Severe acute pancreatitis (SAP) is an inflammatory disease with varying severity, ranging from mild local inflammation to severe systemic disease, with a high incidence rate and mortality. Current drug treatments are not ideal. Therefore, safer and more effective therapeutic drugs are urgently needed. 7α,14β-dihydroxy-ent-kaur-17-dimethylamino-3,15-dione DGA, a diterpenoid compound derivatized from glaucocalyxin A, exhibits anti-inflammatory activity. In this study, we demonstrated the therapeutic potential of DGA against SAP and elucidated the underlying mechanisms. Treatment with DGA markedly (1) inhibited death of RAW264.7 and J774a.1 cells induced by Nigericin and lipopolysaccharide, (2) alleviated edema, acinar cell vacuolation, necrosis, and inflammatory cell infiltration of pancreatic tissue in mice, and (3) inhibited the activity of serum lipase and the secretion of inflammatory factor IL-1β. DGA significantly reduced the protein expression of IL-1β and NLRP3 and inhibited the phosphorylation of NF-κB. However, DGA exhibited no inhibitory effect on the expression of caspase-1, gasdermin D (GSDMD), NF-κB, TNF-α, or apoptosis-associated speck-like protein (ASC) and on the cleavage of caspase-1 or GSDMD. Molecular docking simulation confirmed that DGA can bind to TLR4 and IL-1 receptor. In conclusion, DGA may effectively alleviate the symptoms of SAP in mice and macrophages by inhibiting the binding of TLR4 and IL-1 receptor to their ligands; therefore, DGA is a promising drug candidate for the treatment of patients with SAP.
{"title":"DGA ameliorates severe acute pancreatitis through modulating macrophage pyroptosis.","authors":"Xiyue Yue, Lunmeng Lai, Ruina Wang, Lulu Tan, Yanping Wang, Qing Xie, Yunsen Li","doi":"10.1007/s00011-024-01931-3","DOIUrl":"10.1007/s00011-024-01931-3","url":null,"abstract":"<p><p>Severe acute pancreatitis (SAP) is an inflammatory disease with varying severity, ranging from mild local inflammation to severe systemic disease, with a high incidence rate and mortality. Current drug treatments are not ideal. Therefore, safer and more effective therapeutic drugs are urgently needed. 7α,14β-dihydroxy-ent-kaur-17-dimethylamino-3,15-dione DGA, a diterpenoid compound derivatized from glaucocalyxin A, exhibits anti-inflammatory activity. In this study, we demonstrated the therapeutic potential of DGA against SAP and elucidated the underlying mechanisms. Treatment with DGA markedly (1) inhibited death of RAW264.7 and J774a.1 cells induced by Nigericin and lipopolysaccharide, (2) alleviated edema, acinar cell vacuolation, necrosis, and inflammatory cell infiltration of pancreatic tissue in mice, and (3) inhibited the activity of serum lipase and the secretion of inflammatory factor IL-1β. DGA significantly reduced the protein expression of IL-1β and NLRP3 and inhibited the phosphorylation of NF-κB. However, DGA exhibited no inhibitory effect on the expression of caspase-1, gasdermin D (GSDMD), NF-κB, TNF-α, or apoptosis-associated speck-like protein (ASC) and on the cleavage of caspase-1 or GSDMD. Molecular docking simulation confirmed that DGA can bind to TLR4 and IL-1 receptor. In conclusion, DGA may effectively alleviate the symptoms of SAP in mice and macrophages by inhibiting the binding of TLR4 and IL-1 receptor to their ligands; therefore, DGA is a promising drug candidate for the treatment of patients with SAP.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1803-1817"},"PeriodicalIF":4.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corynoline has displayed pharmacological effects in reducing oxidative stress and inflammatory responses in many disorders. However, its effects on hepatic ischemia–reperfusion (I/R) injury remain unclear. This study aimed to investigate the protective effects of corynoline against hepatic I/R injury and the underlying mechanisms.
Methods
Rat models with hepatic I/R injury and BRL-3A cell models with hypoxia/reoxygenation (H/R) insult were constructed. Models were pretreated with corynoline and/or other inhibitors for functional and mechanistic examination.
Results
Corynoline pretreatment effectively mitigated hepatic I/R injury verified by reduced serum transaminase levels, improved histological damage scores, and decreased apoptosis rates. Additionally, corynoline pretreatment significantly inhibited I/R-triggered oxidative stress and inflammatory responses, as indicated by enhanced mitochondrial function, reduced levels of ROS and MDA, reduced neutrophil infiltration and suppressed proinflammatory cytokine release. In vitro experiments further showed that corynoline pretreatment increased cellular viability, decreased LDH activity, reduced cellular apoptosis, and inhibited oxidative stress and inflammatory injury in H/R-induced BRL-3A cells. Mechanistically, corynoline significantly increased Nrf2 nuclear translocation and expression levels of its target gene, HO-1. It also blocked NLRP3 inflammasome activation both in vivo and in vitro. Furthermore, pretreatment with Nrf2 inhibitor ML-385 counteracted the protective effect of corynoline on hepatic I/R injury. Ultimately, in vitro studies revealed that the NLRP3 activator nigericin could also nullified the protective effects of corynoline in BRL-3A cells, but had minimal impact on Nrf2 nuclear translocation.
