{"title":"Priority ranking for the best-worst method","authors":"Jiancheng Tu, Zhibin Wu, W. Pedrycz","doi":"10.2139/ssrn.4331045","DOIUrl":"https://doi.org/10.2139/ssrn.4331045","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"97 1","pages":"42-55"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85328107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.48550/arXiv.2303.09789
Kuo Wang, Lingbo Liu, Yang Liu, Guanbin Li, Fan Zhou, Liang Lin
The prediction of traffic flow is a challenging yet crucial problem in spatial-temporal analysis, which has recently gained increasing interest. In addition to spatial-temporal correlations, the functionality of urban areas also plays a crucial role in traffic flow prediction. However, the exploration of regional functional attributes mainly focuses on adding additional topological structures, ignoring the influence of functional attributes on regional traffic patterns. Different from the existing works, we propose a novel module named POI-MetaBlock, which utilizes the functionality of each region (represented by Point of Interest distribution) as metadata to further mine different traffic characteristics in areas with different functions. Specifically, the proposed POI-MetaBlock employs a self-attention architecture and incorporates POI and time information to generate dynamic attention parameters for each region, which enables the model to fit different traffic patterns of various areas at different times. Furthermore, our lightweight POI-MetaBlock can be easily integrated into conventional traffic flow prediction models. Extensive experiments demonstrate that our module significantly improves the performance of traffic flow prediction and outperforms state-of-the-art methods that use metadata.
{"title":"Urban Regional Function Guided Traffic Flow Prediction","authors":"Kuo Wang, Lingbo Liu, Yang Liu, Guanbin Li, Fan Zhou, Liang Lin","doi":"10.48550/arXiv.2303.09789","DOIUrl":"https://doi.org/10.48550/arXiv.2303.09789","url":null,"abstract":"The prediction of traffic flow is a challenging yet crucial problem in spatial-temporal analysis, which has recently gained increasing interest. In addition to spatial-temporal correlations, the functionality of urban areas also plays a crucial role in traffic flow prediction. However, the exploration of regional functional attributes mainly focuses on adding additional topological structures, ignoring the influence of functional attributes on regional traffic patterns. Different from the existing works, we propose a novel module named POI-MetaBlock, which utilizes the functionality of each region (represented by Point of Interest distribution) as metadata to further mine different traffic characteristics in areas with different functions. Specifically, the proposed POI-MetaBlock employs a self-attention architecture and incorporates POI and time information to generate dynamic attention parameters for each region, which enables the model to fit different traffic patterns of various areas at different times. Furthermore, our lightweight POI-MetaBlock can be easily integrated into conventional traffic flow prediction models. Extensive experiments demonstrate that our module significantly improves the performance of traffic flow prediction and outperforms state-of-the-art methods that use metadata.","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"59 1","pages":"308-320"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76295537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.48550/arXiv.2302.02924
Emanuele Ledda, G. Fumera, F. Roli
Among Bayesian methods, Monte-Carlo dropout provides principled tools for evaluating the epistemic uncertainty of neural networks. Its popularity recently led to seminal works that proposed activating the dropout layers only during inference for evaluating uncertainty. This approach, which we call dropout injection, provides clear benefits over its traditional counterpart (which we call embedded dropout) since it allows one to obtain a post hoc uncertainty measure for any existing network previously trained without dropout, avoiding an additional, time-consuming training process. Unfortunately, no previous work compared injected and embedded dropout; therefore, we provide the first thorough investigation, focusing on regression problems. The main contribution of our work is to provide guidelines on the effective use of injected dropout so that it can be a practical alternative to the current use of embedded dropout. In particular, we show that its effectiveness strongly relies on a suitable scaling of the corresponding uncertainty measure, and we discuss the trade-off between negative log-likelihood and calibration error as a function of the scale factor. Experimental results on UCI data sets and crowd counting benchmarks support our claim that dropout injection can effectively behave as a competitive post hoc uncertainty quantification technique.
{"title":"Dropout Injection at Test Time for Post Hoc Uncertainty Quantification in Neural Networks","authors":"Emanuele Ledda, G. Fumera, F. Roli","doi":"10.48550/arXiv.2302.02924","DOIUrl":"https://doi.org/10.48550/arXiv.2302.02924","url":null,"abstract":"Among Bayesian methods, Monte-Carlo dropout provides principled tools for evaluating the epistemic uncertainty of neural networks. Its popularity recently led to seminal works that proposed activating the dropout layers only during inference for evaluating uncertainty. This approach, which we call dropout injection, provides clear benefits over its traditional counterpart (which we call embedded dropout) since it allows one to obtain a post hoc uncertainty measure for any existing network previously trained without dropout, avoiding an additional, time-consuming training process. Unfortunately, no previous work compared injected and embedded dropout; therefore, we provide the first thorough investigation, focusing on regression problems. The main contribution of our work is to provide guidelines on the effective use of injected dropout so that it can be a practical alternative to the current use of embedded dropout. In particular, we show that its effectiveness strongly relies on a suitable scaling of the corresponding uncertainty measure, and we discuss the trade-off between negative log-likelihood and calibration error as a function of the scale factor. Experimental results on UCI data sets and crowd counting benchmarks support our claim that dropout injection can effectively behave as a competitive post hoc uncertainty quantification technique.","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"1 1","pages":"119356"},"PeriodicalIF":0.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88351458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-25DOI: 10.48550/arXiv.2301.10703
M. Chamanbaz, Roland Bouffanais
Mixed-integer optimisation problems can be computationally challenging. Here, we introduce and analyse two efficient algorithms with a specific sequential design that are aimed at dealing with sampled problems within this class. At each iteration step of both algorithms, we first test the feasibility of a given test solution for each and every constraint associated with the sampled optimisation at hand, while also identifying those constraints that are violated. Subsequently, an optimisation problem is constructed with a constraint set consisting of the current basis -- namely, the smallest set of constraints that fully specifies the current test solution -- as well as constraints related to a limited number of the identified violating samples. We show that both algorithms exhibit finite-time convergence towards the optimal solution. Algorithm 2 features a neural network classifier that notably improves the computational performance compared to Algorithm 1. We quantitatively establish these algorithms' efficacy through three numerical tests: robust optimal power flow, robust unit commitment, and robust random mixed-integer linear program.
