Lijuan ZHAO, Chunxiao CHEN, Lewen WANG, Yan LIU, Fanglei GONG, Jingou WANG, Hong SUN, Dawei WANG, Zhenlong WANG
Photoperiod is a pivotal factor in affecting testicular function and spermatogenesis in seasonal-breeding animals. Mitophagy is essential for spermatogenesis, but its association with seasonal photoperiods has not been studied extensively. To explore this, we exposed male Brandt's voles (Lasiopodomys brandtii) to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) conditions from their embryonic stages. Our results indicated that testis weight, volume, and relative testes weight were all significantly increased in LP compared to SP. Additionally, blood testosterone levels were markedly higher in LP than SP. Histological examination revealed that seminiferous diameter and epithelium thickness were greater in LP, with an increased abundance of germ cell types and cell numbers compared to SP. RT-qPCR analysis showed that mitophagy-promoting genes, such as Pink1, Prkn, Tomm7, Mnf2, Lc3, Optn, Gabarap, and Nbr1 were all upregulated in LP. Fluorescence in situ hybridization indicated that Pink1 expression was present in spermatogonia in SP, while in LP, Pink1 expression extended to almost all germ cell types with significantly higher mean optical density. Prkn expression was found in all germ cell types in both LP and SP, with a significantly higher mean optical density of 10-week-old LP males. Transmission electron microscopy showed normal mitochondrial morphology with clear membranes in SP, while the LP group had reduced cristae in mitochondria and damaged mitochondria undergoing autophagy. This study suggests that mitophagy may be involved in the photoperiodic spermatogenesis in Brandt's voles, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
{"title":"Photoperiod-regulated mitophagy in the germ cells of Brandt's voles (Lasiopodomys brandtii)","authors":"Lijuan ZHAO, Chunxiao CHEN, Lewen WANG, Yan LIU, Fanglei GONG, Jingou WANG, Hong SUN, Dawei WANG, Zhenlong WANG","doi":"10.1111/1749-4877.12818","DOIUrl":"10.1111/1749-4877.12818","url":null,"abstract":"<p>Photoperiod is a pivotal factor in affecting testicular function and spermatogenesis in seasonal-breeding animals. Mitophagy is essential for spermatogenesis, but its association with seasonal photoperiods has not been studied extensively. To explore this, we exposed male Brandt's voles (<i>Lasiopodomys brandtii</i>) to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) conditions from their embryonic stages. Our results indicated that testis weight, volume, and relative testes weight were all significantly increased in LP compared to SP. Additionally, blood testosterone levels were markedly higher in LP than SP. Histological examination revealed that seminiferous diameter and epithelium thickness were greater in LP, with an increased abundance of germ cell types and cell numbers compared to SP. RT-qPCR analysis showed that mitophagy-promoting genes, such as <i>Pink1</i>, <i>Prkn</i>, <i>Tomm7</i>, <i>Mnf2</i>, <i>Lc3</i>, <i>Optn</i>, <i>Gabarap</i>, and <i>Nbr1</i> were all upregulated in LP. Fluorescence <i>in situ</i> hybridization indicated that <i>Pink1</i> expression was present in spermatogonia in SP, while in LP, <i>Pink1</i> expression extended to almost all germ cell types with significantly higher mean optical density. <i>Prkn</i> expression was found in all germ cell types in both LP and SP, with a significantly higher mean optical density of 10-week-old LP males. Transmission electron microscopy showed normal mitochondrial morphology with clear membranes in SP, while the LP group had reduced cristae in mitochondria and damaged mitochondria undergoing autophagy. This study suggests that mitophagy may be involved in the photoperiodic spermatogenesis in Brandt's voles, providing insights into the role of photoperiod in seasonal reproduction in wild animals.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"19 6","pages":"1105-1120"},"PeriodicalIF":3.5,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jae-Uk SEOL, Jung Su PARK, Jae-Hong LIM, Hyeon Su HWANG, Eun-Bin KIM, Seob-Gu KIM, Jae-Il PARK, Ha-Cheol SUNG, Joon Heon KIM, Eung-Sam KIM
The tree frog is a prominent amphibian among terrestrial vertebrates known for its ability to adhere to various surfaces through the capillary forces of water in the microchannels between micropillars on its disc-shaped toe pads, a phenomenon known as wet adhesion. However, the secretion pattern of mucus on the attachment surface of living tree frog toe pads and the distribution of active mucus pores (AMPs) have not yet been fully elucidated. In this study, we utilized synchrotron X-ray micro-computed tomography and interference reflection microscopy to obtain the spatial distribution of the entire population of ventral mucus glands on the toe pads of living tree frogs and the real-time mucus secretion patterns from the ventral mucus pores on the contact surface under different environmental conditions. We observed that the number and secretion frequency of AMPs on the toe pad are regulated according to environmental conditions. Such dynamic mucus secretion on the tree frog's toe pad could contribute to the understanding of capillary force regulation for wet adhesion and the development of adhesive surfaces by mimicking the mucus-secreting toe pad.