Conclusions
Corynoline can exert protective effects against hepatic I/R injury by inhibiting oxidative stress, inflammatory responses, and apoptosis. These effects may be associated with inhibiting ROS-induced NLRP3 inflammasome activation by enhancing Nrf2/HO-1 signaling. These data provide new understanding about the mechanism of corynoline action, suggesting it is a potential drug applied for the treatment and prevention of hepatic I/R injury.
{"title":"Corynoline alleviates hepatic ischemia–reperfusion injury by inhibiting NLRP3 inflammasome activation through enhancing Nrf2/HO-1 signaling","authors":"Xin Ge, Yue Gu, Wendong Wang, Wenzhi Guo, Panliang Wang, Peng Du","doi":"10.1007/s00011-024-01949-7","DOIUrl":"https://doi.org/10.1007/s00011-024-01949-7","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objective</h3><p>Corynoline has displayed pharmacological effects in reducing oxidative stress and inflammatory responses in many disorders. However, its effects on hepatic ischemia–reperfusion (I/R) injury remain unclear. This study aimed to investigate the protective effects of corynoline against hepatic I/R injury and the underlying mechanisms.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Rat models with hepatic I/R injury and BRL-3A cell models with hypoxia/reoxygenation (H/R) insult were constructed. Models were pretreated with corynoline and/or other inhibitors for functional and mechanistic examination.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Corynoline pretreatment effectively mitigated hepatic I/R injury verified by reduced serum transaminase levels, improved histological damage scores, and decreased apoptosis rates. Additionally, corynoline pretreatment significantly inhibited I/R-triggered oxidative stress and inflammatory responses, as indicated by enhanced mitochondrial function, reduced levels of ROS and MDA, reduced neutrophil infiltration and suppressed proinflammatory cytokine release. In vitro experiments further showed that corynoline pretreatment increased cellular viability, decreased LDH activity, reduced cellular apoptosis, and inhibited oxidative stress and inflammatory injury in H/R-induced BRL-3A cells. Mechanistically, corynoline significantly increased Nrf2 nuclear translocation and expression levels of its target gene, HO-1. It also blocked NLRP3 inflammasome activation both in vivo and in vitro. Furthermore, pretreatment with Nrf2 inhibitor ML-385 counteracted the protective effect of corynoline on hepatic I/R injury. Ultimately, in vitro studies revealed that the NLRP3 activator nigericin could also nullified the protective effects of corynoline in BRL-3A cells, but had minimal impact on Nrf2 nuclear translocation.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Corynoline can exert protective effects against hepatic I/R injury by inhibiting oxidative stress, inflammatory responses, and apoptosis. These effects may be associated with inhibiting ROS-induced NLRP3 inflammasome activation by enhancing Nrf2/HO-1 signaling. These data provide new understanding about the mechanism of corynoline action, suggesting it is a potential drug applied for the treatment and prevention of hepatic I/R injury.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"64 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1007/s00011-024-01944-y
Zelong Yang, Wenjie Gao, Kai Yang, Weigang Chen, Yong Chen
Although ferroptosis plays a crucial role in hepatic ischemia‒reperfusion injury (IRI), the molecular mechanisms underlying this process remain unclear. We aimed to explore the potential involvement of the receptor for activated C kinase 1 (RACK1) in hepatic IRI-triggered ferroptosis. Using hepatocyte-specific RACK1 knockout mice and alpha mouse liver 12 (AML12) cells, we conducted a series of in vivo and in vitro experiments. We found that RACK1 has a protective effect on hepatic IRI-induced ferroptosis. Specifically, RACK1 was found to interact with AMPKα through its 1–93 amino acid (aa) region, which facilitates the phosphorylation of AMPKα at threonine 172 (Thr172), ultimately exerting an antiferroptotic effect. Furthermore, the long noncoding RNA (lncRNA) ZNFX1 Antisense 1 (ZFAS1) directly binds to aa 181–317 of RACK1. ZFAS1 has a dual impact on RACK1 by promoting its ubiquitin‒proteasome-mediated degradation and inhibiting its expression at the transcriptional level, which indirectly exacerbates hepatic IRI-induced ferroptosis. These findings underscore the protective role of RACK1 in hepatic IRI-induced ferroptosis and showcase its potential as a prophylactic target for hepatic IRI mitigation.
