Pub Date : 2023-07-14DOI: 10.3390/infrastructures8070112
G. Nalon, J. C. L. Ribeiro, L. Pedroti, R. M. D. Silva, E. N. D. D. Araújo, Rodrigo Felipe Santos, G. E. S. Lima
The structural performance of civil engineering infrastructures exposed to elevated temperatures has been investigated in many recent works. Some of these studies evaluated the residual mechanical behavior of masonry prisms subjected to high temperatures, as these specimens are simplified models (2–5 units in height) that can be easily produced and tested, in terms of operational and economic factors. However, there is no previous literature review on the mechanical properties of fire-damaged masonry prisms. Therefore, this paper presents an investigation of the current state-of-the-art on this topic. It provides a careful review of recent knowledge on the failure mechanisms, residual compressive strength, modulus of elasticity, and stress–strain behavior of masonry prisms made with different types of units, mortars, and/or grout after exposure to different types of thermal treatments. Based on the revised information, future research directions on the scientific field of masonry infrastructures are reported.
{"title":"Review of Recent Progress on the Effects of High Temperatures on the Mechanical Behavior of Masonry Prisms","authors":"G. Nalon, J. C. L. Ribeiro, L. Pedroti, R. M. D. Silva, E. N. D. D. Araújo, Rodrigo Felipe Santos, G. E. S. Lima","doi":"10.3390/infrastructures8070112","DOIUrl":"https://doi.org/10.3390/infrastructures8070112","url":null,"abstract":"The structural performance of civil engineering infrastructures exposed to elevated temperatures has been investigated in many recent works. Some of these studies evaluated the residual mechanical behavior of masonry prisms subjected to high temperatures, as these specimens are simplified models (2–5 units in height) that can be easily produced and tested, in terms of operational and economic factors. However, there is no previous literature review on the mechanical properties of fire-damaged masonry prisms. Therefore, this paper presents an investigation of the current state-of-the-art on this topic. It provides a careful review of recent knowledge on the failure mechanisms, residual compressive strength, modulus of elasticity, and stress–strain behavior of masonry prisms made with different types of units, mortars, and/or grout after exposure to different types of thermal treatments. Based on the revised information, future research directions on the scientific field of masonry infrastructures are reported.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49586875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-13DOI: 10.3390/infrastructures8070111
Ulrik Ekman
This article addresses the issue of developing designs of resilient hydrological infrastructures for cities facing sea level rise in the Anthropocene. It undertakes short case studies of differently scaled cities, three in the Global North and three in the Global South. The aim is to investigate the current water management situations in order to reveal potentials for increased urban and environmental resilience. Cities are approached as complex adaptive systems (CAS) negotiating uncertainty that concerns designing for resilience, understood as viable transitions for their interlinked social, ecological, and technological systems (SETS). The main finding is that, despite obvious differences, the six cases are surprisingly similar. Potentials for increased hydrological resilience reside in design approaches that work differently with what is currently deprivileged and considered ‘merely’ peripheral. Peripheral cities and the peripheries of coastal cities are found to be of key rather than minor adaptive infrastructural import. To reprivilege the peripheral here means to adopt more dynamically flexible, long-term, decentralized, and nonanthropocentric urban design approaches to water and infrastructures. Specifically, this article advocates thinking about water via at least four critical displacements. These displacements point toward alternatives concerning excessively static and land-based designs, short-term planning, overly anthropocentric conceptions of the city environment distinction, and undue centrism in planetary urbanization of the Global North and Global South. In conclusion, this article presents a brief outlook to other cases which suggest that greater resilience potentials are likely to be found in planning for the complexly ecotone city. This works mostly bottom-up from the local regimes for water sensitive infrastructures to regional network designs that can engage with larger climatic and ecological landscapes.
