首页 > 最新文献

Inf. Sci.最新文献

英文 中文
Stateful Detection of Adversarial Reprogramming 对抗性重编程的状态检测
Pub Date : 2022-11-05 DOI: 10.48550/arXiv.2211.02885
Yang Zheng, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Maura Pintor, Ambra Demontis, B. Biggio, F. Roli
Adversarial reprogramming allows stealing computational resources by repurposing machine learning models to perform a different task chosen by the attacker. For example, a model trained to recognize images of animals can be reprogrammed to recognize medical images by embedding an adversarial program in the images provided as inputs. This attack can be perpetrated even if the target model is a black box, supposed that the machine-learning model is provided as a service and the attacker can query the model and collect its outputs. So far, no defense has been demonstrated effective in this scenario. We show for the first time that this attack is detectable using stateful defenses, which store the queries made to the classifier and detect the abnormal cases in which they are similar. Once a malicious query is detected, the account of the user who made it can be blocked. Thus, the attacker must create many accounts to perpetrate the attack. To decrease this number, the attacker could create the adversarial program against a surrogate classifier and then fine-tune it by making few queries to the target model. In this scenario, the effectiveness of the stateful defense is reduced, but we show that it is still effective.
对抗性重编程允许通过重新利用机器学习模型来执行攻击者选择的不同任务来窃取计算资源。例如,一个被训练来识别动物图像的模型,可以通过在作为输入的图像中嵌入一个对抗程序来重新编程,以识别医学图像。即使目标模型是黑盒,也可以实施这种攻击,假设机器学习模型作为服务提供,攻击者可以查询模型并收集其输出。到目前为止,在这种情况下,没有任何防御被证明是有效的。我们首次展示了使用有状态防御可以检测到这种攻击,有状态防御存储对分类器的查询,并检测它们相似的异常情况。一旦检测到恶意查询,可以阻止提出该查询的用户的帐户。因此,攻击者必须创建许多帐户才能进行攻击。为了减少这个数字,攻击者可以针对代理分类器创建对抗性程序,然后通过对目标模型进行少量查询来对其进行微调。在这个场景中,状态防御的有效性降低了,但我们证明它仍然有效。
{"title":"Stateful Detection of Adversarial Reprogramming","authors":"Yang Zheng, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Maura Pintor, Ambra Demontis, B. Biggio, F. Roli","doi":"10.48550/arXiv.2211.02885","DOIUrl":"https://doi.org/10.48550/arXiv.2211.02885","url":null,"abstract":"Adversarial reprogramming allows stealing computational resources by repurposing machine learning models to perform a different task chosen by the attacker. For example, a model trained to recognize images of animals can be reprogrammed to recognize medical images by embedding an adversarial program in the images provided as inputs. This attack can be perpetrated even if the target model is a black box, supposed that the machine-learning model is provided as a service and the attacker can query the model and collect its outputs. So far, no defense has been demonstrated effective in this scenario. We show for the first time that this attack is detectable using stateful defenses, which store the queries made to the classifier and detect the abnormal cases in which they are similar. Once a malicious query is detected, the account of the user who made it can be blocked. Thus, the attacker must create many accounts to perpetrate the attack. To decrease this number, the attacker could create the adversarial program against a surrogate classifier and then fine-tune it by making few queries to the target model. In this scenario, the effectiveness of the stateful defense is reduced, but we show that it is still effective.","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"21 1","pages":"119093"},"PeriodicalIF":0.0,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78621414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Feature selection based on double-hierarchical and multiplication-optimal fusion measurement in fuzzy neighborhood rough sets 基于模糊邻域粗糙集双层次乘优融合测量的特征选择
Pub Date : 2022-11-01 DOI: 10.1016/j.ins.2022.10.133
Hongyuan Gou, Xianyong Zhang
{"title":"Feature selection based on double-hierarchical and multiplication-optimal fusion measurement in fuzzy neighborhood rough sets","authors":"Hongyuan Gou, Xianyong Zhang","doi":"10.1016/j.ins.2022.10.133","DOIUrl":"https://doi.org/10.1016/j.ins.2022.10.133","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"7 1","pages":"434-467"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90998556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Reward Shaping Using Convolutional Neural Network 基于卷积神经网络的奖励塑造
Pub Date : 2022-10-30 DOI: 10.48550/arXiv.2210.16956
Hani Sami, H. Otrok, J. Bentahar, A. Mourad, E. Damiani
In this paper, we propose Value Iteration Network for Reward Shaping (VIN-RS), a potential-based reward shaping mechanism using Convolutional Neural Network (CNN). The proposed VIN-RS embeds a CNN trained on computed labels using the message passing mechanism of the Hidden Markov Model. The CNN processes images or graphs of the environment to predict the shaping values. Recent work on reward shaping still has limitations towards training on a representation of the Markov Decision Process (MDP) and building an estimate of the transition matrix. The advantage of VIN-RS is to construct an effective potential function from an estimated MDP while automatically inferring the environment transition matrix. The proposed VIN-RS estimates the transition matrix through a self-learned convolution filter while extracting environment details from the input frames or sampled graphs. Due to (1) the previous success of using message passing for reward shaping; and (2) the CNN planning behavior, we use these messages to train the CNN of VIN-RS. Experiments are performed on tabular games, Atari 2600 and MuJoCo, for discrete and continuous action space. Our results illustrate promising improvements in the learning speed and maximum cumulative reward compared to the state-of-the-art.
