Pub Date : 2024-12-01Epub Date: 2024-03-13DOI: 10.1111/1744-7917.13353
Natalia Lis, Anna Mądra-Bielewicz, Jędrzej Wydra, Szymon Matuszewski
Aggregations of juveniles are dominant forms of social life in some insect groups. Larval societies are shaped by competitive and cooperative interactions of the larvae, in parallel with parental effects. Colonies of necrophagous larvae are excellent systems to study these relationships. Necrodes littoralis (Staphylinidae: Silphinae), a carrion beetle that colonizes cadavers of large vertebrates, forms massive juvenile aggregations. By spreading over carrion anal and oral exudates, the beetles form the feeding matrix, in which the heat is produced and by which adults presumably affect the fitness of the larvae. We predict that exploitative competition shapes the behavior of N. littoralis larvae in their aggregations. However, cooperative interactions may also operate in these systems due mainly to the benefits of collective exodigestion. Moreover, indirect parental effects (i.e., formation of the feeding matrix) probably modulate larval interactions within the aggregations. By manipulating parental effects (present/absent) and larval density (0.02-1.9 larvae/g of meat), we found a strong negative group-size effect on fitness components of N. littoralis, in colonies with parental effects over almost the entire density range, and in colonies without parental effects for densities larger than 0.5 larva/g. This was accompanied by positive group-size effects in terms of development time (it shortened with larval density) and thermogenesis (it increased with larval density). A pronounced positive group-size effect on juvenile fitness was found only in colonies without parental effects and only in the low-density range. These results support the hypothesis that larval societies of N. littoralis are shaped by exploitation competition.
{"title":"Competition, cooperation, and parental effects in larval aggregations formed on carrion by communally breeding beetles Necrodes littoralis (Staphylinidae: Silphinae).","authors":"Natalia Lis, Anna Mądra-Bielewicz, Jędrzej Wydra, Szymon Matuszewski","doi":"10.1111/1744-7917.13353","DOIUrl":"10.1111/1744-7917.13353","url":null,"abstract":"<p><p>Aggregations of juveniles are dominant forms of social life in some insect groups. Larval societies are shaped by competitive and cooperative interactions of the larvae, in parallel with parental effects. Colonies of necrophagous larvae are excellent systems to study these relationships. Necrodes littoralis (Staphylinidae: Silphinae), a carrion beetle that colonizes cadavers of large vertebrates, forms massive juvenile aggregations. By spreading over carrion anal and oral exudates, the beetles form the feeding matrix, in which the heat is produced and by which adults presumably affect the fitness of the larvae. We predict that exploitative competition shapes the behavior of N. littoralis larvae in their aggregations. However, cooperative interactions may also operate in these systems due mainly to the benefits of collective exodigestion. Moreover, indirect parental effects (i.e., formation of the feeding matrix) probably modulate larval interactions within the aggregations. By manipulating parental effects (present/absent) and larval density (0.02-1.9 larvae/g of meat), we found a strong negative group-size effect on fitness components of N. littoralis, in colonies with parental effects over almost the entire density range, and in colonies without parental effects for densities larger than 0.5 larva/g. This was accompanied by positive group-size effects in terms of development time (it shortened with larval density) and thermogenesis (it increased with larval density). A pronounced positive group-size effect on juvenile fitness was found only in colonies without parental effects and only in the low-density range. These results support the hypothesis that larval societies of N. littoralis are shaped by exploitation competition.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1918-1929"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-03-26DOI: 10.1111/1744-7917.13357
Marwa Saad, Nabila Selim, Lamia M El-Samad
With the increasing development of nanomaterials, the use of nanodiamonds (NDs) has been broadly manifested in many applications. However, their high penetration into the ecosystem indubitably poses remarkable toxicological risks. This paper investigates the toxic effects of NDs on the darkling beetle, Blaps polychresta Forskal, 1775 (Coleoptera: Tenebrionidae). Survival analysis was carried out by monitoring the beetles for 30 d after the injection of four different doses of NDs. A dose of 10.0 mg NDs/g body weight, causing less than 50% mortality effect, was assigned in the analysis of the different organs of studied beetles, including testis, ovary, and midgut. Structural and ultrastructural analyses were followed using light, TEM, and SEM microscopes. In addition, a variety of stress markers and enzyme activities were assessed using spectrophotometric methods. Furthermore, cell viability and DNA damage were evaluated using cytometry and comet assay, respectively. Compared to the control group, the NDs-treated group was exposed to various abnormalities within all the studied organs as follows. Significant disturbances in enzyme activities were accompanied by an apparent dysregulation in the antioxidant system. The flow cytometry results indicated a substantial decrease of viable cells along with a rise of apoptotic and necrotic cells. The comet assay demonstrated a highly increased level of DNA damage. Likewise, histological analyses accentuated the same findings showing remarkable deformities in the studied organs. Prominently, the research findings substantially contribute for the first time to evaluating the critical effects of NDs on B. polychresta, adopted as the bioindicator in this paper.
