families complicates studies of protein contributions to pathogenicity as the potential for functional redundancy will obfuscate findings. Using a sequential mutagenesis approach, we generated clones expressing a single PFam52 paralog, as well as a strain deficient in all three. The single paralog expressing strains were used to confirm BBI42, BBK53, and BBQ03 surface localization and RpoS regulation. Surprisingly, the PFam52-deficient strain was able to infect mice and complete the enzootic cycle similar to the wild-type parental strain. Indeed, the presence of numerous pseudogenes that contain frameshifts or internal stop codons among the PFam52 genes suggests that they may be subjected to gene loss in B. burgdorferi's reduced genome. Alternatively, the lack of phenotype might reflect the limitations of the experimental mouse infection model.

莱姆病是美国和欧洲主要的病媒传染病,是在感染了博氏杆菌(Borrelia burgdorferi sensu lato)之后发病的。螺旋体从蜱载体传播到脊椎动物宿主需要基因表达的全面变化,这些变化部分由 Rrp2/RpoN/RpoS 替代 sigma 因子级联控制。界定 B. burgdorferi RpoS 调节子的转录研究表明,RpoS 可激活旁系亲属 52(PFam52)基因的转录。在菌株 B31 中,PFam52 基因(bbi42、bbk53 和 bbq03)编码一组保守的假定蛋白,其氨基酸相同度大于 89%,这些蛋白被预测为表面定位蛋白。旁系亲属成员之间的广泛同源性使蛋白质致病性研究变得复杂,因为潜在的功能冗余会混淆研究结果。我们利用连续诱变的方法,产生了表达单一 PFam52 旁系亲属的克隆,以及缺乏所有三个旁系亲属的菌株。我们用表达单一旁系物的菌株来确认 BBI42、BBK53 和 BBQ03 的表面定位和 RpoS 调控。令人惊讶的是,PFam52缺陷株能够感染小鼠,并完成与野生型亲本株相似的感染周期。事实上,在 PFam52 基因中存在大量含有移帧或内部终止密码子的假基因,这表明它们可能在 B. burgdorferi 的缩小基因组中受到基因缺失的影响。或者,缺乏表型可能反映了实验性小鼠感染模型的局限性。
{"title":"The plasmid-encoded members of paralogous gene family 52 are dispensable to the enzootic cycle of <i>Borrelia burgdorferi</i>.","authors":"Ashley M Groshong, Nora E Gibbons, Brendan P Moore, William T Bellamy, Jon S Blevins","doi":"10.1128/iai.00214-24","DOIUrl":"https://doi.org/10.1128/iai.00214-24","url":null,"abstract":"<p><p>Lyme disease, the leading vector-borne disease in the United States and Europe, develops after infection with <i>Borrelia burgdorferi sensu lato</i> bacteria. Transmission of the spirochete from the tick vector to a vertebrate host requires global changes in gene expression that are controlled, in part, by the Rrp2/RpoN/RpoS alternative sigma factor cascade. Transcriptional studies defining the <i>B. burgdorferi</i> RpoS regulon have suggested that RpoS activates the transcription of paralogous family 52 (PFam52) genes. In strain B31, PFam52 genes (<i>bbi42</i>, <i>bbk53</i>, and <i>bbq03</i>) encode a set of conserved hypothetical proteins with >89% amino acid identity that are predicted to be surface-localized. Extensive homology among members of paralogous families complicates studies of protein contributions to pathogenicity as the potential for functional redundancy will obfuscate findings. Using a sequential mutagenesis approach, we generated clones expressing a single PFam52 paralog, as well as a strain deficient in all three. The single paralog expressing strains were used to confirm BBI42, BBK53, and BBQ03 surface localization and RpoS regulation. Surprisingly, the PFam52-deficient strain was able to infect mice and complete the enzootic cycle similar to the wild-type parental strain. Indeed, the presence of numerous pseudogenes that contain frameshifts or internal stop codons among the PFam52 genes suggests that they may be subjected to gene loss in <i>B. burgdorferi</i>'s reduced genome. Alternatively, the lack of phenotype might reflect the limitations of the experimental mouse infection model.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of transient receptor potential vanilloid 1 reduces shedding and transmission during Streptococcus pneumoniae co-infection with influenza. 抑制瞬时受体电位类香草素 1 可减少肺炎链球菌与流感合并感染时的脱落和传播。
IF 2.9 3区 医学 Q3 IMMUNOLOGY Pub Date : 2024-08-07 DOI: 10.1128/iai.00146-24
Daichi Murakami, Masamitsu Kono, Hideki Sakatani, Takuro Iyo, Masayoshi Hijiya, Tatsuya Shiga, Tetsuya Kinoshita, Takayoshi Sumioka, Yuka Okada, Shizuya Saika, Yusuke Koizumi, Muneki Hotomi