{"title":"Peripheral: Resilient Hydrological Infrastructures","authors":"Ulrik Ekman","doi":"10.3390/infrastructures8070111","DOIUrl":"https://doi.org/10.3390/infrastructures8070111","url":null,"abstract":"This article addresses the issue of developing designs of resilient hydrological infrastructures for cities facing sea level rise in the Anthropocene. It undertakes short case studies of differently scaled cities, three in the Global North and three in the Global South. The aim is to investigate the current water management situations in order to reveal potentials for increased urban and environmental resilience. Cities are approached as complex adaptive systems (CAS) negotiating uncertainty that concerns designing for resilience, understood as viable transitions for their interlinked social, ecological, and technological systems (SETS). The main finding is that, despite obvious differences, the six cases are surprisingly similar. Potentials for increased hydrological resilience reside in design approaches that work differently with what is currently deprivileged and considered ‘merely’ peripheral. Peripheral cities and the peripheries of coastal cities are found to be of key rather than minor adaptive infrastructural import. To reprivilege the peripheral here means to adopt more dynamically flexible, long-term, decentralized, and nonanthropocentric urban design approaches to water and infrastructures. Specifically, this article advocates thinking about water via at least four critical displacements. These displacements point toward alternatives concerning excessively static and land-based designs, short-term planning, overly anthropocentric conceptions of the city environment distinction, and undue centrism in planetary urbanization of the Global North and Global South. In conclusion, this article presents a brief outlook to other cases which suggest that greater resilience potentials are likely to be found in planning for the complexly ecotone city. This works mostly bottom-up from the local regimes for water sensitive infrastructures to regional network designs that can engage with larger climatic and ecological landscapes.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41591019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-30DOI: 10.3390/infrastructures8070110
J. Pistrol, Mario Hager, F. Kopf, D. Adam
Vibratory rollers are mainly used for the near-surface compaction of granular media for a wide variety of construction tasks. In addition to the pronounced depth effect, vibratory rollers have offered the possibility of work-integrated compaction control (intelligent compaction) for decades. State-of-the-art measurement values for intelligent compaction (ICMVs) only take into account, if at all, a constant geometry of the contact area between the drum and soil. Therefore, this paper introduces a comparatively simple mechanical model, which describes the dynamic interaction between the vibrating drum and the underlying soil during compaction to investigate the influence of the changing geometry of the contact area on the motion behavior of the vibrating drum. The model is tested on realistic soil and machine parameters, and the results of the simulation with varying drum contact geometry are compared to a conventional simulation with a fixed contact geometry. The analysis shows that only a consideration of the varying drum contact geometry can map the dynamic interaction between the vibrating drum and soil sufficiently and provide a motion behavior of the drum that is in good accordance with the field measurements.
{"title":"Consideration of the Variable Contact Geometry in Vibratory Roller Compaction","authors":"J. Pistrol, Mario Hager, F. Kopf, D. Adam","doi":"10.3390/infrastructures8070110","DOIUrl":"https://doi.org/10.3390/infrastructures8070110","url":null,"abstract":"Vibratory rollers are mainly used for the near-surface compaction of granular media for a wide variety of construction tasks. In addition to the pronounced depth effect, vibratory rollers have offered the possibility of work-integrated compaction control (intelligent compaction) for decades. State-of-the-art measurement values for intelligent compaction (ICMVs) only take into account, if at all, a constant geometry of the contact area between the drum and soil. Therefore, this paper introduces a comparatively simple mechanical model, which describes the dynamic interaction between the vibrating drum and the underlying soil during compaction to investigate the influence of the changing geometry of the contact area on the motion behavior of the vibrating drum. The model is tested on realistic soil and machine parameters, and the results of the simulation with varying drum contact geometry are compared to a conventional simulation with a fixed contact geometry. The analysis shows that only a consideration of the varying drum contact geometry can map the dynamic interaction between the vibrating drum and soil sufficiently and provide a motion behavior of the drum that is in good accordance with the field measurements.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41927986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-29DOI: 10.3390/infrastructures8070109
Julio Cantero-Durango, Rodrigo Polo-Mendoza, G. Martinez-Arguelles, Luis Fuentes
Continuous research efforts have been developed in the literature to raise the sustainability components of the road infrastructure industry, i.e., reduce potential contaminants and augment financial profitability. In this regard, this investigation aims to explore the feasibility of producing Hot Mix Asphalt (HMA) with the inclusion of Recycled Concrete Aggregate (RCA) as a partial substitute for coarse Natural Aggregates (NAs). Thus, four different HMAs were considered, namely HMAs with coarse RCA contents of 0, 15, 30, and 45%. Specifically, the mechanical and sustainability properties of the asphalt mixtures were determined. On the one hand, the Marshall design parameters, resilient modulus, moisture susceptibility, rutting resistance, and fatigue life were addressed as mechanical properties. Meanwhile, regarding the sustainability properties, the environmental impacts and production costs were estimated using the Life Cycle Assessment (LCA) and the Life Cycle Cost Analysis (LCCA) methodologies, respectively. Consequently, the following conclusions were obtained: (i) as the coarse RCA content increases, the mechanical behavior of the HMA progressively deteriorates; (ii) this decrease in mechanical performance is acceptable up to a 15% RCA of coarse RCA, whereas for higher dosages this alteration is abrupt; and (iii) the RCA only generates sustainability benefits at a 15% replacement amount.