尽管铁蛋白沉积在肝缺血再灌注损伤(IRI)中起着至关重要的作用,但这一过程的分子机制仍不清楚。我们的目的是探索活化 C 激酶 1 受体(RACK1)在肝脏 IRI 触发的铁蛋白沉积中的潜在参与。我们利用肝细胞特异性 RACK1 基因敲除小鼠和阿尔法小鼠肝 12(AML12)细胞,进行了一系列体内和体外实验。我们发现,RACK1 对肝脏 IRI 诱导的铁蛋白沉积具有保护作用。具体来说,我们发现 RACK1 通过其 1-93 氨基酸 (aa) 区域与 AMPKα 相互作用,从而促进 AMPKα 在苏氨酸 172 (Thr172) 处的磷酸化,最终发挥抗铁细胞凋亡的作用。此外,长非编码 RNA(lncRNA)ZNFX1 反义 1(ZFAS1)直接与 RACK1 的 aa 181-317 结合。ZFAS1 通过促进泛素蛋白酶介导的降解和在转录水平抑制 RACK1 的表达,对 RACK1 产生了双重影响,从而间接加剧了肝 IRI 诱导的铁变态反应。这些发现强调了RACK1在肝脏IRI诱导的铁变态反应中的保护作用,并展示了其作为缓解肝脏IRI的预防性靶点的潜力。
{"title":"The protective role of RACK1 in hepatic ischemia‒reperfusion injury-induced ferroptosis","authors":"Zelong Yang, Wenjie Gao, Kai Yang, Weigang Chen, Yong Chen","doi":"10.1007/s00011-024-01944-y","DOIUrl":"https://doi.org/10.1007/s00011-024-01944-y","url":null,"abstract":"<p>Although ferroptosis plays a crucial role in hepatic ischemia‒reperfusion injury (IRI), the molecular mechanisms underlying this process remain unclear. We aimed to explore the potential involvement of the receptor for activated C kinase 1 (RACK1) in hepatic IRI-triggered ferroptosis. Using hepatocyte-specific RACK1 knockout mice and alpha mouse liver 12 (AML12) cells, we conducted a series of in vivo and in vitro experiments. We found that RACK1 has a protective effect on hepatic IRI-induced ferroptosis. Specifically, RACK1 was found to interact with AMPKα through its 1–93 amino acid (aa) region, which facilitates the phosphorylation of AMPKα at threonine 172 (Thr172), ultimately exerting an antiferroptotic effect. Furthermore, the long noncoding RNA (lncRNA) ZNFX1 Antisense 1 (ZFAS1) directly binds to aa 181–317 of RACK1. ZFAS1 has a dual impact on RACK1 by promoting its ubiquitin‒proteasome-mediated degradation and inhibiting its expression at the transcriptional level, which indirectly exacerbates hepatic IRI-induced ferroptosis. These findings underscore the protective role of RACK1 in hepatic IRI-induced ferroptosis and showcase its potential as a prophylactic target for hepatic IRI mitigation.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"31 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1007/s00011-024-01948-8
Erick Bryan de Sousa Lima, Antônio Felipe S. Carvalho, Isabella Zaidan, Adelson Héric A. Monteiro, Camila Cardoso, Edvaldo S. Lara, Fernanda S. Carneiro, Leonardo C. Oliveira, Filipe Resende, Felipe Rocha da Silva Santos, Luiz Pedro Souza-Costa, Ian de Meira Chaves, Celso M. Queiroz-Junior, Remo C. Russo, Robson A. S. Santos, Luciana P. Tavares, Mauro M. Teixeira, Vivian V. Costa, Lirlândia P. Sousa
Objective
Pro-resolving molecules, including the peptide Angiotensin-(1–7) [Ang-(1–7)], have potential adjunctive therapy for infections. Here we evaluate the actions of Ang-(1–7) in betacoronavirus infection in mice.
Methods
C57BL/6J mice were infected intranasally with the murine betacoronavirus MHV-3 and K18-hACE2 mice were infected with SARS-CoV-2. Mice were treated with Ang-(1–7) (30 µg/mouse, i.p.) at 24-, 36-, and 48-hours post-infection (hpi) or at 24, 36, 48, 72, and 96 h. For lethality evaluation, one additional dose of Ang-(1–7) was given at 120 hpi. At 3- and 5-days post- infection (dpi) blood cells, inflammatory mediators, viral loads, and lung histopathology were evaluated.
Results
Ang-(1–7) rescued lymphopenia in MHV-infected mice, and decreased airways leukocyte infiltration and lung damage at 3- and 5-dpi. The levels of pro-inflammatory cytokines and virus titers in lung and plasma were decreased by Ang-(1–7) during MHV infection. Ang-(1–7) improved lung function and increased survival rates in MHV-infected mice. Notably, Ang-(1–7) treatment during SARS-CoV-2 infection restored blood lymphocytes to baseline, decreased weight loss, virus titters and levels of inflammatory cytokines, resulting in improvement of pulmonary damage, clinical scores and lethality rates.
Conclusion
Ang-(1–7) protected mice from lung damage and death during betacoronavirus infections by modulating inflammation, hematological parameters and enhancing viral clearance.