树蛙是陆生脊椎动物中一种重要的两栖类动物,它能够通过圆盘状趾垫上微绒毛之间微通道中水的毛细作用力粘附在各种表面,这种现象被称为湿粘附。然而,活体树蛙趾垫附着表面的粘液分泌模式和活性粘液孔(AMPs)的分布尚未完全阐明。本研究利用同步辐射 X 射线显微计算机断层扫描技术和干涉反射显微镜技术,获得了活体树蛙趾垫腹面粘液腺全群的空间分布以及不同环境条件下接触面腹面粘液孔的实时粘液分泌模式。我们观察到,趾垫上AMPs的数量和分泌频率受环境条件的调节。树蛙趾垫上这种动态的粘液分泌有助于理解湿粘附的毛细管力调节,以及通过模仿分泌粘液的趾垫来开发粘附表面。
{"title":"Dynamic mucus secretion in ventral surfaces of toe pads of the tree frog (Dryophytes japonica)","authors":"Jae-Uk SEOL, Jung Su PARK, Jae-Hong LIM, Hyeon Su HWANG, Eun-Bin KIM, Seob-Gu KIM, Jae-Il PARK, Ha-Cheol SUNG, Joon Heon KIM, Eung-Sam KIM","doi":"10.1111/1749-4877.12821","DOIUrl":"10.1111/1749-4877.12821","url":null,"abstract":"<p>The tree frog is a prominent amphibian among terrestrial vertebrates known for its ability to adhere to various surfaces through the capillary forces of water in the microchannels between micropillars on its disc-shaped toe pads, a phenomenon known as wet adhesion. However, the secretion pattern of mucus on the attachment surface of living tree frog toe pads and the distribution of active mucus pores (AMPs) have not yet been fully elucidated. In this study, we utilized synchrotron X-ray micro-computed tomography and interference reflection microscopy to obtain the spatial distribution of the entire population of ventral mucus glands on the toe pads of living tree frogs and the real-time mucus secretion patterns from the ventral mucus pores on the contact surface under different environmental conditions. We observed that the number and secretion frequency of AMPs on the toe pad are regulated according to environmental conditions. Such dynamic mucus secretion on the tree frog's toe pad could contribute to the understanding of capillary force regulation for wet adhesion and the development of adhesive surfaces by mimicking the mucus-secreting toe pad.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"19 6","pages":"1076-1091"},"PeriodicalIF":3.5,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caiping Zhao, Wenrui Dai, Qiang Liu, Dongqi Liu, Nathan James Roberts, Zhaoli Liu, Ming Gong, Hongkun Qiu, Changhai Liu, Dan Liu, Guangkai Ma, Guangshun Jiang
We found that the area of black round or irregular-shaped spots on the tiger's nose increased with age, indicating a positive relationship between age and nose features. We used the deep learning model to train the facial and nose image features to identify the age of Amur tigers, using a combination of classification and prediction methods to achieve age determination with an accuracy of 87.81%.
{"title":"Combination of facial and nose features of Amur tigers to determine age.","authors":"Caiping Zhao, Wenrui Dai, Qiang Liu, Dongqi Liu, Nathan James Roberts, Zhaoli Liu, Ming Gong, Hongkun Qiu, Changhai Liu, Dan Liu, Guangkai Ma, Guangshun Jiang","doi":"10.1111/1749-4877.12817","DOIUrl":"https://doi.org/10.1111/1749-4877.12817","url":null,"abstract":"<p><p>We found that the area of black round or irregular-shaped spots on the tiger's nose increased with age, indicating a positive relationship between age and nose features. We used the deep learning model to train the facial and nose image features to identify the age of Amur tigers, using a combination of classification and prediction methods to achieve age determination with an accuracy of 87.81%.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessandra RICCIERI, Lucrezia SPAGONI, Ming LI, Paolo FRANCHINI, Marianna N. ROSSI, Emiliano FRATINI, Manuela CERVELLI, Marco A. BOLOGNA, Emiliano MANCINI
Blister beetles (Coleoptera: Meloidae) are currently subdivided into three subfamilies: Eleticinae (a basal group), Nemognathinae, and Meloinae. These are all characterized by the endogenous production of the defensive terpene cantharidin (CA), whereas the two most derived subfamilies show a hypermetamorphic larval development. Here, we provide novel draft genome assemblies of five species sampled across the three blister beetle subfamilies (Iselma pallidipennis, Stenodera caucasica, Zonitis immaculata, Lydus trimaculatus, and Mylabris variabilis) and performed a comparative analysis with other available Meloidae genomes and the closely-related canthariphilous species (Pyrochroa serraticornis) to disclose adaptations at a molecular level. Our results highlighted the expansion and selection of genes potentially responsible for CA production and metabolism, as well as its mobilization and vesicular compartmentalization. Furthermore, we observed adaptive selection patterns and gain of genes devoted to epigenetic regulation, development, and morphogenesis, possibly related to hypermetamorphosis. We hypothesize that most genetic adaptations occurred to support both CA biosynthesis and hypermetamorphosis, two crucial aspects of Meloidae biology that likely contributed to their evolutionary success.