{"title":"Properties of Hot Mix Asphalt (HMA) with Several Contents of Recycled Concrete Aggregate (RCA)","authors":"Julio Cantero-Durango, Rodrigo Polo-Mendoza, G. Martinez-Arguelles, Luis Fuentes","doi":"10.3390/infrastructures8070109","DOIUrl":"https://doi.org/10.3390/infrastructures8070109","url":null,"abstract":"Continuous research efforts have been developed in the literature to raise the sustainability components of the road infrastructure industry, i.e., reduce potential contaminants and augment financial profitability. In this regard, this investigation aims to explore the feasibility of producing Hot Mix Asphalt (HMA) with the inclusion of Recycled Concrete Aggregate (RCA) as a partial substitute for coarse Natural Aggregates (NAs). Thus, four different HMAs were considered, namely HMAs with coarse RCA contents of 0, 15, 30, and 45%. Specifically, the mechanical and sustainability properties of the asphalt mixtures were determined. On the one hand, the Marshall design parameters, resilient modulus, moisture susceptibility, rutting resistance, and fatigue life were addressed as mechanical properties. Meanwhile, regarding the sustainability properties, the environmental impacts and production costs were estimated using the Life Cycle Assessment (LCA) and the Life Cycle Cost Analysis (LCCA) methodologies, respectively. Consequently, the following conclusions were obtained: (i) as the coarse RCA content increases, the mechanical behavior of the HMA progressively deteriorates; (ii) this decrease in mechanical performance is acceptable up to a 15% RCA of coarse RCA, whereas for higher dosages this alteration is abrupt; and (iii) the RCA only generates sustainability benefits at a 15% replacement amount.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47302720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27DOI: 10.3390/infrastructures8070108
E. Shcherban’, S. A. Stel’makh, A. Beskopylny, L. Mailyan, B. Meskhi, V. Varavka, A. Chernil’nik, D. Elshaeva, O. Ananova
A current problem in the construction industry is the lack of complex, scientifically based technological materials and design solutions for universal types of building materials, products, and structures, especially in terms of structures operating under conditions of aggressive chloride exposure. The aim of the study was to compare and evaluate the differences in the durability of conventional and variotropic concretes made using three different technologies, vibrating, centrifuging, and vibro-centrifuging, modified with the addition of microsilica, under conditions of cyclic chloride attack. Laboratory experiments and analyses using scanning electron microscopy were conducted. Vibro-centrifuged concrete showed the highest resistance to cyclic aggressive chloride exposure, which was expressed by a lower percentage drop in compressive strength compared to vibrated (87%) and centrifuged concrete (24%). The use of a microsilica as a modifying additive in the amount of 2–6%, instead of as a part of the binder, had a positive effect on the resistance of concrete to cyclic chloride attack. The most effective intervention was the introduction of additives in the amount of 4%. There was a reduction in the loss of strength of vibrated, centrifuged, and vibro-centrifuged concrete after 90 “dry-wet” cycles, as a result of the use of a modifying additive, in an amount between 45% and 55%, depending on the type of technology being used for producing a composite. The combined effect of the use of vibro-centrifuged concrete and microsilica led to a 188% decrease in strength loss resulting from cyclic chloride exposure.