{"title":"Angiotensin-(1–7) decreases inflammation and lung damage caused by betacoronavirus infection in mice","authors":"Erick Bryan de Sousa Lima, Antônio Felipe S. Carvalho, Isabella Zaidan, Adelson Héric A. Monteiro, Camila Cardoso, Edvaldo S. Lara, Fernanda S. Carneiro, Leonardo C. Oliveira, Filipe Resende, Felipe Rocha da Silva Santos, Luiz Pedro Souza-Costa, Ian de Meira Chaves, Celso M. Queiroz-Junior, Remo C. Russo, Robson A. S. Santos, Luciana P. Tavares, Mauro M. Teixeira, Vivian V. Costa, Lirlândia P. Sousa","doi":"10.1007/s00011-024-01948-8","DOIUrl":"https://doi.org/10.1007/s00011-024-01948-8","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objective</h3><p>Pro-resolving molecules, including the peptide Angiotensin-(1–7) [Ang-(1–7)], have potential adjunctive therapy for infections. Here we evaluate the actions of Ang-(1–7) in betacoronavirus infection in mice.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>C57BL/6J mice were infected intranasally with the murine betacoronavirus MHV-3 and K18-hACE2 mice were infected with SARS-CoV-2. Mice were treated with Ang-(1–7) (30 µg/mouse, i.p.) at 24-, 36-, and 48-hours post-infection (hpi) or at 24, 36, 48, 72, and 96 h. For lethality evaluation, one additional dose of Ang-(1–7) was given at 120 hpi. At 3- and 5-days post- infection (dpi) blood cells, inflammatory mediators, viral loads, and lung histopathology were evaluated.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Ang-(1–7) rescued lymphopenia in MHV-infected mice, and decreased airways leukocyte infiltration and lung damage at 3- and 5-dpi. The levels of pro-inflammatory cytokines and virus titers in lung and plasma were decreased by Ang-(1–7) during MHV infection. Ang-(1–7) improved lung function and increased survival rates in MHV-infected mice. Notably, Ang-(1–7) treatment during SARS-CoV-2 infection restored blood lymphocytes to baseline, decreased weight loss, virus titters and levels of inflammatory cytokines, resulting in improvement of pulmonary damage, clinical scores and lethality rates.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Ang-(1–7) protected mice from lung damage and death during betacoronavirus infections by modulating inflammation, hematological parameters and enhancing viral clearance.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"53 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1007/s00011-024-01941-1
Hanqi Wang, Xiaozhi Hu, Yuting Zhang, An Zhu, Jiajun Fan, Zhengyu Wu, Xuebin Wang, Wei Hu, Dianwen Ju
Objective
Blood lipid levels play a critical role in the progression of atherosclerosis. However, even with adequate lipid reduction, significant residual cardiovascular risk remains. Therefore, it is necessary to seek novel therapeutic strategies for atherosclerosis that can not only lower lipid levels but also inhibit inflammation simultaneously.
Methods
The fusion protein FD03-IL-1Ra was designed by linking the Angiopoietin-like 3 (ANGPTL3) nanobody and human interleukin-1 receptor antagonist (IL-1Ra) sequences to a mutated human immunoglobulin gamma 1 (IgG1) Fc. This construct was transfected into HEK293 cells for expression. The purity and thermal stability of the fusion protein were assessed using SDS-PAGE, SEC-HPLC, and differential scanning calorimetry. Binding affinities of the fusion protein to ANGPTL3 and IL-1 receptor were measured using Biacore T200. The biological activity of the fusion protein was validated through in vitro experiments. The therapeutic efficacy of the fusion protein was evaluated in an ApoE-/- mouse model of atherosclerosis, including serum lipid level determination, histological analysis of aorta and aortic sinus sections, and detection of inflammatory and oxidative stress markers. ImageJ software was utilized for quantitative image analysis. Statistical analysis was performed using one-way ANOVA followed by Bonferroni post hoc test.
Results
The FD03-IL-1Ra fusion protein was successfully expressed, with no polymer formation detected, and it demonstrated good thermal and conformational stability. High affinity for both murine and human ANGPTL3 was exhibited by FD03-IL-1Ra, and it was able to antagonize hANGPTL3's inhibition of LPL activity. FD03-IL-1Ra also showed high affinity for both murine and human IL-1R, inhibiting IL-6 expression in A549 cells induced by IL-1β stimulation, as well as suppressing IL-1β-induced activity inhibition in A375.S2 cells. Our study revealed that the fusion protein effectively lowered serum lipid levels and alleviated inflammatory responses in mice. Furthermore, the fusion protein enhanced plaque stability by increasing collagen content within atherosclerotic plaques.
Conclusions
These findings highlighted the potential of bifunctional interleukin-1 receptor antagonist and ANGPTL3 antibody fusion proteins for ameliorating the progression of atherosclerosis, presenting a promising novel therapeutic approach targeting both inflammation and lipid levels.