随着纳米材料的日益发展,纳米金刚石(NDs)已广泛应用于许多领域。然而,纳米金刚石对生态系统的高渗透性无疑会带来显著的毒理学风险。本文研究了 NDs 对暗色甲虫 Blaps polychresta Forskal, 1775(鞘翅目:Tenebrionidae)的毒性影响。在注射四种不同剂量的 NDs 后的 30 天内,通过监测甲虫的存活率进行了分析。在对甲虫的不同器官(包括睾丸、卵巢和中肠)进行分析时,指定的剂量为 10.0 毫克 NDs/克体重,其致死率低于 50%。使用光学、TEM 和 SEM 显微镜对结构和超微结构进行了分析。此外,还使用分光光度法评估了各种应激标记和酶活性。此外,还分别使用细胞计数法和彗星试验评估了细胞活力和 DNA 损伤。与对照组相比,NDs 处理组的所有研究器官都出现了以下异常。酶活性显著紊乱,同时抗氧化系统明显失调。流式细胞术结果表明,存活细胞大幅减少,凋亡和坏死细胞增加。彗星试验表明,DNA 损伤程度大大增加。同样,组织学分析也显示了同样的结果,研究器官出现了明显的畸形。值得注意的是,这些研究成果首次为评估 NDs 对 B. polychresta(本文采用的生物指标)的关键影响做出了重大贡献。
{"title":"Comprehensive toxicity assessment of nanodiamond on Blaps polychresta: implications and novel findings.","authors":"Marwa Saad, Nabila Selim, Lamia M El-Samad","doi":"10.1111/1744-7917.13357","DOIUrl":"10.1111/1744-7917.13357","url":null,"abstract":"<p><p>With the increasing development of nanomaterials, the use of nanodiamonds (NDs) has been broadly manifested in many applications. However, their high penetration into the ecosystem indubitably poses remarkable toxicological risks. This paper investigates the toxic effects of NDs on the darkling beetle, Blaps polychresta Forskal, 1775 (Coleoptera: Tenebrionidae). Survival analysis was carried out by monitoring the beetles for 30 d after the injection of four different doses of NDs. A dose of 10.0 mg NDs/g body weight, causing less than 50% mortality effect, was assigned in the analysis of the different organs of studied beetles, including testis, ovary, and midgut. Structural and ultrastructural analyses were followed using light, TEM, and SEM microscopes. In addition, a variety of stress markers and enzyme activities were assessed using spectrophotometric methods. Furthermore, cell viability and DNA damage were evaluated using cytometry and comet assay, respectively. Compared to the control group, the NDs-treated group was exposed to various abnormalities within all the studied organs as follows. Significant disturbances in enzyme activities were accompanied by an apparent dysregulation in the antioxidant system. The flow cytometry results indicated a substantial decrease of viable cells along with a rise of apoptotic and necrotic cells. The comet assay demonstrated a highly increased level of DNA damage. Likewise, histological analyses accentuated the same findings showing remarkable deformities in the studied organs. Prominently, the research findings substantially contribute for the first time to evaluating the critical effects of NDs on B. polychresta, adopted as the bioindicator in this paper.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1838-1863"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-03-21DOI: 10.1111/1744-7917.13355
Florence Hunter-Manseau, Simon B Cormier, Rebekah Strang, Nicolas Pichaud
Changes in diet type and nutrient availability can impose significant environmental stress on organisms, potentially compromising physiological functions and reproductive success. In nature, dramatic fluctuations in dietary resources are often observed and adjustments to restore cellular homeostasis are crucial to survive this type of stress. In this study, we exposed male Drosophila melanogaster to two modulated dietary treatments: one without a fasting period before exposure to a high-fat diet and the other with a 24-h fasting period. We then investigated mitochondrial metabolism and molecular responses to these treatments. Exposure to a high-fat diet without a preceding fasting period resulted in disrupted mitochondrial respiration, notably at the level of complex I. On the other hand, a short fasting period before the high-fat diet maintained mitochondrial respiration. Generally, transcript abundance of genes associated with mitophagy, heat-shock proteins, mitochondrial biogenesis, and nutrient sensing pathways increased either slightly or significantly following a fasting period and remained stable when flies were subsequently put on a high-fat diet, whereas a drastic decrease of almost all transcript abundances was observed for all these pathways when flies were exposed directly to a high-fat diet. Moreover, mitochondrial enzymatic activities showed less variation after the fasting period than the treatment without a fasting period. Overall, our study sheds light on the mechanistic protective effects of fasting prior to a high-fat diet and highlights the metabolic flexibility of Drosophila mitochondria in response to abrupt dietary changes and have implication for adaptation of species to their changing environment.