{"title":"The Influence of Recipe-Technological Factors on the Resistance to Chloride Attack of Variotropic and Conventional Concrete","authors":"E. Shcherban’, S. A. Stel’makh, A. Beskopylny, L. Mailyan, B. Meskhi, V. Varavka, A. Chernil’nik, D. Elshaeva, O. Ananova","doi":"10.3390/infrastructures8070108","DOIUrl":"https://doi.org/10.3390/infrastructures8070108","url":null,"abstract":"A current problem in the construction industry is the lack of complex, scientifically based technological materials and design solutions for universal types of building materials, products, and structures, especially in terms of structures operating under conditions of aggressive chloride exposure. The aim of the study was to compare and evaluate the differences in the durability of conventional and variotropic concretes made using three different technologies, vibrating, centrifuging, and vibro-centrifuging, modified with the addition of microsilica, under conditions of cyclic chloride attack. Laboratory experiments and analyses using scanning electron microscopy were conducted. Vibro-centrifuged concrete showed the highest resistance to cyclic aggressive chloride exposure, which was expressed by a lower percentage drop in compressive strength compared to vibrated (87%) and centrifuged concrete (24%). The use of a microsilica as a modifying additive in the amount of 2–6%, instead of as a part of the binder, had a positive effect on the resistance of concrete to cyclic chloride attack. The most effective intervention was the introduction of additives in the amount of 4%. There was a reduction in the loss of strength of vibrated, centrifuged, and vibro-centrifuged concrete after 90 “dry-wet” cycles, as a result of the use of a modifying additive, in an amount between 45% and 55%, depending on the type of technology being used for producing a composite. The combined effect of the use of vibro-centrifuged concrete and microsilica led to a 188% decrease in strength loss resulting from cyclic chloride exposure.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48260021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-25DOI: 10.3390/infrastructures8070107
Saif Alzabeebee, Safaa Manfi Alshibany, S. Keawsawasvong, D. Forcellini
Tire-derived aggregate (TDA) has been proposed in recent studies to be considered as part of backfill soil to reduce stress and strain developed in buried pipes. However, little attention is paid to checking the influence of TDA on the behavior of concrete pipes buried under trafficked roads. This research studies this topic using a verified numerical model that considers the three-dimensional nature of traffic load effects. Different road sections were considered in the analyses to cover the effect of the presence of the pavement layer and the effect of the thickness of the base and subbase materials. The results revealed that the presence of TDA decreases the bending moment induced in the pipe wall. However, the TDA performance was found to be remarkably influenced by burial depth, and it increases as the burial depth decreases. Furthermore, the TDA influence for pipes with outer diameters of 1.49 m and 2.89 m is much lower than that of 0.41 m and 0.79 m. Importantly, it was found that the highest reduction in the bending moment was achieved for the 1.0 m burial depth. The results of this research provide insight into the performance of TDA and, thus, will help practitioners make a decision regarding the use of TDA in the routine design of buried concrete pipes.
{"title":"The Efficiency of the Benefits of Tire-Derived Aggregate Backfill for Buried Concrete Pipes Beneath Paved and Unpaved Roads","authors":"Saif Alzabeebee, Safaa Manfi Alshibany, S. Keawsawasvong, D. Forcellini","doi":"10.3390/infrastructures8070107","DOIUrl":"https://doi.org/10.3390/infrastructures8070107","url":null,"abstract":"Tire-derived aggregate (TDA) has been proposed in recent studies to be considered as part of backfill soil to reduce stress and strain developed in buried pipes. However, little attention is paid to checking the influence of TDA on the behavior of concrete pipes buried under trafficked roads. This research studies this topic using a verified numerical model that considers the three-dimensional nature of traffic load effects. Different road sections were considered in the analyses to cover the effect of the presence of the pavement layer and the effect of the thickness of the base and subbase materials. The results revealed that the presence of TDA decreases the bending moment induced in the pipe wall. However, the TDA performance was found to be remarkably influenced by burial depth, and it increases as the burial depth decreases. Furthermore, the TDA influence for pipes with outer diameters of 1.49 m and 2.89 m is much lower than that of 0.41 m and 0.79 m. Importantly, it was found that the highest reduction in the bending moment was achieved for the 1.0 m burial depth. The results of this research provide insight into the performance of TDA and, thus, will help practitioners make a decision regarding the use of TDA in the routine design of buried concrete pipes.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45959797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Damage accumulation due to multiple seismic impacts over time has a significant effect on the residual service life of the bridge. A reliability-based framework was developed to make decisions in bridge maintenance activities. The feature of the framework enables quantifying the time-dependent probability of failure of bridges due to the impact of multiple earthquakes and progressive deterioration. To estimate the reliability of the bridge systems, the probability of failure of the bridge was used. Two case studies were utilised to demonstrate how the method can be applied to the real world. Results show that the accumulated damage caused by multiple earthquakes and progressive deterioration significantly impact the remaining useful life of the bridge. Furthermore, the soil conditions predominantly influence the progressive deterioration and reduce the service life of the bridge. Overall, the proposed framework enables the sustainable decision-making process for bridge maintenance activities. The results reveal the necessity of including the combined impact in the bridge maintenance system and that there is a more than 40% increase in the probability of failure, due to the combined effect of progressive deterioration and earthquake impacts, compared to the impact only due to seismic loads for the considered case study bridge.