Transmission is the first step for a microorganism to establish colonization in the respiratory tract and subsequent development of infectious disease. Streptococcus pneumoniae is a leading pathogen that colonizes the mucosal surfaces of the human upper respiratory tract and causes subsequent transmission and invasive infections especially in co-infection with influenza A virus. Host factors contributing to respiratory contagion are poorly understood. Transient receptor potential vanilloid (TRPV) channels have various roles in response to microoorganism. Inhibition of TRPV exacerbates invasive infection by Streptococcus pneumoniae, but it is unclear how TRPV channels influence pneumococcal transmission. Here, we describe the effect of inhibition of TRPV1 on pneumococcal transmission. We adopted a TRPV1-deficient infant mouse model of pneumococcal transmission during co-infection with influenza A virus. We also analyzed the expression of nasal mucin or pro-inflammatory cytokines. TRPV1 deficiency attenuated pneumococcal transmission and shedding during co-infection with influenza A virus. TRPV1 deficiency suppressed the expression of nasal mucin. In addition, there were increases in the expression of tumor necrosis factor-α and type I interferon, followed by the suppressed replication of influenza A virus in TRPV1-deficient mice. Inhibition of TRPV1 was shown to attenuate pneumococcal transmission by reducing shedding through the suppression of nasal mucin during co-infection with influenza A virus. Inhibition of TRPV1 suppressed nasal mucin by modulation of pro-inflammatory responses and regulation of replication of influenza A virus. TRPV1 could be a new target in preventive strategy against pneumococcal transmission.

传播是微生物在呼吸道建立定植并随后发展成传染病的第一步。肺炎链球菌是在人类上呼吸道粘膜表面定植的主要病原体,会导致随后的传播和侵入性感染,尤其是在与甲型流感病毒同时感染的情况下。人们对导致呼吸道传染的宿主因素知之甚少。瞬时受体电位类香草素(TRPV)通道在对微生物的反应中发挥着各种作用。抑制 TRPV 会加剧肺炎链球菌的侵袭性感染,但目前还不清楚 TRPV 通道如何影响肺炎链球菌的传播。在这里,我们描述了抑制 TRPV1 对肺炎球菌传播的影响。我们采用了一种 TRPV1 缺失的婴儿小鼠模型,该模型在与甲型流感病毒同时感染时会发生肺炎球菌传播。我们还分析了鼻粘蛋白或促炎细胞因子的表达。在与甲型流感病毒共同感染期间,TRPV1 缺乏可减轻肺炎球菌的传播和脱落。缺乏 TRPV1 会抑制鼻黏膜蛋白的表达。此外,肿瘤坏死因子-α 和 I 型干扰素的表达也有所增加,随后甲型流感病毒的复制在 TRPV1 缺乏的小鼠中受到抑制。在与甲型流感病毒共同感染期间,抑制 TRPV1 可通过抑制鼻黏膜蛋白减少脱落,从而减少肺炎球菌的传播。抑制 TRPV1 可通过调节促炎反应和甲型流感病毒的复制来抑制鼻腔粘液。TRPV1 可能是预防肺炎球菌传播策略的新目标。
{"title":"Inhibition of transient receptor potential vanilloid 1 reduces shedding and transmission during <i>Streptococcus pneumoniae</i> co-infection with influenza.","authors":"Daichi Murakami, Masamitsu Kono, Hideki Sakatani, Takuro Iyo, Masayoshi Hijiya, Tatsuya Shiga, Tetsuya Kinoshita, Takayoshi Sumioka, Yuka Okada, Shizuya Saika, Yusuke Koizumi, Muneki Hotomi","doi":"10.1128/iai.00146-24","DOIUrl":"10.1128/iai.00146-24","url":null,"abstract":"<p><p>Transmission is the first step for a microorganism to establish colonization in the respiratory tract and subsequent development of infectious disease. <i>Streptococcus pneumoniae</i> is a leading pathogen that colonizes the mucosal surfaces of the human upper respiratory tract and causes subsequent transmission and invasive infections especially in co-infection with influenza A virus. Host factors contributing to respiratory contagion are poorly understood. Transient receptor potential vanilloid (TRPV) channels have various roles in response to microoorganism. Inhibition of TRPV exacerbates invasive infection by <i>Streptococcus pneumoniae</i>, but it is unclear how TRPV channels influence pneumococcal transmission. Here, we describe the effect of inhibition of TRPV1 on pneumococcal transmission. We adopted a TRPV1-deficient infant mouse model of pneumococcal transmission during co-infection with influenza A virus. We also analyzed the expression of nasal mucin or pro-inflammatory cytokines. TRPV1 deficiency attenuated pneumococcal transmission and shedding during co-infection with influenza A virus. TRPV1 deficiency suppressed the expression of nasal mucin. In addition, there were increases in the expression of tumor necrosis factor-α and type I interferon, followed by the suppressed replication of influenza A virus in TRPV1-deficient mice. Inhibition of TRPV1 was shown to attenuate pneumococcal transmission by reducing shedding through the suppression of nasal mucin during co-infection with influenza A virus. Inhibition of TRPV1 suppressed nasal mucin by modulation of pro-inflammatory responses and regulation of replication of influenza A virus. TRPV1 could be a new target in preventive strategy against pneumococcal transmission.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Infection and Immunity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1