Objective: To develop an automatic segmentation model to delineate the adnexal masses and construct a machine learning model to differentiate between low malignant risk and intermediate-high malignant risk of adnexal masses based on ovarian-adnexal reporting and data system (O-RADS).
Methods: A total of 663 ultrasound images of adnexal mass were collected and divided into two sets according to experienced radiologists: a low malignant risk set (n = 446) and an intermediate-high malignant risk set (n = 217). Deep learning segmentation models were trained and selected to automatically segment adnexal masses. Radiomics features were extracted utilizing a feature analysis system in Pyradiomics. Feature selection was conducted using the Spearman correlation analysis, Mann-Whitney U-test, and least absolute shrinkage and selection operator (LASSO) regression. A nomogram integrating radiomic and clinical features using a machine learning model was established and evaluated. The SHapley Additive exPlanations were used for model interpretability and visualization.
Results: The FCN ResNet101 demonstrated the highest segmentation performance for adnexal masses (Dice similarity coefficient: 89.1%). Support vector machine achieved the best AUC (0.961, 95% CI: 0.925-0.996). The nomogram using the LightGBM algorithm reached the best AUC (0.966, 95% CI: 0.927-1.000). The diagnostic performance of the nomogram was comparable to that of experienced radiologists (p > 0.05) and outperformed that of less-experienced radiologists (p < 0.05). The model significantly improved the diagnostic accuracy of less-experienced radiologists.
Conclusions: The segmentation model serves as a valuable tool for the automated delineation of adnexal lesions. The machine learning model exhibited commendable classification capability and outperformed the diagnostic performance of less-experienced radiologists.
Critical relevance statement: The ultrasound radiomics-based machine learning model holds the potential to elevate the professional ability of less-experienced radiologists and can be used to assist in the clinical screening of ovarian cancer.
Key points: We developed an image segmentation model to automatically delineate adnexal masses. We developed a model to classify adnexal masses based on O-RADS. The machine learning model has achieved commendable classification performance. The machine learning model possesses the capability to enhance the proficiency of less-experienced radiologists. We used SHapley Additive exPlanations to interpret and visualize the model.