Insulin-like peptides (ILPs) act as crucial reproductive neuropeptides in insects, regulating insect reproduction through the insulin signaling pathway (ISP). Our previous studies have found that the sublethal concentrations (LC1 and LC10) of lambda-cyhalothrin (λCy) could induce severe reproductive toxicity in the lacewing, Chrysoperla sinica (Tjeder), but the toxicological mechanism remains unclear. This study discovered that λCy could inhibit CsILP transcription, leading to a decrease in insulin content and downregulation of C. sinica insulin receptor (CsInR) and C. sinica forkhead box O (CsFOXO) expression in ISP. Interference with CsILP expression resulted in downregulation of C. sinica vitellogenin (CsVg) and decreasing fecundity, while exogenous injection of bovine insulin promoted upregulation of CsVg expression and facilitated reproduction in female adults of C. sinica. Meanwhile, interference with FOXO of ILP downstream transcription factor could lead to downregulation of CsVg, hindering ovarian development and resulting in a decrease in egg production. However, exogenous injection of bovine insulin could remedy the effects caused by FOXO interference. In addition, ILP mediates juvenile hormone and 20-hydroxyecdysone biosynthesis by acting on their synthetic regulatory enzymes and influences the signal transduction of the 2 reproductive endocrine hormones, thereby regulating the reproductive endocrine environment in C. sinica. In conclusion, λCy inhibits CsILP expression, leading to disorder of ISP, leading to the reduced fecundity of C. sinica.
{"title":"Sublethal concentration of λ-cyhalothrin inhibits insulin-like peptides and leads to reproductive toxicity in Chrysoperla sinica.","authors":"Nianmeng Wang, Zijian Wang, Siyuan Gong, Yashu Zhang, Chaobin Xue","doi":"10.1111/1744-7917.13463","DOIUrl":"https://doi.org/10.1111/1744-7917.13463","url":null,"abstract":"<p><p>Insulin-like peptides (ILPs) act as crucial reproductive neuropeptides in insects, regulating insect reproduction through the insulin signaling pathway (ISP). Our previous studies have found that the sublethal concentrations (LC<sub>1</sub> and LC<sub>10</sub>) of lambda-cyhalothrin (λCy) could induce severe reproductive toxicity in the lacewing, Chrysoperla sinica (Tjeder), but the toxicological mechanism remains unclear. This study discovered that λCy could inhibit CsILP transcription, leading to a decrease in insulin content and downregulation of C. sinica insulin receptor (CsInR) and C. sinica forkhead box O (CsFOXO) expression in ISP. Interference with CsILP expression resulted in downregulation of C. sinica vitellogenin (CsVg) and decreasing fecundity, while exogenous injection of bovine insulin promoted upregulation of CsVg expression and facilitated reproduction in female adults of C. sinica. Meanwhile, interference with FOXO of ILP downstream transcription factor could lead to downregulation of CsVg, hindering ovarian development and resulting in a decrease in egg production. However, exogenous injection of bovine insulin could remedy the effects caused by FOXO interference. In addition, ILP mediates juvenile hormone and 20-hydroxyecdysone biosynthesis by acting on their synthetic regulatory enzymes and influences the signal transduction of the 2 reproductive endocrine hormones, thereby regulating the reproductive endocrine environment in C. sinica. In conclusion, λCy inhibits CsILP expression, leading to disorder of ISP, leading to the reduced fecundity of C. sinica.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuchen Dong, Tao Chen, Yunru Chen, Yilin Wang, Yihao Yan, Xuerui Liu, Zewen Liu, Na Yu
Spiders are an abundant group of natural enemies preying on insect pests in agroecosystem. But their potential in biological control has not been fully realized due to difficult mass production. One hindrance is the intense intraspecific aggression in spiders. Neurotransmitters such as serotonin play important roles in modulating aggression. Here, we investigated the regulatory function of serotonin (5-hydroxytryptamine [5-HT]) signaling in the intraspecific aggression in a wandering spider Pardosa pseudoannulata (Araneae, Lycosidae). The aggression was quantified with 5 escalated aggression behaviors as approach, chasing, lunging, boxing, and biting. Virgin (VG) females exhibited higher aggression levels but less 5-HT content than post-reproductive (PR) females. Systemic increase of 5-HT via 5-HT injection decreased aggression, while decrease of 5-HT via RNA interference (RNAi) of the tryptophan hydroxylase gene, increased aggression. The involvement of the four 5-HT receptors were determined via individual or combined RNAi. Co-RNAi of the three 5-HT1 genes increased overall aggression with decreased incidents of approach, chasing, lunging, and increased biting. RNAi of 5-HT1B decreased approach and increased biting, whereas RNAi of 5-HT1A or 5-HT1C did not affect aggression. RNAi of 5-HT7 decreased approach only. Therefore, different 5-HT receptor types contribute to different aspects of the inhibitory effects of 5-HT on aggression and provide several pharmacological targets for manipulating spider aggression. 5-HT injection did not affect spiders' predation on their insect prey, the brown planthopper Nilaparvata lugens. The findings reveal 1 neuronal mechanism regulating intraspecific aggression in spiders and provide an insight in developing aggression suppression strategies for spider mass rearing.