{"title":"Comparative genomics provides insights into molecular adaptation to hypermetamorphosis and cantharidin metabolism in blister beetles (Coleoptera: Meloidae)","authors":"Alessandra RICCIERI, Lucrezia SPAGONI, Ming LI, Paolo FRANCHINI, Marianna N. ROSSI, Emiliano FRATINI, Manuela CERVELLI, Marco A. BOLOGNA, Emiliano MANCINI","doi":"10.1111/1749-4877.12819","DOIUrl":"10.1111/1749-4877.12819","url":null,"abstract":"<p>Blister beetles (Coleoptera: Meloidae) are currently subdivided into three subfamilies: Eleticinae (a basal group), Nemognathinae, and Meloinae. These are all characterized by the endogenous production of the defensive terpene cantharidin (CA), whereas the two most derived subfamilies show a hypermetamorphic larval development. Here, we provide novel draft genome assemblies of five species sampled across the three blister beetle subfamilies (<i>Iselma pallidipennis</i>, <i>Stenodera caucasica</i>, <i>Zonitis immaculata</i>, <i>Lydus trimaculatus</i>, and <i>Mylabris variabilis</i>) and performed a comparative analysis with other available Meloidae genomes and the closely-related canthariphilous species (<i>Pyrochroa serraticornis</i>) to disclose adaptations at a molecular level. Our results highlighted the expansion and selection of genes potentially responsible for CA production and metabolism, as well as its mobilization and vesicular compartmentalization. Furthermore, we observed adaptive selection patterns and gain of genes devoted to epigenetic regulation, development, and morphogenesis, possibly related to hypermetamorphosis. We hypothesize that most genetic adaptations occurred to support both CA biosynthesis and hypermetamorphosis, two crucial aspects of Meloidae biology that likely contributed to their evolutionary success.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"19 5","pages":"975-988"},"PeriodicalIF":3.5,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1749-4877.12819","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zheng WANG, Wei TAI, Xuan ZHANG, Shouguo LIU, Yixing NIU, Wenwen CHEN, Ning LI
Species functional traits can influence seed dispersal processes and consequently affect species' role in the mutualistic network. Although the effect of animal traits on the structure of the seed dispersal network is well explored, it remains poorly understood how plant and fruit traits contribute to the structure. We here studied the effects of plant and fruit traits on the structure of bird seed dispersal networks across different disturbed habitats in the Meihua Mountain National Nature Reserve, Southeastern China. During the study period, 16, 20, 13, and 15 bird species were recorded foraging on 10, 11, 12, and 8 plant species, resulting in 511, 312, 265, and 201 foraging events in the protected forest, natural forest, village, and bamboo forest, respectively. The composition of these seed dispersal networks is not primarily influenced by a specific group of bulbul species, but rather by the presence of an endangered plant species, Taxus chinensis. As we expected, the structure of the four networks was different among the four disturbed habitats. Furthermore, our results also showed tree height and canopy density were the most important plant traits for structuring the seed dispersal network, while sugar, amylase, dry matter, and alkaloids were identified as significant fruit traits. Overall, our findings highlight the value of integrating trait-based ecology into the framework of the seed dispersal network and provide new insights for mutualistic network conservation in disturbed habitats.