{"title":"Simultaneously blocking ANGPTL3 and IL-1β for the treatment of atherosclerosis through lipid-lowering and anti-inflammation","authors":"Hanqi Wang, Xiaozhi Hu, Yuting Zhang, An Zhu, Jiajun Fan, Zhengyu Wu, Xuebin Wang, Wei Hu, Dianwen Ju","doi":"10.1007/s00011-024-01941-1","DOIUrl":"https://doi.org/10.1007/s00011-024-01941-1","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objective</h3><p>Blood lipid levels play a critical role in the progression of atherosclerosis. However, even with adequate lipid reduction, significant residual cardiovascular risk remains. Therefore, it is necessary to seek novel therapeutic strategies for atherosclerosis that can not only lower lipid levels but also inhibit inflammation simultaneously.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The fusion protein FD03-IL-1Ra was designed by linking the Angiopoietin-like 3 (ANGPTL3) nanobody and human interleukin-1 receptor antagonist (IL-1Ra) sequences to a mutated human immunoglobulin gamma 1 (IgG1) Fc. This construct was transfected into HEK293 cells for expression. The purity and thermal stability of the fusion protein were assessed using SDS-PAGE, SEC-HPLC, and differential scanning calorimetry. Binding affinities of the fusion protein to ANGPTL3 and IL-1 receptor were measured using Biacore T200. The biological activity of the fusion protein was validated through in vitro experiments. The therapeutic efficacy of the fusion protein was evaluated in an ApoE-/- mouse model of atherosclerosis, including serum lipid level determination, histological analysis of aorta and aortic sinus sections, and detection of inflammatory and oxidative stress markers. ImageJ software was utilized for quantitative image analysis. Statistical analysis was performed using one-way ANOVA followed by Bonferroni post hoc test.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The FD03-IL-1Ra fusion protein was successfully expressed, with no polymer formation detected, and it demonstrated good thermal and conformational stability. High affinity for both murine and human ANGPTL3 was exhibited by FD03-IL-1Ra, and it was able to antagonize hANGPTL3's inhibition of LPL activity. FD03-IL-1Ra also showed high affinity for both murine and human IL-1R, inhibiting IL-6 expression in A549 cells induced by IL-1β stimulation, as well as suppressing IL-1β-induced activity inhibition in A375.S2 cells. Our study revealed that the fusion protein effectively lowered serum lipid levels and alleviated inflammatory responses in mice. Furthermore, the fusion protein enhanced plaque stability by increasing collagen content within atherosclerotic plaques.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>These findings highlighted the potential of bifunctional interleukin-1 receptor antagonist and ANGPTL3 antibody fusion proteins for ameliorating the progression of atherosclerosis, presenting a promising novel therapeutic approach targeting both inflammation and lipid levels.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"26 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1007/s00011-024-01930-4
D Altavilla, F Squadrito, L Ammendolia, G Squadrito, G M Campo, P Canale, M Ioculano, C Musolino, A Alonci, A Sardella, G Urna, A Saitta, A P Caputi
{"title":"Editorial expression of concern: Monocytes and lymphocytes as active participants in the pathogenesis of experimental shock.","authors":"D Altavilla, F Squadrito, L Ammendolia, G Squadrito, G M Campo, P Canale, M Ioculano, C Musolino, A Alonci, A Sardella, G Urna, A Saitta, A P Caputi","doi":"10.1007/s00011-024-01930-4","DOIUrl":"https://doi.org/10.1007/s00011-024-01930-4","url":null,"abstract":"","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-17DOI: 10.1007/s00011-024-01917-1
Jéssica Branquinho, Raquel L Neves, Renan P Martin, Júlia G Arata, Clarissa A Bittencourt, Ronaldo C Araújo, Marcelo Y Icimoto, João B Pesquero
Objective and design: Kinin B1 receptor (B1R) has a key role in adipocytes to protect against obesity and glycemic metabolism, thus becoming a potential target for regulation of energy metabolism and adipose tissue thermogenesis.
Material or subjects: Kinin B1 knockout mice (B1KO) were subjected to acute induction with CL 316,243 and chronic cold exposure.
Methods: Metabolic and histological analyses, gene and protein expression and RNA-seq were performed on interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) of mice.
Results: B1KO mice, under acute effect of CL 316,243, exhibited increased energy expenditure and upregulated thermogenic genes in iWAT. They were also protected from chronic cold, showing enhanced non-shivering thermogenesis with increased iBAT mass (~ 90%) and recruitment of beige adipocytes in iWAT (~ 50%). Positive modulation of thermogenic and electron transport chain genes, reaching a 14.5-fold increase for Ucp1 in iWAT. RNA-seq revealed activation of the insulin signaling pathways for iBAT and oxidative phosphorylation, tricarboxylic acid cycle, and browning pathways for iWAT.
Conclusion: B1R deficiency induced metabolic and gene expression alterations in adipose tissue, activating thermogenic pathways and increasing energy metabolism. B1R antagonists emerge as promising therapeutic targets for regulating obesity and associated metabolic disorders, such as inflammation and diabetes.