{"title":"Serotonin suppresses intraspecific aggression in an agrobiont spider, Pardosa pseudoannulata, without affecting predation on insects.","authors":"Shuchen Dong, Tao Chen, Yunru Chen, Yilin Wang, Yihao Yan, Xuerui Liu, Zewen Liu, Na Yu","doi":"10.1111/1744-7917.13456","DOIUrl":"https://doi.org/10.1111/1744-7917.13456","url":null,"abstract":"<p><p>Spiders are an abundant group of natural enemies preying on insect pests in agroecosystem. But their potential in biological control has not been fully realized due to difficult mass production. One hindrance is the intense intraspecific aggression in spiders. Neurotransmitters such as serotonin play important roles in modulating aggression. Here, we investigated the regulatory function of serotonin (5-hydroxytryptamine [5-HT]) signaling in the intraspecific aggression in a wandering spider Pardosa pseudoannulata (Araneae, Lycosidae). The aggression was quantified with 5 escalated aggression behaviors as approach, chasing, lunging, boxing, and biting. Virgin (VG) females exhibited higher aggression levels but less 5-HT content than post-reproductive (PR) females. Systemic increase of 5-HT via 5-HT injection decreased aggression, while decrease of 5-HT via RNA interference (RNAi) of the tryptophan hydroxylase gene, increased aggression. The involvement of the four 5-HT receptors were determined via individual or combined RNAi. Co-RNAi of the three 5-HT1 genes increased overall aggression with decreased incidents of approach, chasing, lunging, and increased biting. RNAi of 5-HT1B decreased approach and increased biting, whereas RNAi of 5-HT1A or 5-HT1C did not affect aggression. RNAi of 5-HT7 decreased approach only. Therefore, different 5-HT receptor types contribute to different aspects of the inhibitory effects of 5-HT on aggression and provide several pharmacological targets for manipulating spider aggression. 5-HT injection did not affect spiders' predation on their insect prey, the brown planthopper Nilaparvata lugens. The findings reveal 1 neuronal mechanism regulating intraspecific aggression in spiders and provide an insight in developing aggression suppression strategies for spider mass rearing.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yulong Wang, Ying Dong, Kexin Liu, Gen Li, Jing Cheng, Yin Cao, Yang Yang, Li Qin, Bo Huang
Entomopathogenic fungi have been widely used as the main mycoinsecticide for controlling agricultural and forest pests. The effector molecules of these mycopathogens have evolved to adapt to their hosts. The role of fungal effectors in evading the host immune system in insects remains mainly unclear. We characterized the widely distributed fungal effector necrosis-inducing-like secreted protein 1 (NLS1) in the entomopathogenic fungus Metarhizium robertsii. Our findings revealed the presence of M. robertsii NLS1 (MrNLS1) in host hemocytes during the early stage of hemocoel infection. MrNLS1 knock down (ΔMrNLS1) reduced fungal pathogenicity during infection and altered the expression of host immune genes. The molecular docking results and the yeast 2-hybrid assay confirmed that MrNLS1 interacts with the host defense protein Hdd11. The phylogenetic analysis indicated that Hdd11 is conserved across a broad range of Lepidoptera species. Knock down of hdd11 in Helicoverpa armigera, Bombyx mori, and Galleria mellonella markedly suppressed their immune responses against M. robertsii. However, no significant difference was observed in the mean lethal time between hdd11-knockdown Lepidoptera species infected with ΔMrNLS1 and those infected with wild-type M. robertsii. Therefore, in Lepidoptera insects, Hdd11 is essential for fungal defense. In conclusion, M. robertsii infects Lepidoptera insects by targeting host Hdd11 through its protein MrNLS1, thereby suppressing the host immune response. Our findings clarify the molecular mechanisms underlying fungal infection pathogenesis.