在本文中,我们提出了一种基于卷积神经网络(CNN)的基于电位的奖励形成机制——奖励形成的价值迭代网络(VIN-RS)。本文提出的VIN-RS利用隐马尔可夫模型的消息传递机制嵌入一个经过计算标签训练的CNN。CNN处理环境的图像或图形来预测塑形值。最近关于奖励形成的工作在训练马尔可夫决策过程(MDP)的表示和建立转移矩阵的估计方面仍然存在局限性。VIN-RS的优点是在自动推断环境转移矩阵的同时,根据估计的MDP构造有效的势函数。提出的VIN-RS通过自学习卷积滤波器估计过渡矩阵,同时从输入帧或采样图中提取环境细节。由于(1)先前使用消息传递进行奖励塑造的成功;(2) CNN的规划行为,我们使用这些消息来训练VIN-RS的CNN。实验在表格游戏,Atari 2600和MuJoCo上进行,用于离散和连续的动作空间。我们的研究结果表明,与最先进的方法相比,在学习速度和最大累积奖励方面有很大的改善。
{"title":"Reward Shaping Using Convolutional Neural Network","authors":"Hani Sami, H. Otrok, J. Bentahar, A. Mourad, E. Damiani","doi":"10.48550/arXiv.2210.16956","DOIUrl":"https://doi.org/10.48550/arXiv.2210.16956","url":null,"abstract":"In this paper, we propose Value Iteration Network for Reward Shaping (VIN-RS), a potential-based reward shaping mechanism using Convolutional Neural Network (CNN). The proposed VIN-RS embeds a CNN trained on computed labels using the message passing mechanism of the Hidden Markov Model. The CNN processes images or graphs of the environment to predict the shaping values. Recent work on reward shaping still has limitations towards training on a representation of the Markov Decision Process (MDP) and building an estimate of the transition matrix. The advantage of VIN-RS is to construct an effective potential function from an estimated MDP while automatically inferring the environment transition matrix. The proposed VIN-RS estimates the transition matrix through a self-learned convolution filter while extracting environment details from the input frames or sampled graphs. Due to (1) the previous success of using message passing for reward shaping; and (2) the CNN planning behavior, we use these messages to train the CNN of VIN-RS. Experiments are performed on tabular games, Atari 2600 and MuJoCo, for discrete and continuous action space. Our results illustrate promising improvements in the learning speed and maximum cumulative reward compared to the state-of-the-art.","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"278 1","pages":"119481"},"PeriodicalIF":0.0,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76819546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pruning Techniques in LinCbO for Computation of the Duquenne-Guigues Basis 用于Duquenne-Guigues基计算的LinCbO剪枝技术
Pub Date : 2022-10-01 DOI: 10.1007/978-3-030-77867-5_6
Radek Janostik, J. Konečný, Petr Krajča
{"title":"Pruning Techniques in LinCbO for Computation of the Duquenne-Guigues Basis","authors":"Radek Janostik, J. Konečný, Petr Krajča","doi":"10.1007/978-3-030-77867-5_6","DOIUrl":"https://doi.org/10.1007/978-3-030-77867-5_6","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"79 1","pages":"182-203"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88580819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Neighborhood-based differential evolution algorithm with direction induced strategy for the large-scale combined heat and power economic dispatch problem 大型热电联产经济调度问题的定向诱导邻域差分进化算法
Pub Date : 2022-09-01 DOI: 10.1016/j.ins.2022.09.025
Di Liu, Zhongbo Hu, Qinghua Su
{"title":"Neighborhood-based differential evolution algorithm with direction induced strategy for the large-scale combined heat and power economic dispatch problem","authors":"Di Liu, Zhongbo Hu, Qinghua Su","doi":"10.1016/j.ins.2022.09.025","DOIUrl":"https://doi.org/10.1016/j.ins.2022.09.025","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"56 1","pages":"469-493"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80459904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Causality detection with matrix-based transfer entropy 基于矩阵传递熵的因果关系检测