{"title":"Kinin B1 receptor deficiency promotes enhanced adipose tissue thermogenic response to β3-adrenergic stimulation.","authors":"Jéssica Branquinho, Raquel L Neves, Renan P Martin, Júlia G Arata, Clarissa A Bittencourt, Ronaldo C Araújo, Marcelo Y Icimoto, João B Pesquero","doi":"10.1007/s00011-024-01917-1","DOIUrl":"10.1007/s00011-024-01917-1","url":null,"abstract":"<p><strong>Objective and design: </strong>Kinin B1 receptor (B1R) has a key role in adipocytes to protect against obesity and glycemic metabolism, thus becoming a potential target for regulation of energy metabolism and adipose tissue thermogenesis.</p><p><strong>Material or subjects: </strong>Kinin B1 knockout mice (B1KO) were subjected to acute induction with CL 316,243 and chronic cold exposure.</p><p><strong>Methods: </strong>Metabolic and histological analyses, gene and protein expression and RNA-seq were performed on interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) of mice.</p><p><strong>Results: </strong>B1KO mice, under acute effect of CL 316,243, exhibited increased energy expenditure and upregulated thermogenic genes in iWAT. They were also protected from chronic cold, showing enhanced non-shivering thermogenesis with increased iBAT mass (~ 90%) and recruitment of beige adipocytes in iWAT (~ 50%). Positive modulation of thermogenic and electron transport chain genes, reaching a 14.5-fold increase for Ucp1 in iWAT. RNA-seq revealed activation of the insulin signaling pathways for iBAT and oxidative phosphorylation, tricarboxylic acid cycle, and browning pathways for iWAT.</p><p><strong>Conclusion: </strong>B1R deficiency induced metabolic and gene expression alterations in adipose tissue, activating thermogenic pathways and increasing energy metabolism. B1R antagonists emerge as promising therapeutic targets for regulating obesity and associated metabolic disorders, such as inflammation and diabetes.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1565-1579"},"PeriodicalIF":4.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-10DOI: 10.1007/s00011-024-01910-8
Luyao Shen, Cong Wang, Ran Ren, Xudong Liu, Dongqin Zhou, Yu Chen, Yu Zhou, Juan Lei, Yang Xiao, Nan Zhang, Huakan Zhao, Yongsheng Li
Objective and design: Compelling evidence indicates that dysregulated macrophages may play a key role in driving inflammation in inflammatory bowel disease (IBD). Fibroblast growth factor (FGF)-19, which is secreted by ileal enterocytes in response to bile acids, has been found to be significantly lower in IBD patients compared to healthy individuals, and is negatively correlated with the severity of diarrhea. This study aims to explore the potential impact of FGF19 signaling on macrophage polarization and its involvement in the pathogenesis of IBD.
Methods: The dextran sulfate sodium (DSS)-induced mouse colitis model was utilized to replicate the pathology of human IBD. Mice were created with a conditional knockout of FGFR4 (a specific receptor of FGF19) in myeloid cells, as well as mice that overexpressing FGF19 specifically in the liver. The severity of colitis was measured using the disease activity index (DAI) and histopathological staining. Various techniques such as Western Blotting, quantitative PCR, flow cytometry, and ELISA were employed to assess polarization and the expression of inflammatory genes.
Results: Myeloid-specific FGFR4 deficiency exacerbated colitis in the DSS mouse model. Deletion or inhibition of FGFR4 in bone marrow-derived macrophages (BMDMs) skewed macrophages towards M1 polarization. Analysis of transcriptome sequencing data revealed that FGFR4 deletion in macrophages significantly increased the activity of the complement pathway, leading to an enhanced inflammatory response triggered by LPS. Mechanistically, FGFR4-knockout in macrophages promoted complement activation and inflammatory response by upregulating the nuclear factor-κB (NF-κB)-pentraxin3 (PTX3) pathway. Additionally, FGF19 suppressed these pathways and reduced inflammatory response by activating FGFR4 in inflammatory macrophages. Liver-specific overexpression of FGF19 also mitigated inflammatory responses induced by DSS in vivo.
Conclusion: Our study highlights the significance of FGF19-FGFR4 signaling in macrophage polarization and the pathogenesis of IBD, offering a potential new therapeutic target for IBD.