昆虫病原真菌已被广泛用作控制农业和森林害虫的主要杀菌剂。这些真菌病原体的效应分子不断进化以适应其宿主。真菌效应分子在昆虫体内逃避宿主免疫系统的作用主要还不清楚。我们对昆虫病原真菌罗伯茨梅塔真菌中广泛分布的真菌效应物坏死诱导样分泌蛋白 1(NLS1)进行了鉴定。我们的研究结果表明,在血球感染的早期阶段,宿主血细胞中存在罗伯茨真菌 NLS1(MrNLS1)。MrNLS1敲除(ΔMrNLS1)降低了真菌在感染过程中的致病性,并改变了宿主免疫基因的表达。分子对接结果和酵母双杂交试验证实,MrNLS1与宿主防御蛋白Hdd11相互作用。系统进化分析表明,Hdd11在多种鳞翅目昆虫中都是保守的。在 Helicoverpa armigera、Bombyx mori 和 Galleria mellonella 中敲除 hdd11 能明显抑制它们对 M. robertsii 的免疫反应。然而,在感染ΔMrNLS1的鳞翅目昆虫与感染野生型罗伯茨蚕蛾的鳞翅目昆虫之间,hdd11基因敲除后的平均致死时间没有明显差异。因此,在鳞翅目昆虫中,Hdd11对真菌防御至关重要。总之,M. robertsii通过其蛋白MrNLS1靶向宿主Hdd11,从而抑制宿主的免疫反应,从而感染鳞翅目昆虫。我们的发现阐明了真菌感染致病的分子机制。
{"title":"Conserved fungal effector NLS1 suppresses Lepidoptera insect immunity by targeting the host defense protein Hdd11.","authors":"Yulong Wang, Ying Dong, Kexin Liu, Gen Li, Jing Cheng, Yin Cao, Yang Yang, Li Qin, Bo Huang","doi":"10.1111/1744-7917.13454","DOIUrl":"https://doi.org/10.1111/1744-7917.13454","url":null,"abstract":"<p><p>Entomopathogenic fungi have been widely used as the main mycoinsecticide for controlling agricultural and forest pests. The effector molecules of these mycopathogens have evolved to adapt to their hosts. The role of fungal effectors in evading the host immune system in insects remains mainly unclear. We characterized the widely distributed fungal effector necrosis-inducing-like secreted protein 1 (NLS1) in the entomopathogenic fungus Metarhizium robertsii. Our findings revealed the presence of M. robertsii NLS1 (MrNLS1) in host hemocytes during the early stage of hemocoel infection. MrNLS1 knock down (ΔMrNLS1) reduced fungal pathogenicity during infection and altered the expression of host immune genes. The molecular docking results and the yeast 2-hybrid assay confirmed that MrNLS1 interacts with the host defense protein Hdd11. The phylogenetic analysis indicated that Hdd11 is conserved across a broad range of Lepidoptera species. Knock down of hdd11 in Helicoverpa armigera, Bombyx mori, and Galleria mellonella markedly suppressed their immune responses against M. robertsii. However, no significant difference was observed in the mean lethal time between hdd11-knockdown Lepidoptera species infected with ΔMrNLS1 and those infected with wild-type M. robertsii. Therefore, in Lepidoptera insects, Hdd11 is essential for fungal defense. In conclusion, M. robertsii infects Lepidoptera insects by targeting host Hdd11 through its protein MrNLS1, thereby suppressing the host immune response. Our findings clarify the molecular mechanisms underlying fungal infection pathogenesis.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haolin Li, Xue Kong, Yan Fang, Jiangan Hou, Wenjie Zhang, Yongheng Zhang, Jiguang Wei, Xuesheng Li
Juvenile hormones (JHs) play a crucial role in regulating development and reproduction in insects. Most insects predominantly synthesize JH III, which typically involves esterification followed by epoxidation, lepidopteran insects use a pathway of epoxidation followed by esterification. Although hemipteran insects have JH III and JH skipped bisepoxide III (JH SB3), the synthesis pathway and key epoxidases remain unclear. This study was conducted on Aphis craccivora, and demonstrated that corpora allata, microsomes, Ac-CYP15C1, and Ac-JHAMT catalyze JH III production in vitro, establishing the pathway of epoxidation followed by esterification. These findings were further confirmed through RNA interference and molecular docking. The presence of JH III and JH SB3 in A. craccivora was identified, and their synthesis pathway was elucidated as follows: Ac-CYP15C1 oxidizes farnesic acid to JH A, followed by methylation to JH III by Ac-JHAMT, possibly providing an epoxidation site on the second carbon for JH SB3. This alteration may significantly contribute to the differentiation and functional diversification of JH types in insects.