{"title":"A Reliability-Based Framework for Damage Accumulation Due to Multiple Earthquakes: A Case Study on Bridges","authors":"Nilupa Herath, Lihai Zhang, Priyan Mendis, Satheeskumar Navaratnam, Weena Lokuge, Sujeeva Setunge","doi":"10.3390/infrastructures8060106","DOIUrl":"https://doi.org/10.3390/infrastructures8060106","url":null,"abstract":"Damage accumulation due to multiple seismic impacts over time has a significant effect on the residual service life of the bridge. A reliability-based framework was developed to make decisions in bridge maintenance activities. The feature of the framework enables quantifying the time-dependent probability of failure of bridges due to the impact of multiple earthquakes and progressive deterioration. To estimate the reliability of the bridge systems, the probability of failure of the bridge was used. Two case studies were utilised to demonstrate how the method can be applied to the real world. Results show that the accumulated damage caused by multiple earthquakes and progressive deterioration significantly impact the remaining useful life of the bridge. Furthermore, the soil conditions predominantly influence the progressive deterioration and reduce the service life of the bridge. Overall, the proposed framework enables the sustainable decision-making process for bridge maintenance activities. The results reveal the necessity of including the combined impact in the bridge maintenance system and that there is a more than 40% increase in the probability of failure, due to the combined effect of progressive deterioration and earthquake impacts, compared to the impact only due to seismic loads for the considered case study bridge.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135236341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-14DOI: 10.3390/infrastructures8060105
Margherita Pazzini, Leonardo Cameli, C. Lantieri, V. Vignali, Daniele Mingozzi, G. Crescenzo
BIM (building information modelling) has led to substantial improvements in all design steps. Applied mainly as an information management system in the digital design of structures and buildings, only in recent years has the use of BIM also extended to the construction of road infrastructure. The so-called I-BIM (infrastructure building information modelling) methodology supports the designer in the phases of construction and execution of the design considering all aspects related to the project, including sustainability. Through the software “Roads” of “SierraSoft S.r.l.”, in this article, the I-BIM approach has been used to design a 35 km cycle path as sustainable as possible. From an operational point of view, the design of a cycle path section begins with the modelling of the infrastructure in all its aspects: a study of the route, analysis of interference, modelling of the infrastructure (floor plan, profile and sections) and an intersection study. Creating an infrastructure that increases soft mobility vehicles through a comprehensive design, attracting as many users as possible, is the real innovative challenge.