{"title":"Importance of plant and fruit traits on the structure of bird seed dispersal networks in different disturbed habitats","authors":"Zheng WANG, Wei TAI, Xuan ZHANG, Shouguo LIU, Yixing NIU, Wenwen CHEN, Ning LI","doi":"10.1111/1749-4877.12822","DOIUrl":"10.1111/1749-4877.12822","url":null,"abstract":"<p>Species functional traits can influence seed dispersal processes and consequently affect species' role in the mutualistic network. Although the effect of animal traits on the structure of the seed dispersal network is well explored, it remains poorly understood how plant and fruit traits contribute to the structure. We here studied the effects of plant and fruit traits on the structure of bird seed dispersal networks across different disturbed habitats in the Meihua Mountain National Nature Reserve, Southeastern China. During the study period, 16, 20, 13, and 15 bird species were recorded foraging on 10, 11, 12, and 8 plant species, resulting in 511, 312, 265, and 201 foraging events in the protected forest, natural forest, village, and bamboo forest, respectively. The composition of these seed dispersal networks is not primarily influenced by a specific group of bulbul species, but rather by the presence of an endangered plant species, <i>Taxus chinensis</i>. As we expected, the structure of the four networks was different among the four disturbed habitats. Furthermore, our results also showed tree height and canopy density were the most important plant traits for structuring the seed dispersal network, while sugar, amylase, dry matter, and alkaloids were identified as significant fruit traits. Overall, our findings highlight the value of integrating trait-based ecology into the framework of the seed dispersal network and provide new insights for mutualistic network conservation in disturbed habitats.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"19 4","pages":"753-762"},"PeriodicalIF":3.5,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The red panda (Ailurus fulgens) is a distinctive mammal known for its reliance on a diet primarily consisting of bamboo. The gut microbiota and overall health of animals are strongly influenced by diets and environments. Therefore, conducting research to explore the taxonomical and functional variances within the gut microbiota of red pandas exposed to various dietary and environmental conditions could shed light on the dynamic complexities of their microbial communities. In this study, normal fecal samples were obtained from red pandas residing in captive and semi-free environments under different dietary regimes and used for metabolomic, 16S rRNA, and metagenomic sequencing analysis, with the pandas classified into four distinct cohorts according to diet and environment. In addition, metagenomic sequencing was conducted on mucus fecal samples to elucidate potential etiological agents of disease. Results revealed an increased risk of gastrointestinal diseases in red pandas consuming bamboo shoots due to the heightened presence of pathogenic bacteria, although an increased presence of microbiota-derived tryptophan metabolites appeared to facilitate intestinal balance. The red pandas fed bamboo leaves also exhibited a decrease in gut microbial diversity, which may be attributed to the antibacterial flavonoids and lower protein levels in leaves. Notably, red pandas residing in semi-free environments demonstrated an enriched gut microbial diversity. Moreover, the occurrence of mucus secretion may be due to an increased presence of species associated with diarrhea and a reduced level of microbiota-derived tryptophan metabolites. In summary, our findings substantiate the influential role of diet and environment in modulating the gut microbiota of red pandas, offering potential implications for improved captive breeding practices.
{"title":"Red pandas with different diets and environments exhibit different gut microbial functional composition and capacity","authors":"Yunwei LU, Liang ZHANG, Xu LIU, Yue LAN, Lixia WU, Jiao WANG, Kongju WU, Chaojie YANG, Ruiqing LV, Dejiao YI, Guifu ZHUO, Yan LI, Fujun SHEN, Rong HOU, Bisong YUE, Zhenxin FAN","doi":"10.1111/1749-4877.12813","DOIUrl":"10.1111/1749-4877.12813","url":null,"abstract":"<p>The red panda (<i>Ailurus fulgens</i>) is a distinctive mammal known for its reliance on a diet primarily consisting of bamboo. The gut microbiota and overall health of animals are strongly influenced by diets and environments. Therefore, conducting research to explore the taxonomical and functional variances within the gut microbiota of red pandas exposed to various dietary and environmental conditions could shed light on the dynamic complexities of their microbial communities. In this study, normal fecal samples were obtained from red pandas residing in captive and semi-free environments under different dietary regimes and used for metabolomic, 16S rRNA, and metagenomic sequencing analysis, with the pandas classified into four distinct cohorts according to diet and environment. In addition, metagenomic sequencing was conducted on mucus fecal samples to elucidate potential etiological agents of disease. Results revealed an increased risk of gastrointestinal diseases in red pandas consuming bamboo shoots due to the