幼年激素(JHs)在调节昆虫的发育和繁殖方面起着至关重要的作用。大多数昆虫主要合成 JH III,通常是先酯化后环氧化,鳞翅目昆虫则采用先环氧化后酯化的途径。虽然半翅目昆虫有 JH III 和 JH 跳过双环氧化物 III(JH SB3),但合成途径和关键环氧化酶仍不清楚。本研究以蚜蝇为对象,证明了体细胞、微粒体、Ac-CYP15C1 和 Ac-JHAMT 在体外催化 JH III 的产生,从而确立了先环氧化后酯化的途径。这些发现通过 RNA 干扰和分子对接得到了进一步证实。确定了 JH III 和 JH SB3 在 A. craccivora 中的存在,并阐明了它们的合成途径如下:Ac-CYP15C1 将法尼酸氧化成 JH A,然后通过 Ac-JHAMT 甲基化成 JH III,可能为 JH SB3 提供了第二个碳上的环氧化位点。 这一变化可能极大地促进了昆虫体内 JH 类型的分化和功能多样化。
{"title":"Aphis craccivora (Hemiptera: Aphididae) synthesizes juvenile hormone III via a pathway involving epoxidation followed by esterification, potentially providing an epoxidation active site for the synthesis of juvenile hormone SB3.","authors":"Haolin Li, Xue Kong, Yan Fang, Jiangan Hou, Wenjie Zhang, Yongheng Zhang, Jiguang Wei, Xuesheng Li","doi":"10.1111/1744-7917.13450","DOIUrl":"https://doi.org/10.1111/1744-7917.13450","url":null,"abstract":"<p><p>Juvenile hormones (JHs) play a crucial role in regulating development and reproduction in insects. Most insects predominantly synthesize JH III, which typically involves esterification followed by epoxidation, lepidopteran insects use a pathway of epoxidation followed by esterification. Although hemipteran insects have JH III and JH skipped bisepoxide III (JH SB3), the synthesis pathway and key epoxidases remain unclear. This study was conducted on Aphis craccivora, and demonstrated that corpora allata, microsomes, Ac-CYP15C1, and Ac-JHAMT catalyze JH III production in vitro, establishing the pathway of epoxidation followed by esterification. These findings were further confirmed through RNA interference and molecular docking. The presence of JH III and JH SB3 in A. craccivora was identified, and their synthesis pathway was elucidated as follows: Ac-CYP15C1 oxidizes farnesic acid to JH A, followed by methylation to JH III by Ac-JHAMT, possibly providing an epoxidation site on the second carbon for JH SB3. This alteration may significantly contribute to the differentiation and functional diversification of JH types in insects.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suisui Wang, Shiyuan Miao, Yusi Li, Jianhui Wang, Chengjun Li, Yujie Lu, Bin Li
Hemocytes are pivotal in the immune response of insects against invasive pathogens. However, our knowledge of hemocyte types and their specific function in Tribolium castaneum, an increasingly important Coleoptera model insect in various research fields, remains limited. Presently, a combination of morphological criteria and dye-staining properties were used to characterize hemocyte types from T. castaneum larvae, and 4 distinct types were identified: granulocytes, oenocytoids, plasmatocytes and prohemocytes. Following different immune challenges, the total hemocyte counts declined rapidly in the initial phase (at 2 h), then increased over time (at 4 and 6 h) and eventually returned to the naive state by 24 h post-injection. Notably, the morphology of granulocytes underwent dramatic changes, characterized by an expansion of the surface area and an increased production of pseudopods, and with the number of granulocytes rising significantly through mitotic division. Granulocytes and plasmatocytes, the main hemocyte types in T. castaneum larvae, can phagocytose bacteria or latex beads injected into the larval hemolymph in vivo. Furthermore, these hemocytes participate in the encapsulation and melanization processes in vitro, forming capsules to encapsulate and melanize nickel-nitrilotriacetic acid (Ni-NTA) beads. This study provides the first comprehensive characterization of circulating hemocytes in T. castaneum larvae, offering valuable insights into cell-mediated immunity in response to bacterial infection and the injection of latex beads. These results deepen our understanding of the cellular response mechanisms in T. castaneum larvae and lay a solid foundation for subsequent investigations of the involvement of T. castaneum hemocytes in combating pathogens.