{"title":"Fibroblast growth factor receptor 4 deficiency in macrophages aggravates experimental colitis by promoting M1-polarization.","authors":"Luyao Shen, Cong Wang, Ran Ren, Xudong Liu, Dongqin Zhou, Yu Chen, Yu Zhou, Juan Lei, Yang Xiao, Nan Zhang, Huakan Zhao, Yongsheng Li","doi":"10.1007/s00011-024-01910-8","DOIUrl":"10.1007/s00011-024-01910-8","url":null,"abstract":"<p><strong>Objective and design: </strong>Compelling evidence indicates that dysregulated macrophages may play a key role in driving inflammation in inflammatory bowel disease (IBD). Fibroblast growth factor (FGF)-19, which is secreted by ileal enterocytes in response to bile acids, has been found to be significantly lower in IBD patients compared to healthy individuals, and is negatively correlated with the severity of diarrhea. This study aims to explore the potential impact of FGF19 signaling on macrophage polarization and its involvement in the pathogenesis of IBD.</p><p><strong>Methods: </strong>The dextran sulfate sodium (DSS)-induced mouse colitis model was utilized to replicate the pathology of human IBD. Mice were created with a conditional knockout of FGFR4 (a specific receptor of FGF19) in myeloid cells, as well as mice that overexpressing FGF19 specifically in the liver. The severity of colitis was measured using the disease activity index (DAI) and histopathological staining. Various techniques such as Western Blotting, quantitative PCR, flow cytometry, and ELISA were employed to assess polarization and the expression of inflammatory genes.</p><p><strong>Results: </strong>Myeloid-specific FGFR4 deficiency exacerbated colitis in the DSS mouse model. Deletion or inhibition of FGFR4 in bone marrow-derived macrophages (BMDMs) skewed macrophages towards M1 polarization. Analysis of transcriptome sequencing data revealed that FGFR4 deletion in macrophages significantly increased the activity of the complement pathway, leading to an enhanced inflammatory response triggered by LPS. Mechanistically, FGFR4-knockout in macrophages promoted complement activation and inflammatory response by upregulating the nuclear factor-κB (NF-κB)-pentraxin3 (PTX3) pathway. Additionally, FGF19 suppressed these pathways and reduced inflammatory response by activating FGFR4 in inflammatory macrophages. Liver-specific overexpression of FGF19 also mitigated inflammatory responses induced by DSS in vivo.</p><p><strong>Conclusion: </strong>Our study highlights the significance of FGF19-FGFR4 signaling in macrophage polarization and the pathogenesis of IBD, offering a potential new therapeutic target for IBD.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1493-1510"},"PeriodicalIF":4.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-22DOI: 10.1007/s00011-024-01908-2
Shuang Yan, Bowen Yang, Haichuan Qin, Chengzhen Du, Hua Liu, Tengchuan Jin
Background: In recent years, there has been a growing interest in the utilization of biologic therapies for the management of asthma. Both TSLP and IgE are important immune molecules in the development of asthma, and they are involved in the occurrence and regulation of inflammatory response.
Methods: A comprehensive search of PubMed and Web of Science was conducted to gather information on anti-TSLP antibody and anti-IgE antibody.
Results: This investigation elucidates the distinct mechanistic roles of Thymic Stromal Lymphopoietin (TSLP) and Immunoglobulin E (IgE) in the pathogenesis of asthma, with a particular emphasis on delineating the therapeutic mechanisms and pharmacological properties of monoclonal antibodies targeting IgE and TSLP. Through a meticulous examination of clinical trials involving paradigmatic agents such as omalizumab and tezepelumab, we offer valuable insights into the potential treatment modalities for diseases with shared immunopathogenic pathways involving IgE and TSLP.
Conclusion: The overarching objective of this comprehensive study is to delve into the latest advancements in asthma therapeutics and to provide guidance for future investigations in this domain.
背景:近年来,人们对利用生物疗法治疗哮喘越来越感兴趣。TSLP和IgE都是哮喘发病过程中的重要免疫分子,它们参与了炎症反应的发生和调节:方法:对 PubMed 和 Web of Science 进行了全面检索,以收集有关抗 TSLP 抗体和抗 IgE 抗体的信息:本研究阐明了胸腺基质淋巴细胞生成素(TSLP)和免疫球蛋白E(IgE)在哮喘发病机制中的不同作用,特别强调了针对IgE和TSLP的单克隆抗体的治疗机制和药理特性。通过对奥马珠单抗(omalizumab)和替泽珠单抗(tezepelumab)等典型药物的临床试验的细致研究,我们对涉及 IgE 和 TSLP 的共同免疫致病途径的疾病的潜在治疗方式提出了宝贵的见解:本综合研究的总体目标是深入探讨哮喘疗法的最新进展,并为该领域的未来研究提供指导。
{"title":"Exploring the therapeutic potential of monoclonal antibodies targeting TSLP and IgE in asthma management.","authors":"Shuang Yan, Bowen Yang, Haichuan Qin, Chengzhen Du, Hua Liu, Tengchuan Jin","doi":"10.1007/s00011-024-01908-2","DOIUrl":"10.1007/s00011-024-01908-2","url":null,"abstract":"<p><strong>Background: </strong>In recent years, there has been a growing interest in the utilization of biologic therapies for the management of asthma. Both TSLP and IgE are important immune molecules in the development of asthma, and they are involved in the occurrence and regulation of inflammatory response.</p><p><strong>Methods: </strong>A comprehensive search of PubMed and Web of Science was conducted to gather information on anti-TSLP antibody and anti-IgE antibody.</p><p><strong>Results: </strong>This investigation elucidates the distinct mechanistic roles of Thymic Stromal Lymphopoietin (TSLP) and Immunoglobulin E (IgE) in the pathogenesis of asthma, with a particular emphasis on delineating the therapeutic mechanisms and pharmacological properties of monoclonal antibodies targeting IgE and TSLP. Through a meticulous examination of clinical trials involving paradigmatic agents such as omalizumab and tezepelumab, we offer valuable insights into the potential treatment modalities for diseases with shared immunopathogenic pathways involving IgE and TSLP.</p><p><strong>Conclusion: </strong>The overarching objective of this comprehensive study is to delve into the latest advancements in asthma therapeutics and to provide guidance for future investigations in this domain.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1425-1434"},"PeriodicalIF":4.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-29DOI: 10.1007/s00011-024-01912-6
Chen Zhao, Ruowen Zhao, Xinwen Wu, Kailin Tang, Pan Xu, Xin Chen, Pingyi Zhu, Yuan He
Objective: We intended to map the single-cell profile of OLP, explore the molecular characteristics of unconventional T cells in OLP tissues.