Pub Date : 2022-09-01 DOI: 10.1016/j.ins.2022.09.037
Wanqi Zhou, Shujian Yu, Badong Chen
{"title":"Causality detection with matrix-based transfer entropy","authors":"Wanqi Zhou, Shujian Yu, Badong Chen","doi":"10.1016/j.ins.2022.09.037","DOIUrl":"https://doi.org/10.1016/j.ins.2022.09.037","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"7 1","pages":"357-375"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87593795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Quantized output feedback for continuous-time switched systems with time-delay 时滞连续时间切换系统的量化输出反馈
Pub Date : 2022-09-01 DOI: 10.1016/j.ins.2022.09.012
Jingjing Yan, Xiaofan Mao, Yuanqing Xia, Lan Wu
{"title":"Quantized output feedback for continuous-time switched systems with time-delay","authors":"Jingjing Yan, Xiaofan Mao, Yuanqing Xia, Lan Wu","doi":"10.1016/j.ins.2022.09.012","DOIUrl":"https://doi.org/10.1016/j.ins.2022.09.012","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"20 1","pages":"806-827"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83850598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Two efficient local search algorithms for the vertex bisection minimization problem 顶点对分最小化问题的两种高效局部搜索算法
Pub Date : 2022-09-01 DOI: 10.1016/j.ins.2022.07.106
Xinliang Tian, D. Ouyang, Rui Sun, Huisi Zhou, Liming Zhang
{"title":"Two efficient local search algorithms for the vertex bisection minimization problem","authors":"Xinliang Tian, D. Ouyang, Rui Sun, Huisi Zhou, Liming Zhang","doi":"10.1016/j.ins.2022.07.106","DOIUrl":"https://doi.org/10.1016/j.ins.2022.07.106","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"2 1","pages":"153-171"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75544267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Generic conversions from CPA to CCA without ciphertext expansion for threshold ABE with constant-size ciphertexts 对于具有恒定长度密文的阈值ABE,从CPA到CCA的通用转换无需密文扩展
Pub Date : 2022-09-01 DOI: 10.1016/j.ins.2022.08.069
Jianchang Lai, F. Guo, W. Susilo, Peng Jiang, Guoming Yang, Xinyi Huang
{"title":"Generic conversions from CPA to CCA without ciphertext expansion for threshold ABE with constant-size ciphertexts","authors":"Jianchang Lai, F. Guo, W. Susilo, Peng Jiang, Guoming Yang, Xinyi Huang","doi":"10.1016/j.ins.2022.08.069","DOIUrl":"https://doi.org/10.1016/j.ins.2022.08.069","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"55 1","pages":"966-981"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84759042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple kernel learning for label relation and class imbalance in multi-label learning 标签关系的多核学习和多标签学习中的类不平衡
Pub Date : 2022-09-01 DOI: 10.1016/j.ins.2022.08.089
Mingjing Han, Han Zhang
{"title":"Multiple kernel learning for label relation and class imbalance in multi-label learning","authors":"Mingjing Han, Han Zhang","doi":"10.1016/j.ins.2022.08.089","DOIUrl":"https://doi.org/10.1016/j.ins.2022.08.089","url":null,"abstract":"","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"18 1","pages":"344-356"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89516487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Inf. Sci.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1