{"title":"Morphological and functional characterization of circulating hemocytes in Tribolium castaneum larvae.","authors":"Suisui Wang, Shiyuan Miao, Yusi Li, Jianhui Wang, Chengjun Li, Yujie Lu, Bin Li","doi":"10.1111/1744-7917.13455","DOIUrl":"https://doi.org/10.1111/1744-7917.13455","url":null,"abstract":"<p><p>Hemocytes are pivotal in the immune response of insects against invasive pathogens. However, our knowledge of hemocyte types and their specific function in Tribolium castaneum, an increasingly important Coleoptera model insect in various research fields, remains limited. Presently, a combination of morphological criteria and dye-staining properties were used to characterize hemocyte types from T. castaneum larvae, and 4 distinct types were identified: granulocytes, oenocytoids, plasmatocytes and prohemocytes. Following different immune challenges, the total hemocyte counts declined rapidly in the initial phase (at 2 h), then increased over time (at 4 and 6 h) and eventually returned to the naive state by 24 h post-injection. Notably, the morphology of granulocytes underwent dramatic changes, characterized by an expansion of the surface area and an increased production of pseudopods, and with the number of granulocytes rising significantly through mitotic division. Granulocytes and plasmatocytes, the main hemocyte types in T. castaneum larvae, can phagocytose bacteria or latex beads injected into the larval hemolymph in vivo. Furthermore, these hemocytes participate in the encapsulation and melanization processes in vitro, forming capsules to encapsulate and melanize nickel-nitrilotriacetic acid (Ni-NTA) beads. This study provides the first comprehensive characterization of circulating hemocytes in T. castaneum larvae, offering valuable insights into cell-mediated immunity in response to bacterial infection and the injection of latex beads. These results deepen our understanding of the cellular response mechanisms in T. castaneum larvae and lay a solid foundation for subsequent investigations of the involvement of T. castaneum hemocytes in combating pathogens.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-01-31DOI: 10.1111/1744-7917.13324
Huiling Sang, Yancan Li, Shuxin Tan, Pu Gao, Bei Wang, Shengnan Guo, Shudong Luo, Cheng Sun
Bumblebees are a genus of pollinators (Bombus) that play important roles in natural ecosystem and agricultural production. Several bumblebee species have been recorded as under population decline, and the proportion of species experiencing population decline within subgenus Thoracobombus is higher than average. Bombus opulentus is 1 species in Thoracobombus, but little is known about its recent population dynamics. Here, we employed conservation genomics methods to investigate the population dynamics of B. opulentus during the recent past and identify the likely environmental factors that may cause population decline. Firstly, we placed the scaffold-level of B. opulentus reference genome sequence onto chromosome-level using Hi-C technique. Then, based on this reference genome and whole-genome resequencing data for 51 B. opulentus samples, we reconstructed the population structure and effective population size (Ne) trajectories of B. opulentus and identified genes that were under positive selection. Our results revealed that the collected B. opulentus samples could be divided into 2 populations, and 1 of them experienced a recent population decline; the declining population also exhibited lower genetic diversity and higher inbreeding levels. Genes related to high-temperature tolerance, immune response, and detoxication showed signals of positive selection in the declining population, suggesting that climate warming and pathogen/pesticide exposures may contribute to the decline of this B. opulentus population. Taken together, our study provided insights into the demography of B. opulentus populations and highlighted that populations of the same bumblebee species could have contrasting Ne trajectories and population decline could be caused by a combination of various stressors.