Methods: Buccal mucosa samples from OLP patients and healthy individuals were used to prepare single-cell suspension. Single-cell RNA sequencing was used to analyze the proportion of all the cells, and the molecular characteristics of unconventional T cells. Immunohistochemical staining was used to detect the expression of unconventional T cells marker genes.
Results: The cell clusters from buccal mucosa were categorized into immune cells, fibroblasts, endothelial cells, and epithelial cells. Unconventional T cells with phenotype of CD247+TRDC+NCAM1+ were identified. Immunohistochemical staining revealed higher expression of unconventional T cell marker genes in OLP tissue, predominantly in the lamina propria. In OLP, unconventional T cells are in a unique stress response state, exhibited enhanced NF-κB signaling and apoptosis inhibition, enhanced heat shock protein genes expression, weakened cytotoxic function. A large number of ligand-receptor pairs were found between unconventional T cells and other cells, particularly with fibroblasts and endothelial cells.
Conclusions: This study mapped the single-cell profile of OLP, delineated the molecular characteristics of unconventional T cells in OLP, and uncovered that these unconventional T cells are in a stress response state.
目标:绘制OLP单细胞图谱,探索OLP组织中非常规T细胞的分子特征:我们打算绘制OLP的单细胞图谱,探索OLP组织中非常规T细胞的分子特征:方法:用OLP患者和健康人的口腔黏膜样本制备单细胞悬液。方法:采用OLP患者和健康人的口腔黏膜样本制备单细胞悬液,利用单细胞RNA测序分析所有细胞的比例以及非常规T细胞的分子特征。免疫组化染色用于检测非常规 T 细胞标记基因的表达:结果:颊黏膜细胞群分为免疫细胞、成纤维细胞、内皮细胞和上皮细胞。确定了表型为 CD247+TRDC+NCAM1+ 的非常规 T 细胞。免疫组化染色显示,OLP 组织中非常规 T 细胞标记基因的表达较高,主要集中在固有层。在 OLP 中,非常规 T 细胞处于独特的应激反应状态,表现出 NF-κB 信号传导增强和凋亡抑制、热休克蛋白基因表达增强、细胞毒性功能减弱。在非常规 T 细胞与其他细胞之间,尤其是与成纤维细胞和内皮细胞之间,发现了大量配体-受体对:本研究绘制了OLP的单细胞图谱,描述了OLP中非常规T细胞的分子特征,并发现这些非常规T细胞处于应激反应状态。
{"title":"Function of unconventional T cells in oral lichen planus revealed by single-cell RNA sequencing.","authors":"Chen Zhao, Ruowen Zhao, Xinwen Wu, Kailin Tang, Pan Xu, Xin Chen, Pingyi Zhu, Yuan He","doi":"10.1007/s00011-024-01912-6","DOIUrl":"10.1007/s00011-024-01912-6","url":null,"abstract":"<p><strong>Objective: </strong>We intended to map the single-cell profile of OLP, explore the molecular characteristics of unconventional T cells in OLP tissues.</p><p><strong>Methods: </strong>Buccal mucosa samples from OLP patients and healthy individuals were used to prepare single-cell suspension. Single-cell RNA sequencing was used to analyze the proportion of all the cells, and the molecular characteristics of unconventional T cells. Immunohistochemical staining was used to detect the expression of unconventional T cells marker genes.</p><p><strong>Results: </strong>The cell clusters from buccal mucosa were categorized into immune cells, fibroblasts, endothelial cells, and epithelial cells. Unconventional T cells with phenotype of CD247<sup>+</sup>TRDC<sup>+</sup>NCAM1<sup>+</sup> were identified. Immunohistochemical staining revealed higher expression of unconventional T cell marker genes in OLP tissue, predominantly in the lamina propria. In OLP, unconventional T cells are in a unique stress response state, exhibited enhanced NF-κB signaling and apoptosis inhibition, enhanced heat shock protein genes expression, weakened cytotoxic function. A large number of ligand-receptor pairs were found between unconventional T cells and other cells, particularly with fibroblasts and endothelial cells.</p><p><strong>Conclusions: </strong>This study mapped the single-cell profile of OLP, delineated the molecular characteristics of unconventional T cells in OLP, and uncovered that these unconventional T cells are in a stress response state.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1477-1492"},"PeriodicalIF":4.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}