饮食类型和营养供应的变化会对生物体造成巨大的环境压力,可能会损害生物体的生理功能和繁殖成功率。在自然界中,经常可以观察到食物资源的剧烈波动,而恢复细胞平衡的调整对于在这种压力下生存至关重要。在这项研究中,我们对雄性黑腹果蝇进行了两种饮食调节处理:一种是在接触高脂肪饮食前不禁食,另一种是禁食 24 小时。然后,我们研究了线粒体代谢和分子对这些处理的反应。在没有禁食的情况下接触高脂饮食会导致线粒体呼吸紊乱,尤其是在复合体 I 的水平上。另一方面,在高脂饮食前的短暂禁食期可维持线粒体呼吸。一般来说,与有丝分裂、热休克蛋白、线粒体生物发生和营养传感途径相关的基因转录本丰度在禁食后略有或显著增加,并在随后让苍蝇摄入高脂饮食时保持稳定,而当苍蝇直接摄入高脂饮食时,几乎所有这些途径的转录本丰度都急剧下降。此外,与没有禁食期的处理相比,禁食期后线粒体酶活性的变化较小。总之,我们的研究揭示了高脂饮食前禁食的机理保护作用,并强调了果蝇线粒体在应对饮食突变时的代谢灵活性,这对物种适应不断变化的环境具有重要意义。
{"title":"Fasting as a precursor to high-fat diet enhances mitochondrial resilience in Drosophila melanogaster.","authors":"Florence Hunter-Manseau, Simon B Cormier, Rebekah Strang, Nicolas Pichaud","doi":"10.1111/1744-7917.13355","DOIUrl":"10.1111/1744-7917.13355","url":null,"abstract":"<p><p>Changes in diet type and nutrient availability can impose significant environmental stress on organisms, potentially compromising physiological functions and reproductive success. In nature, dramatic fluctuations in dietary resources are often observed and adjustments to restore cellular homeostasis are crucial to survive this type of stress. In this study, we exposed male Drosophila melanogaster to two modulated dietary treatments: one without a fasting period before exposure to a high-fat diet and the other with a 24-h fasting period. We then investigated mitochondrial metabolism and molecular responses to these treatments. Exposure to a high-fat diet without a preceding fasting period resulted in disrupted mitochondrial respiration, notably at the level of complex I. On the other hand, a short fasting period before the high-fat diet maintained mitochondrial respiration. Generally, transcript abundance of genes associated with mitophagy, heat-shock proteins, mitochondrial biogenesis, and nutrient sensing pathways increased either slightly or significantly following a fasting period and remained stable when flies were subsequently put on a high-fat diet, whereas a drastic decrease of almost all transcript abundances was observed for all these pathways when flies were exposed directly to a high-fat diet. Moreover, mitochondrial enzymatic activities showed less variation after the fasting period than the treatment without a fasting period. Overall, our study sheds light on the mechanistic protective effects of fasting prior to a high-fat diet and highlights the metabolic flexibility of Drosophila mitochondria in response to abrupt dietary changes and have implication for adaptation of species to their changing environment.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1770-1788"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-03-22DOI: 10.1111/1744-7917.13358
Petra Hafker, Lily M Thompson, Jonathan A Walter, Dylan Parry, Kristine L Grayson
Under global climate change, high and low temperature extremes can drive shifts in species distributions. Across the range of a species, thermal tolerance is based on acclimatization, plasticity, and may undergo selection, shaping resilience to temperature stress. In this study, we measured variation in cold temperature tolerance of early instar larvae of an invasive forest insect, Lymantria dispar dispar L. (Lepidoptera: Erebidae), using populations sourced from a range of climates within the current introduced range in the Eastern United States. We tested for population differences in chill coma recovery (CCR) by measuring recovery time following a period of exposure to a nonlethal cold temperature in 2 cold exposure experiments. A 3rd experiment quantified growth responses after CCR to evaluate sublethal effects. Our results indicate that cold tolerance is linked to regional climate, with individuals from populations sourced from colder climates recovering faster from chill coma. While this geographic gradient is seen in many species, detecting this pattern is notable for an introduced species founded from a single point-source introduction. We demonstrate that the cold temperatures used in our experiments occur in nature during cold spells after spring egg hatch, but impacts to growth and survival appear low. We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure. Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species, and contributes to tools for predicting further expansion.