{"title":"Conservation genomics analysis reveals recent population decline and possible causes in bumblebee Bombus opulentus.","authors":"Huiling Sang, Yancan Li, Shuxin Tan, Pu Gao, Bei Wang, Shengnan Guo, Shudong Luo, Cheng Sun","doi":"10.1111/1744-7917.13324","DOIUrl":"10.1111/1744-7917.13324","url":null,"abstract":"<p><p>Bumblebees are a genus of pollinators (Bombus) that play important roles in natural ecosystem and agricultural production. Several bumblebee species have been recorded as under population decline, and the proportion of species experiencing population decline within subgenus Thoracobombus is higher than average. Bombus opulentus is 1 species in Thoracobombus, but little is known about its recent population dynamics. Here, we employed conservation genomics methods to investigate the population dynamics of B. opulentus during the recent past and identify the likely environmental factors that may cause population decline. Firstly, we placed the scaffold-level of B. opulentus reference genome sequence onto chromosome-level using Hi-C technique. Then, based on this reference genome and whole-genome resequencing data for 51 B. opulentus samples, we reconstructed the population structure and effective population size (N<sub>e</sub>) trajectories of B. opulentus and identified genes that were under positive selection. Our results revealed that the collected B. opulentus samples could be divided into 2 populations, and 1 of them experienced a recent population decline; the declining population also exhibited lower genetic diversity and higher inbreeding levels. Genes related to high-temperature tolerance, immune response, and detoxication showed signals of positive selection in the declining population, suggesting that climate warming and pathogen/pesticide exposures may contribute to the decline of this B. opulentus population. Taken together, our study provided insights into the demography of B. opulentus populations and highlighted that populations of the same bumblebee species could have contrasting N<sub>e</sub> trajectories and population decline could be caused by a combination of various stressors.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1631-1644"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-02-04DOI: 10.1111/1744-7917.13329
Yunru Chen, Na Yu, Shuchen Dong, Guanqun Li, Huiya Pan, Zonglei Guo, Zewen Liu
Maternal care is critically important for the survival of offspring in various animals. Spiders in the family Lycosidae are known for their hunting ability and maternal care behaviors. Predation on newly hatched spiderlings (pulli) by mother spiders decreases when they come into contact, and they carry the pulli on their dorsal surface. However, the factors inducing maternal care in lycosid spiders have not been elucidated. In this study, we investigated maternal care in Pardosa pseudoannulata (Araneae, Lycosidae) females. We proposed that the physical interaction between pulli and mother spiders induces maternal care via m-aminophenylacetylene (m-A), a novel regulator of maternal care. The presence of pulli on the dorsal abdomen of non-mother spiders suppressed pulli predation and increased the pulli-carrying rate, and the absence of pulli on the mother spiders increased pulli predation and decreased the pulli-carrying rate. The compound m-A was abundant in mother spiders, and it could be induced in non-mother spiders when they carried pulli. The topical application of m-A to non-mother spiders and m-A injection decreased pulli predation and increased the pulli-carrying rate, respectively; these findings indicate that m-A in both internal tissues and the integument is required for the induction of maternal care behavior, and the interaction between pulli and females induces the production of m-A. In-depth study of the regulatory mechanism of maternal care will enhance our understanding of spider biology and behavior.
{"title":"m-Aminophenylacetylene induces maternal care in a predatory spider.","authors":"Yunru Chen, Na Yu, Shuchen Dong, Guanqun Li, Huiya Pan, Zonglei Guo, Zewen Liu","doi":"10.1111/1744-7917.13329","DOIUrl":"10.1111/1744-7917.13329","url":null,"abstract":"<p><p>Maternal care is critically important for the survival of offspring in various animals. Spiders in the family Lycosidae are known for their hunting ability and maternal care behaviors. Predation on newly hatched spiderlings (pulli) by mother spiders decreases when they come into contact, and they carry the pulli on their dorsal surface. However, the factors inducing maternal care in lycosid spiders have not been elucidated. In this study, we investigated maternal care in Pardosa pseudoannulata (Araneae, Lycosidae) females. We proposed that the physical interaction between pulli and mother spiders induces maternal care via m-aminophenylacetylene (m-A), a novel regulator of maternal care. The presence of pulli on the dorsal abdomen of non-mother spiders suppressed pulli predation and increased the pulli-carrying rate, and the absence of pulli on the mother spiders increased pulli predation and decreased the pulli-carrying rate. The compound m-A was abundant in mother spiders, and it could be induced in non-mother spiders when they carried pulli. The topical application of m-A to non-mother spiders and m-A injection decreased pulli predation and increased the pulli-carrying rate, respectively; these findings indicate that m-A in both internal tissues and the integument is required for the induction of maternal care behavior, and the interaction between pulli and females induces the production of m-A. In-depth study of the regulatory mechanism of maternal care will enhance our understanding of spider biology and behavior.