{"title":"BIM Modelling of the AQP Touristic Cycle Path","authors":"Margherita Pazzini, Leonardo Cameli, C. Lantieri, V. Vignali, Daniele Mingozzi, G. Crescenzo","doi":"10.3390/infrastructures8060105","DOIUrl":"https://doi.org/10.3390/infrastructures8060105","url":null,"abstract":"BIM (building information modelling) has led to substantial improvements in all design steps. Applied mainly as an information management system in the digital design of structures and buildings, only in recent years has the use of BIM also extended to the construction of road infrastructure. The so-called I-BIM (infrastructure building information modelling) methodology supports the designer in the phases of construction and execution of the design considering all aspects related to the project, including sustainability. Through the software “Roads” of “SierraSoft S.r.l.”, in this article, the I-BIM approach has been used to design a 35 km cycle path as sustainable as possible. From an operational point of view, the design of a cycle path section begins with the modelling of the infrastructure in all its aspects: a study of the route, analysis of interference, modelling of the infrastructure (floor plan, profile and sections) and an intersection study. Creating an infrastructure that increases soft mobility vehicles through a comprehensive design, attracting as many users as possible, is the real innovative challenge.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45875809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.3390/infrastructures8060103
A. Satyanaga, Gerarldo Davin Aventian, Yerkezhan Makenova, Aigerim Zhakiyeva, Zhuldyz Kamaliyeva, Sung-Woo Moon, Jong R. Kim
BIM (Building Information Modelling) is used to create and manage data during design, construction, and operation. It helps to effectively manage resources and optimize processes in the construction industry. Geotechnical engineering is one of the complex disciplines that may require BIM integration. Various data types must be provided in a timely manner and require real-time feedback, fast processing, and construction guidance. The first problem presented in the paper is the use of the traditional 2D-based method used by engineers for a particular task. It seems to be impractical when some adjustments are included. Another issue is the lack of communication between the workers. It poses the problem of information exchange and misunderstanding during the interpretation of technical data. This paper aims to find different integration techniques and steps for integrating geotechnical data into the BIM process. Methods used to examine the topic are qualitative research, literature review, and case studies. These methods were useful for studying the problems and introducing the soil information into the BIM application. Firstly, a case study with I-BIM was considered, and the BIM–FEM–BIM interaction was applied to introduce geotechnical information with Plaxis 3D. The results have shown that further development of BIM in infrastructure is needed. Another case study explored the present state of the geotechnical design in BIM and potential solutions. The new frameworks were recreated: many boreholes were imported to the BIM, and a 3D geometric model of the entire hill was created for the hill fortification structure with soil clogging. The last two studies in Malaysia modeled a 3D subsurface and used two geotechnical formats, AGS and CVS. The first includes more information than the second; however, the second can be used for a more generalized model. Overall, BIM–FEM interaction can be used as a geometric model for data transfer. However, the open data format of the Industry Foundation Class (IFC) or geotechnical data format of the AGS and CVS were suggested to be used for greater flexibility. It was also found that excessive information makes the model loaded and complex. Therefore, it was recommended that big data be summarized properly with minimal loss of necessary data. Further research is needed to understand data transmission schemes of geotechnical information better. Moreover, it is recommended to put all the strategies directly into practice to create a geotechnical design.
BIM (Building Information modeling)用于在设计、施工和运营过程中创建和管理数据。它有助于有效地管理建筑行业的资源和优化流程。岩土工程是一门复杂的学科,可能需要BIM集成。各种数据类型必须及时提供,需要实时反馈、快速处理和施工指导。本文提出的第一个问题是工程师在特定任务中使用传统的基于2d的方法。当包括一些调整时,它似乎是不切实际的。另一个问题是工人之间缺乏沟通。它在技术数据解释过程中产生了信息交换和误解的问题。本文旨在寻找将岩土工程数据集成到BIM过程中的不同集成技术和步骤。用于检查主题的方法是定性研究,文献综述和案例研究。这些方法对于研究问题和将土壤信息引入BIM应用程序非常有用。首先,以I-BIM为例,采用BIM-FEM-BIM交互方式引入Plaxis 3D岩土工程信息。结果表明,BIM在基础设施中的进一步发展是必要的。另一个案例研究探讨了BIM中岩土工程设计的现状和潜在的解决方案。新的框架被重新创建:许多钻孔被导入到BIM中,整个山丘的3D几何模型被创建为具有土壤堵塞的山丘防御结构。在马来西亚进行的最后两项研究模拟了三维地下,并使用了两种岩土技术格式,AGS和CVS。第一种比第二种包含更多的信息;然而,第二种方法可以用于更一般化的模型。总体而言,BIM-FEM相互作用可以作为数据传递的几何模型。然而,建议采用工业基础等级(IFC)的开放数据格式或AGS和CVS的岩土数据格式,以获得更大的灵活性。研究还发现,过多的信息会使模型负载过重,变得复杂。因此,建议对大数据进行适当的汇总,尽量减少必要数据的损失。为了更好地理解岩土工程信息的数据传输方案,需要进一步的研究。此外,建议将所有策略直接付诸实践,以创建岩土工程设计。