{"title":"Geographic variation in larval cold tolerance and exposure across the invasion front of a widely established forest insect.","authors":"Petra Hafker, Lily M Thompson, Jonathan A Walter, Dylan Parry, Kristine L Grayson","doi":"10.1111/1744-7917.13358","DOIUrl":"10.1111/1744-7917.13358","url":null,"abstract":"<p><p>Under global climate change, high and low temperature extremes can drive shifts in species distributions. Across the range of a species, thermal tolerance is based on acclimatization, plasticity, and may undergo selection, shaping resilience to temperature stress. In this study, we measured variation in cold temperature tolerance of early instar larvae of an invasive forest insect, Lymantria dispar dispar L. (Lepidoptera: Erebidae), using populations sourced from a range of climates within the current introduced range in the Eastern United States. We tested for population differences in chill coma recovery (CCR) by measuring recovery time following a period of exposure to a nonlethal cold temperature in 2 cold exposure experiments. A 3rd experiment quantified growth responses after CCR to evaluate sublethal effects. Our results indicate that cold tolerance is linked to regional climate, with individuals from populations sourced from colder climates recovering faster from chill coma. While this geographic gradient is seen in many species, detecting this pattern is notable for an introduced species founded from a single point-source introduction. We demonstrate that the cold temperatures used in our experiments occur in nature during cold spells after spring egg hatch, but impacts to growth and survival appear low. We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure. Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species, and contributes to tools for predicting further expansion.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1930-1942"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The two-spotted spider mite (Tetranychus urticae) is one of the most well-known pesticide-resistant agricultural pests, with resistance often attributed to changes such as target-site mutations and detoxification activation. Recent studies show that pesticide resistance can also be influenced by symbionts, but their involvement in this process in spider mites remains uncertain. Here, we found that infection with Wolbachia, a well-known bacterial reproductive manipulator, significantly increased mite survival after exposure to the insecticides abamectin, cyflumetofen, and pyridaben. Wolbachia-infected (WI) mites showed higher expression of detoxification genes such as P450, glutathione-S-transferase (GST), ABC transporters, and carboxyl/cholinesterases. RNA interference experiments confirmed the role of the two above-mentioned detoxification genes, TuCYP392D2 and TuGSTd05, in pesticide resistance. Increased GST activities were also observed in abamectin-treated WI mites. In addition, when wild populations were treated with abamectin, WI mites generally showed better survival than uninfected mites. However, genetically homogeneous mites with different Wolbachia strains showed similar survival. Finally, abamectin treatment increased Wolbachia abundance without altering the mite's bacterial community. This finding highlights the role of Wolbachia in orchestrating pesticide resistance by modulating host detoxification. By unraveling the intricate interplay between symbionts and pesticide resistance, our study lays the groundwork for pioneering strategies to combat agricultural pests.