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1569-1578"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139681058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal roles in the host response to invading pathogens. Among these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of substantial economic losses in sericulture, and there are relatively few studies on the specific functions of miRNAs in the B. mori-BmNPV interaction. Therefore, we conducted transcriptome sequencing to identify differentially expressed (DE) messenger RNAs (mRNAs) and miRNAs in the midgut of 2 B. mori strains (BmNPV-susceptible strain P50 and BmNPV-resistant strain A35) after BmNPV infection. Through correlation analysis of the miRNA and mRNA data, we identified a comprehensive set of 21 miRNAs and 37 predicted target mRNAs. Notably, miR-3351, which has high expression in A35, exhibited remarkable efficacy in suppressing BmNPV proliferation. Additionally, we confirmed that miR-3351 binds to the 3' untranslated region (3' UTR) of B. mori glutathione S-transferase epsilon 6 (BmGSTe6), resulting in its downregulation. Conversely, BmGSTe6 displayed an opposite expression pattern to miR-3351, effectively promoting BmNPV proliferation. Notably, BmGSTe6 levels were positively correlated with glutathione S-transferase activity, consequently influencing intracellular glutathione content in the infected samples. Furthermore, our investigation revealed the protective role of glutathione against BmNPV infection in BmN cells. In summary, miR-3351 modulates glutathione content by downregulating BmGSTe6 to inhibit BmNPV proliferation in B. mori. Our findings enriched the research on the role of B. mori miRNAs in the defense against BmNPV infection, and suggests that the antiviral molecule, glutathione, offers a novel perspective on preventing viral infection in sericulture.
微小RNA(miRNA)是一种小型非编码RNA,在宿主应对入侵病原体的过程中发挥着关键作用。在这些病原体中,蚕核多角体病毒(BmNPV)是造成养蚕业重大经济损失的主要原因之一,而有关 miRNA 在蚕核多角体病毒与 BmNPV 相互作用中的具体功能的研究相对较少。因此,我们进行了转录组测序,以鉴定 BmNPV 感染后 2 个 B. mori 株系(BmNPV 易感株系 P50 和 BmNPV 抗性株系 A35)中肠道内差异表达(DE)的信使 RNA(mRNA)和 miRNA。通过对 miRNA 和 mRNA 数据的相关性分析,我们确定了 21 个 miRNA 和 37 个预测的靶 mRNA。值得注意的是,在 A35 中高表达的 miR-3351 在抑制 BmNPV 增殖方面表现出了显著的功效。此外,我们证实 miR-3351 与 B. mori 谷胱甘肽 S 转移酶ε6(BmGSTe6)的 3' 非翻译区(3' UTR)结合,导致其下调。相反,BmGSTe6 的表达模式与 miR-3351 相反,它能有效促进 BmNPV 的增殖。值得注意的是,BmGSTe6 的水平与谷胱甘肽 S 转移酶的活性呈正相关,从而影响了感染样本中细胞内谷胱甘肽的含量。此外,我们的研究揭示了谷胱甘肽对 BmN 细胞中 BmNPV 感染的保护作用。总之,miR-3351 通过下调 BmGSTe6 来调节谷胱甘肽含量,从而抑制 BmNPV 在 B. mori 中的增殖。我们的研究结果丰富了关于 B. mori miRNA 在防御 BmNPV 感染中的作用的研究,并表明抗病毒分子谷胱甘肽为预防养蚕病毒感染提供了一个新的视角。
{"title":"Bmo-miR-3351 modulates glutathione content and inhibits BmNPV proliferation by targeting BmGSTe6 in Bombyx mori.","authors":"Hui-Hua Cao, Wei-Wei Kong, Bing Ling, Zhi-Yi Wang, Ying Zhang, Zhe-Xiao Guo, Shi-Huo Liu, Jia-Ping Xu","doi":"10.1111/1744-7917.13318","DOIUrl":"10.1111/1744-7917.13318","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal roles in the host response to invading pathogens. Among these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of substantial economic losses in sericulture, and there are relatively few studies on the specific functions of miRNAs in the B. mori-BmNPV interaction. Therefore, we conducted transcriptome sequencing to identify differentially expressed (DE) messenger RNAs (mRNAs) and miRNAs in the midgut of 2 B. mori strains (BmNPV-susceptible strain P50 and BmNPV-resistant strain A35) after BmNPV infection. Through correlation analysis of the miRNA and mRNA data, we identified a comprehensive set of 21 miRNAs and 37 predicted target mRNAs. Notably, miR-3351, which has high expression in A35, exhibited remarkable efficacy in suppressing BmNPV proliferation. Additionally, we confirmed that miR-3351 binds to the 3' untranslated region (3' UTR) of B. mori glutathione S-transferase epsilon 6 (BmGSTe6), resulting in its downregulation. Conversely, BmGSTe6 displayed an opposite expression pattern to miR-3351, effectively promoting BmNPV proliferation. Notably, BmGSTe6 levels were positively correlated with glutathione S-transferase activity, consequently influencing intracellular glutathione content in the infected samples. Furthermore, our investigation revealed the protective role of glutathione against BmNPV infection in BmN cells. In summary, miR-3351 modulates glutathione content by downregulating BmGSTe6 to inhibit BmNPV proliferation in B. mori. Our findings enriched the research on the role of B. mori miRNAs in the defense against BmNPV infection, and suggests that the antiviral molecule, glutathione, offers a novel perspective on preventing viral infection in sericulture.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1378-1396"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.