{"title":"Building Information Modelling for Application in Geotechnical Engineering","authors":"A. Satyanaga, Gerarldo Davin Aventian, Yerkezhan Makenova, Aigerim Zhakiyeva, Zhuldyz Kamaliyeva, Sung-Woo Moon, Jong R. Kim","doi":"10.3390/infrastructures8060103","DOIUrl":"https://doi.org/10.3390/infrastructures8060103","url":null,"abstract":"BIM (Building Information Modelling) is used to create and manage data during design, construction, and operation. It helps to effectively manage resources and optimize processes in the construction industry. Geotechnical engineering is one of the complex disciplines that may require BIM integration. Various data types must be provided in a timely manner and require real-time feedback, fast processing, and construction guidance. The first problem presented in the paper is the use of the traditional 2D-based method used by engineers for a particular task. It seems to be impractical when some adjustments are included. Another issue is the lack of communication between the workers. It poses the problem of information exchange and misunderstanding during the interpretation of technical data. This paper aims to find different integration techniques and steps for integrating geotechnical data into the BIM process. Methods used to examine the topic are qualitative research, literature review, and case studies. These methods were useful for studying the problems and introducing the soil information into the BIM application. Firstly, a case study with I-BIM was considered, and the BIM–FEM–BIM interaction was applied to introduce geotechnical information with Plaxis 3D. The results have shown that further development of BIM in infrastructure is needed. Another case study explored the present state of the geotechnical design in BIM and potential solutions. The new frameworks were recreated: many boreholes were imported to the BIM, and a 3D geometric model of the entire hill was created for the hill fortification structure with soil clogging. The last two studies in Malaysia modeled a 3D subsurface and used two geotechnical formats, AGS and CVS. The first includes more information than the second; however, the second can be used for a more generalized model. Overall, BIM–FEM interaction can be used as a geometric model for data transfer. However, the open data format of the Industry Foundation Class (IFC) or geotechnical data format of the AGS and CVS were suggested to be used for greater flexibility. It was also found that excessive information makes the model loaded and complex. Therefore, it was recommended that big data be summarized properly with minimal loss of necessary data. Further research is needed to understand data transmission schemes of geotechnical information better. Moreover, it is recommended to put all the strategies directly into practice to create a geotechnical design.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47061774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.3390/infrastructures8060104
A. Sorlini, Lorenzo Maxia, M. Patrucco, E. Pira
When accompanied by a rigorous in-depth risk assessment and management, the introduction of innovative technologies in underground construction activities can substantially contribute to the overall quality and the health and safety of workers. The aim of this study is to investigate the potential improvements resulting from the use of emerging systems within this challenging environment, in the current context of technological development. The results, obtained through an analysis of the available literature on the topic, are divided based on their characteristics into support in design, Industry 4.0 context, management phase, and personal systems. Next, we discuss the results of some field tests of different emerging technologies drawn from experience gained in TELT—Tunnel Euralpin Lyon Turin SAS construction sites. The literature review and the feedback from practical applications in some case histories provide an overview of the main technologies and trends for the improvement of Occupational Safety and Health, although a fully integrated system still seems a distant prospect in underground construction sites. This study can contribute to the dissemination of the culture of safety and stimulate further research on the topic.
{"title":"Occupational Safety and Health Improvements through Innovative Technologies in Underground Construction Sites: Main Trends and Some Case Histories","authors":"A. Sorlini, Lorenzo Maxia, M. Patrucco, E. Pira","doi":"10.3390/infrastructures8060104","DOIUrl":"https://doi.org/10.3390/infrastructures8060104","url":null,"abstract":"When accompanied by a rigorous in-depth risk assessment and management, the introduction of innovative technologies in underground construction activities can substantially contribute to the overall quality and the health and safety of workers. The aim of this study is to investigate the potential improvements resulting from the use of emerging systems within this challenging environment, in the current context of technological development. The results, obtained through an analysis of the available literature on the topic, are divided based on their characteristics into support in design, Industry 4.0 context, management phase, and personal systems. Next, we discuss the results of some field tests of different emerging technologies drawn from experience gained in TELT—Tunnel Euralpin Lyon Turin SAS construction sites. The literature review and the feedback from practical applications in some case histories provide an overview of the main technologies and trends for the improvement of Occupational Safety and Health, although a fully integrated system still seems a distant prospect in underground construction sites. This study can contribute to the dissemination of the culture of safety and stimulate further research on the topic.","PeriodicalId":13601,"journal":{"name":"Infrastructures","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45681457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}