{"title":"The symbiont Wolbachia alleviates pesticide susceptibility in the two-spotted spider mite Tetranychus urticae through enhanced host detoxification pathways.","authors":"Qing-Tong Ye, Xue Gong, Huan-Huan Liu, Bing-Xuan Wu, Chang-Wu Peng, Xiao-Yue Hong, Xiao-Li Bing","doi":"10.1111/1744-7917.13341","DOIUrl":"10.1111/1744-7917.13341","url":null,"abstract":"<p><p>The two-spotted spider mite (Tetranychus urticae) is one of the most well-known pesticide-resistant agricultural pests, with resistance often attributed to changes such as target-site mutations and detoxification activation. Recent studies show that pesticide resistance can also be influenced by symbionts, but their involvement in this process in spider mites remains uncertain. Here, we found that infection with Wolbachia, a well-known bacterial reproductive manipulator, significantly increased mite survival after exposure to the insecticides abamectin, cyflumetofen, and pyridaben. Wolbachia-infected (WI) mites showed higher expression of detoxification genes such as P450, glutathione-S-transferase (GST), ABC transporters, and carboxyl/cholinesterases. RNA interference experiments confirmed the role of the two above-mentioned detoxification genes, TuCYP392D2 and TuGSTd05, in pesticide resistance. Increased GST activities were also observed in abamectin-treated WI mites. In addition, when wild populations were treated with abamectin, WI mites generally showed better survival than uninfected mites. However, genetically homogeneous mites with different Wolbachia strains showed similar survival. Finally, abamectin treatment increased Wolbachia abundance without altering the mite's bacterial community. This finding highlights the role of Wolbachia in orchestrating pesticide resistance by modulating host detoxification. By unraveling the intricate interplay between symbionts and pesticide resistance, our study lays the groundwork for pioneering strategies to combat agricultural pests.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1822-1837"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139931018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultraviolet (UV) radiation, an environmental stressor, is crucial for the survival and adaptation of organisms. Myzus persicae, a global pest, is exposed to sunlight year-round, making it unable to avoid UV rays in its environment. MicroRNAs (miRNAs) are important posttranscriptional regulators of gene expression and mediate various biological processes. However, the role of miRNA in aphids in response to UV-B stress is unclear. In this study, Mpp53 expression level significantly increased with an increase in the duration of UV-B radiation, peaking at 2 h; knockdown of Mpp53 decreased the survival rate of aphids under UV-B stress, suggesting that Mpp53 is involved in aphid responses to UV-B. Here, we first predicted 8 miRNAs targeting Mpp53, and then screened for miRNAs related to UV-B resistance in aphids; of these, 5 miRNAs (miR-305-5p, novel_50, novel_80, novel_166, and novel_61) were found to target Mpp53. Luciferase reporter assays demonstrated that novel_61 binds to the noncoding region of Mpp53 and downregulates its expression. Overexpression of novel_61 in aphids decreased Mpp53 expression and caused significant mortality under UV-B irradiation. Furthermore, the aphids exhibited lower reproductive capacity, lower body weight, and shorter body length and width. This is the first study to systematically screen and identify miRNA related to aphid responses to UV-B stress and deepens our understanding of the molecular mechanism of insect responses to environmental stress, which may eventually aid in developing better control strategies.