{"title":"Inhibition of vertebrate complement system by hematophagous arthropods: inhibitory molecules, mechanisms, physiological roles, and applications.","authors":"Mauricio Roberto Vianna Sant'Anna, Adalberto Alves Pereira-Filho, Antonio Ferreira Mendes-Sousa, Naylene Carvalho Sales Silva, Nelder Figueiredo Gontijo, Marcos Horácio Pereira, Leonardo Barbosa Koerich, Grasielle Caldas D'Avila Pessoa, John Andersen, Ricardo Nascimento Araujo","doi":"10.1111/1744-7917.13317","DOIUrl":"10.1111/1744-7917.13317","url":null,"abstract":"<p><p>In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1334-1352"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-01-24DOI: 10.1111/1744-7917.13328
Shovon Chandra Sarkar, Stephen Paul Milroy, Wei Xu
The tomato potato psyllid, Bactericera cockerelli, is an invasive pest in Australia, which can cause severe economic loss in the production of Solanaceous crops. As an invasive pest, B. cockerelli may also modify biotic interactions in Australian agricultural and native ecosystems. Resident generalist predators in an area may have the ability to utilize invasive pest species as prey but this will depend on their specific predatory behavior. The extent to which generalist predators learn from their previous dietary experience (i.e., whether they have used a particular species as prey before) and how this impacts subsequent prey choice will influence predator and prey population dynamics after invasion. In this study, one nonnative resident ladybird, Hippodamia variegata, and one native ladybird, Coccinella transversalis, were investigated. Dietary experience with B. cockerelli as a prey species significantly increased preference for the psyllid in a short term (6 h) Petri dish study where a choice of prey was given. Greater suppression of B. cockerelli populations by experienced ladybirds was also observed on glasshouse grown tomato plants. This was presumably due to altered prey recognition by experience. The result of this study suggest the potential to improve the impact of biological control agents on invasive pests by providing early life experience consuming the target species. It may prove valuable for developing improved augmentative release strategies for ladybirds to manage specific insect pest species.
{"title":"Dietary experience alters predatory behavior of two ladybird species on tomato potato psyllid.","authors":"Shovon Chandra Sarkar, Stephen Paul Milroy, Wei Xu","doi":"10.1111/1744-7917.13328","DOIUrl":"10.1111/1744-7917.13328","url":null,"abstract":"<p><p>The tomato potato psyllid, Bactericera cockerelli, is an invasive pest in Australia, which can cause severe economic loss in the production of Solanaceous crops. As an invasive pest, B. cockerelli may also modify biotic interactions in Australian agricultural and native ecosystems. Resident generalist predators in an area may have the ability to utilize invasive pest species as prey but this will depend on their specific predatory behavior. The extent to which generalist predators learn from their previous dietary experience (i.e., whether they have used a particular species as prey before) and how this impacts subsequent prey choice will influence predator and prey population dynamics after invasion. In this study, one nonnative resident ladybird, Hippodamia variegata, and one native ladybird, Coccinella transversalis, were investigated. Dietary experience with B. cockerelli as a prey species significantly increased preference for the psyllid in a short term (6 h) Petri dish study where a choice of prey was given. Greater suppression of B. cockerelli populations by experienced ladybirds was also observed on glasshouse grown tomato plants. This was presumably due to altered prey recognition by experience. The result of this study suggest the potential to improve the impact of biological control agents on invasive pests by providing early life experience consuming the target species. It may prove valuable for developing improved augmentative release strategies for ladybirds to manage specific insect pest species.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1579-1590"},"PeriodicalIF":2.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}