{"title":"A Sequential Deep Learning Algorithm for Sampled Mixed-integer Optimisation Problems","authors":"M. Chamanbaz, Roland Bouffanais","doi":"10.48550/arXiv.2301.10703","DOIUrl":"https://doi.org/10.48550/arXiv.2301.10703","url":null,"abstract":"Mixed-integer optimisation problems can be computationally challenging. Here, we introduce and analyse two efficient algorithms with a specific sequential design that are aimed at dealing with sampled problems within this class. At each iteration step of both algorithms, we first test the feasibility of a given test solution for each and every constraint associated with the sampled optimisation at hand, while also identifying those constraints that are violated. Subsequently, an optimisation problem is constructed with a constraint set consisting of the current basis -- namely, the smallest set of constraints that fully specifies the current test solution -- as well as constraints related to a limited number of the identified violating samples. We show that both algorithms exhibit finite-time convergence towards the optimal solution. Algorithm 2 features a neural network classifier that notably improves the computational performance compared to Algorithm 1. We quantitatively establish these algorithms' efficacy through three numerical tests: robust optimal power flow, robust unit commitment, and robust random mixed-integer linear program.","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"145 1","pages":"73-84"},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78911263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Futalef, Diego Muñoz-Carpintero, Heraldo Rozas, Marcos E. Orchard
{"title":"An online decision-making strategy for routing of electric vehicle fleets","authors":"J. Futalef, Diego Muñoz-Carpintero, Heraldo Rozas, Marcos E. Orchard","doi":"10.2139/ssrn.4087063","DOIUrl":"https://doi.org/10.2139/ssrn.4087063","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"39 10 1","pages":"715-737"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85636794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhan Bu, Shanfan Zhang, Shanshan Cao, Jiuchuan Jiang, Yichuan Jiang
{"title":"Community-aware empathetic social choice for social network group decision making","authors":"Zhan Bu, Shanfan Zhang, Shanshan Cao, Jiuchuan Jiang, Yichuan Jiang","doi":"10.2139/ssrn.4331049","DOIUrl":"https://doi.org/10.2139/ssrn.4331049","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"14 1","pages":"119248"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73167638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-22DOI: 10.48550/arXiv.2211.15371
Ş. Öztürk, Emin Çelik, T. Çukur
Broadspread use of medical imaging devices with digital storage has paved the way for curation of substantial data repositories. Fast access to image samples with similar appearance to suspected cases can help establish a consulting system for healthcare professionals, and improve diagnostic procedures while minimizing processing delays. However, manual querying of large data repositories is labor intensive. Content-based image retrieval (CBIR) offers an automated solution based on dense embedding vectors that represent image features to allow quantitative similarity assessments. Triplet learning has emerged as a powerful approach to recover embeddings in CBIR, albeit traditional loss functions ignore the dynamic relationship between opponent image classes. Here, we introduce a triplet-learning method for automated querying of medical image repositories based on a novel Opponent Class Adaptive Margin (OCAM) loss. OCAM uses a variable margin value that is updated continually during the course of training to maintain optimally discriminative representations. CBIR performance of OCAM is compared against state-of-the-art loss functions for representational learning on three public databases (gastrointestinal disease, skin lesion, lung disease). Comprehensive experiments in each application domain demonstrate the superior performance of OCAM against baselines.
{"title":"Content-Based Medical Image Retrieval with Opponent Class Adaptive Margin Loss","authors":"Ş. Öztürk, Emin Çelik, T. Çukur","doi":"10.48550/arXiv.2211.15371","DOIUrl":"https://doi.org/10.48550/arXiv.2211.15371","url":null,"abstract":"Broadspread use of medical imaging devices with digital storage has paved the way for curation of substantial data repositories. Fast access to image samples with similar appearance to suspected cases can help establish a consulting system for healthcare professionals, and improve diagnostic procedures while minimizing processing delays. However, manual querying of large data repositories is labor intensive. Content-based image retrieval (CBIR) offers an automated solution based on dense embedding vectors that represent image features to allow quantitative similarity assessments. Triplet learning has emerged as a powerful approach to recover embeddings in CBIR, albeit traditional loss functions ignore the dynamic relationship between opponent image classes. Here, we introduce a triplet-learning method for automated querying of medical image repositories based on a novel Opponent Class Adaptive Margin (OCAM) loss. OCAM uses a variable margin value that is updated continually during the course of training to maintain optimally discriminative representations. CBIR performance of OCAM is compared against state-of-the-art loss functions for representational learning on three public databases (gastrointestinal disease, skin lesion, lung disease). Comprehensive experiments in each application domain demonstrate the superior performance of OCAM against baselines.","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"22 1","pages":"118938"},"PeriodicalIF":0.0,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84292996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}