{"title":"miRNA targeting Mpp53 is involved in UV-B irradiation resistance in Myzus persicae.","authors":"Longchun He, Changli Yang, Jianyu Meng, Xue Tang, Changyu Zhang","doi":"10.1111/1744-7917.13472","DOIUrl":"https://doi.org/10.1111/1744-7917.13472","url":null,"abstract":"<p><p>Ultraviolet (UV) radiation, an environmental stressor, is crucial for the survival and adaptation of organisms. Myzus persicae, a global pest, is exposed to sunlight year-round, making it unable to avoid UV rays in its environment. MicroRNAs (miRNAs) are important posttranscriptional regulators of gene expression and mediate various biological processes. However, the role of miRNA in aphids in response to UV-B stress is unclear. In this study, Mpp53 expression level significantly increased with an increase in the duration of UV-B radiation, peaking at 2 h; knockdown of Mpp53 decreased the survival rate of aphids under UV-B stress, suggesting that Mpp53 is involved in aphid responses to UV-B. Here, we first predicted 8 miRNAs targeting Mpp53, and then screened for miRNAs related to UV-B resistance in aphids; of these, 5 miRNAs (miR-305-5p, novel_50, novel_80, novel_166, and novel_61) were found to target Mpp53. Luciferase reporter assays demonstrated that novel_61 binds to the noncoding region of Mpp53 and downregulates its expression. Overexpression of novel_61 in aphids decreased Mpp53 expression and caused significant mortality under UV-B irradiation. Furthermore, the aphids exhibited lower reproductive capacity, lower body weight, and shorter body length and width. This is the first study to systematically screen and identify miRNA related to aphid responses to UV-B stress and deepens our understanding of the molecular mechanism of insect responses to environmental stress, which may eventually aid in developing better control strategies.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142768432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-27DOI: 10.1111/1744-7917.13344
Wenfeng Chen, Danfeng Wang, Lingqi Yu, Wenmiao Zhong, Yao Yuan, Guang Yang
Earth's rotation shapes a 24-h cycle, governing circadian rhythms in organisms. In mammals, the core clock genes, CLOCK and BMAL1, are regulated by PERIODs (PERs) and CRYPTOCHROMEs (CRYs), but their roles remain unclear in the diamondback moth, Plutella xylostella. To explore this, we studied P. xylostella, which possesses a simplified circadian system compared to mammals. In P. xylostella, we observed rhythmic expressions of the Pxper and Pxcry2 genes in their heads, with differing phases. In vitro experiments revealed that PxCRY2 repressed monarch butterfly CLK:BMAL1 transcriptional activation, while PxPER and other CRY-like proteins did not. However, PxPER showed an inhibitory effect on PxCLK/PxCYCLE. Using CRISPR/Cas9, we individually and in combination knocked out Pxper and Pxcry2, then conducted gene function studies and circadian transcriptome sequencing. Loss of either Pxper or Pxcry2 eliminated the activity peak after lights-off in light-dark cycles, and Pxcry2 loss reduced overall activity. Pxcry2 was crucial for maintaining endogenous rhythms in constant darkness. Under light-dark conditions, 1 098 genes exhibited rhythmic expression in wild-type P. xylostella heads, with 749 relying on Pxper and Pxcry2 for their rhythms. Most core clock genes lost their rhythmicity in Pxper and Pxcry2 mutants, while Pxcry2 sustained rhythmic expression, albeit with reduced amplitude and altered phase. Additionally, rhythmic genes were linked to biological processes like the spliceosome and Toll signaling pathway, with these rhythms depending on Pxper or Pxcry2 function. In summary, our study unveils differences in circadian rhythm regulation by Pxper and Pxcry2 in P. xylostella. This provides a valuable model for understanding circadian clock regulation in nocturnal animals.
{"title":"Comparative analysis of locomotor behavior and head diurnal transcriptome regulation by PERIOD and CRY2 in the diamondback moth.","authors":"Wenfeng Chen, Danfeng Wang, Lingqi Yu, Wenmiao Zhong, Yao Yuan, Guang Yang","doi":"10.1111/1744-7917.13344","DOIUrl":"10.1111/1744-7917.13344","url":null,"abstract":"<p><p>Earth's rotation shapes a 24-h cycle, governing circadian rhythms in organisms. In mammals, the core clock genes, CLOCK and BMAL1, are regulated by PERIODs (PERs) and CRYPTOCHROMEs (CRYs), but their roles remain unclear in the diamondback moth, Plutella xylostella. To explore this, we studied P. xylostella, which possesses a simplified circadian system compared to mammals. In P. xylostella, we observed rhythmic expressions of the Pxper and Pxcry2 genes in their heads, with differing phases. In vitro experiments revealed that PxCRY2 repressed monarch butterfly CLK:BMAL1 transcriptional activation, while PxPER and other CRY-like proteins did not. However, PxPER showed an inhibitory effect on PxCLK/PxCYCLE. Using CRISPR/Cas9, we individually and in combination knocked out Pxper and Pxcry2, then conducted gene function studies and circadian transcriptome sequencing. Loss of either Pxper or Pxcry2 eliminated the activity peak after lights-off in light-dark cycles, and Pxcry2 loss reduced overall activity. Pxcry2 was crucial for maintaining endogenous rhythms in constant darkness. Under light-dark conditions, 1 098 genes exhibited rhythmic expression in wild-type P. xylostella heads, with 749 relying on Pxper and Pxcry2 for their rhythms. Most core clock genes lost their rhythmicity in Pxper and Pxcry2 mutants, while Pxcry2 sustained rhythmic expression, albeit with reduced amplitude and altered phase. Additionally, rhythmic genes were linked to biological processes like the spliceosome and Toll signaling pathway, with these rhythms depending on Pxper or Pxcry2 function. In summary, our study unveils differences in circadian rhythm regulation by Pxper and Pxcry2 in P. xylostella. This provides a valuable model for understanding circadian clock regulation in nocturnal animals.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1697-1720"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-01-28DOI: 10.1111/1744-7917.13323
Le Zong, Zonghui Sun, Jieliang Zhao, Zhengzhong Huang, Xiaokun Liu, Lei Jiang, Congqiao Li, Jacob Mulwa Muinde, Jianing Wu, Xiaolong Wang, Hongbin Liang, Haoyu Liu, Yuxia Yang, Siqin Ge
Insect legs play a crucial role in various modes of locomotion, including walking, jumping, swimming, and other forms of movement. The flexibility of their leg joints is critical in enabling various modes of locomotion. The frog-legged leaf beetle Sagra femorata possesses remarkably enlarged hind legs, which are considered to be a critical adaptation that enables the species to withstand external pressures. When confronted with external threats, S. femorata initiates a stress response by rapidly rotating its hind legs backward and upward to a specific angle, thereby potentially intimidating potential assailants. Based on video analysis, we identified 4 distinct phases of the hind leg rotation process in S. femorata, which were determined by the range of rotation angles (0°-168.77°). Utilizing micro-computed tomography (micro-CT) technology, we performed a 3-dimensional (3D) reconstruction and conducted relative positioning and volumetric analysis of the metacoxa and metatrochanter of S. femorata. Our analysis revealed that the metacoxa-trochanter joint is a "screw-nut" structure connected by 4 muscles, which regulate the rotation of the legs. Further testing using a 3D-printed model of the metacoxa-trochanter joint demonstrated its possession of a self-locking mechanism capable of securing the legs in specific positions to prevent excessive rotation and dislocation. It can be envisioned that this self-locking mechanism holds potential for application in bio-inspired robotics.
{"title":"A self-locking mechanism of the frog-legged beetle Sagra femorata.","authors":"Le Zong, Zonghui Sun, Jieliang Zhao, Zhengzhong Huang, Xiaokun Liu, Lei Jiang, Congqiao Li, Jacob Mulwa Muinde, Jianing Wu, Xiaolong Wang, Hongbin Liang, Haoyu Liu, Yuxia Yang, Siqin Ge","doi":"10.1111/1744-7917.13323","DOIUrl":"10.1111/1744-7917.13323","url":null,"abstract":"<p><p>Insect legs play a crucial role in various modes of locomotion, including walking, jumping, swimming, and other forms of movement. The flexibility of their leg joints is critical in enabling various modes of locomotion. The frog-legged leaf beetle Sagra femorata possesses remarkably enlarged hind legs, which are considered to be a critical adaptation that enables the species to withstand external pressures. When confronted with external threats, S. femorata initiates a stress response by rapidly rotating its hind legs backward and upward to a specific angle, thereby potentially intimidating potential assailants. Based on video analysis, we identified 4 distinct phases of the hind leg rotation process in S. femorata, which were determined by the range of rotation angles (0°-168.77°). Utilizing micro-computed tomography (micro-CT) technology, we performed a 3-dimensional (3D) reconstruction and conducted relative positioning and volumetric analysis of the metacoxa and metatrochanter of S. femorata. Our analysis revealed that the metacoxa-trochanter joint is a \"screw-nut\" structure connected by 4 muscles, which regulate the rotation of the legs. Further testing using a 3D-printed model of the metacoxa-trochanter joint demonstrated its possession of a self-locking mechanism capable of securing the legs in specific positions to prevent excessive rotation and dislocation. It can be envisioned that this self-locking mechanism holds potential for application in bio-inspired robotics.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1864-1875"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using synthetic microbial communities to promote host growth is an effective approach. However, the construction of such communities lacks theoretical guidance. Kin discrimination is an effective means by which strains can recognize themselves from non-self, and construct competitive microbial communities to produce more secondary metabolites. However, the construction of cooperative communities benefits from the widespread use of beneficial microorganisms. We used kin discrimination to construct synthetic communities (SCs) comprising 13 Bacillus subtilis strains from the surface and gut of black soldier fly (BSF) larvae. We assessed larval growth promotion in a pigeon manure system and found that the synthetic community comprising 4 strains (SC 4) had the most profound effect. Genomic analyses of these 4 strains revealed that their complementary functional genes underpinned the robust functionality of the cooperative synthetic community, highlighting the importance of strain diversity. After analyzing the bacterial composition of BSF larvae and the pigeon manure substrate, we observed that SC 4 altered the bacterial abundance in both the larval gut and pigeon manure. This also influenced microbial metabolic functions and co-occurrence network complexity. Kin discrimination facilitates the rapid construction of synthetic communities. The positive effects of SC 4 on larval weight gain resulted from the functional redundancy and complementarity among the strains. Furthermore, SC 4 may enhance larval growth by inducing shifts in the bacterial composition of the larval gut and pigeon manure. This elucidated how the SC promoted larval growth by regulating bacterial composition and provided theoretical guidance for the construction of SCs.
{"title":"Using kin discrimination to construct synthetic microbial communities of Bacillus subtilis strains impacts the growth of black soldier fly larvae.","authors":"Jun-Hui Zhao, Ping Cheng, Yi Wang, Xun Yan, Zhi-Min Xu, Dong-Hai Peng, Guo-Hui Yu, Ming-Wei Shao","doi":"10.1111/1744-7917.13356","DOIUrl":"10.1111/1744-7917.13356","url":null,"abstract":"<p><p>Using synthetic microbial communities to promote host growth is an effective approach. However, the construction of such communities lacks theoretical guidance. Kin discrimination is an effective means by which strains can recognize themselves from non-self, and construct competitive microbial communities to produce more secondary metabolites. However, the construction of cooperative communities benefits from the widespread use of beneficial microorganisms. We used kin discrimination to construct synthetic communities (SCs) comprising 13 Bacillus subtilis strains from the surface and gut of black soldier fly (BSF) larvae. We assessed larval growth promotion in a pigeon manure system and found that the synthetic community comprising 4 strains (SC 4) had the most profound effect. Genomic analyses of these 4 strains revealed that their complementary functional genes underpinned the robust functionality of the cooperative synthetic community, highlighting the importance of strain diversity. After analyzing the bacterial composition of BSF larvae and the pigeon manure substrate, we observed that SC 4 altered the bacterial abundance in both the larval gut and pigeon manure. This also influenced microbial metabolic functions and co-occurrence network complexity. Kin discrimination facilitates the rapid construction of synthetic communities. The positive effects of SC 4 on larval weight gain resulted from the functional redundancy and complementarity among the strains. Furthermore, SC 4 may enhance larval growth by inducing shifts in the bacterial composition of the larval gut and pigeon manure. This elucidated how the SC promoted larval growth by regulating bacterial composition and provided theoretical guidance for the construction of SCs.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1943-1959"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}