heightened presence of pathogenic bacteria, although an increased presence of microbiota-derived tryptophan metabolites appeared to facilitate intestinal balance. The red pandas fed bamboo leaves also exhibited a decrease in gut microbial diversity, which may be attributed to the antibacterial flavonoids and lower protein levels in leaves. Notably, red pandas residing in semi-free environments demonstrated an enriched gut microbial diversity. Moreover, the occurrence of mucus secretion may be due to an increased presence of species associated with diarrhea and a reduced level of microbiota-derived tryptophan metabolites. In summary, our findings substantiate the influential role of diet and environment in modulating the gut microbiota of red pandas, offering potential implications for improved captive breeding practices.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"19 4","pages":"662-682"},"PeriodicalIF":3.5,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139989938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herbicides have demonstrated their impact on insect fitness by affecting their associated microbiota or altering the virulence of entomopathogenic fungi toward insects. However, limited research has explored the implications of herbicide stress on the intricate tripartite interaction among insects, associated bacterial communities, and entomopathogens. In this study, we initially demonstrated that associated bacteria confer a leaf beetle, Plagiodera versicolora, with the capability to resist the entomopathogenic fungus Aspergillus nomius infection, a capability sustained even under herbicide glyphosate stress. Further analysis of the associated microbiota revealed a significant alteration in abundance and composition due to glyphosate treatment. The dominant bacterium, post A. nomius infection or following a combination of glyphosate treatments, exhibited strong suppressive effects on fungal growth. Additionally, glyphosate markedly inhibited the pathogenic associated bacterium Pseudomonas though it inhibited P. versicolora’s immunity, ultimately enhancing the beetle's tolerance to A. nomius. In summary, our findings suggest that the leaf beetle's associated microbiota bestow an augmented resilience against the dual stressors of both the entomopathogen and glyphosate. These results provide insight into the effects of herbicide residues on interactions among insects, associated bacteria, and entomopathogenic fungi, holding significant implications for pest control and ecosystem assessment.
除草剂通过影响昆虫的相关微生物群或改变昆虫病原真菌对昆虫的毒力,对昆虫的适应性产生了影响。然而,对除草剂胁迫对昆虫、相关细菌群落和昆虫病原菌之间错综复杂的三方相互作用的影响的探索还很有限。在这项研究中,我们初步证明了伴生细菌赋予叶甲虫 Plagiodera versicolora 抵抗昆虫病原真菌 Aspergillus nomius 感染的能力,这种能力即使在除草剂草甘膦胁迫下也能保持。对相关微生物群的进一步分析表明,草甘膦处理对微生物群的丰度和组成产生了显著影响。在 A. nomius 感染后或草甘膦综合处理后,优势细菌对真菌的生长有很强的抑制作用。此外,草甘膦虽然抑制了 P. versicolora 的免疫力,但却明显抑制了与病原相关的假单胞菌,最终增强了甲虫对 A. nomius 的耐受性。总之,我们的研究结果表明,叶甲虫的相关微生物群能增强对昆虫病原体和草甘膦双重压力的抗逆性。这些结果让我们深入了解了除草剂残留对昆虫、相关细菌和昆虫病原真菌之间相互作用的影响,对害虫控制和生态系统评估具有重要意义。
{"title":"Enhanced capacity of a leaf beetle to combat dual stress from entomopathogens and herbicides mediated by associated microbiota","authors":"Yuxin ZHANG, Handan XU, Chengjie TU, Runhua HAN, Jing LUO, Letian XU","doi":"10.1111/1749-4877.12812","DOIUrl":"10.1111/1749-4877.12812","url":null,"abstract":"<p>Herbicides have demonstrated their impact on insect fitness by affecting their associated microbiota or altering the virulence of entomopathogenic fungi toward insects. However, limited research has explored the implications of herbicide stress on the intricate tripartite interaction among insects, associated bacterial communities, and entomopathogens. In this study, we initially demonstrated that associated bacteria confer a leaf beetle, <i>Plagiodera versicolora</i>, with the capability to resist the entomopathogenic fungus <i>Aspergillus nomius</i> infection, a capability sustained even under herbicide glyphosate stress. Further analysis of the associated microbiota revealed a significant alteration in abundance and composition due to glyphosate treatment. The dominant bacterium, post <i>A. nomius</i> infection or following a combination of glyphosate treatments, exhibited strong suppressive effects on fungal growth. Additionally, glyphosate markedly inhibited the pathogenic associated bacterium <i>Pseudomonas</i> though it inhibited <i>P. versicolora</i>’s immunity, ultimately enhancing the beetle's tolerance to <i>A. nomius</i>. In summary, our findings suggest that the leaf beetle's associated microbiota bestow an augmented resilience against the dual stressors of both the entomopathogen and glyphosate. These results provide insight into the effects of herbicide residues on interactions among insects, associated bacteria, and entomopathogenic fungi, holding significant implications for pest control and ecosystem assessment.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"19 6","pages":"1092-1104"},"PeriodicalIF":3.5,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urbanization-driven biotic homogenization has been recorded in various ecosystems on local and global scales; however, it is largely unexplored in developing countries. Empirical studies on different taxa and bioregions show conflicting results (i.e. biotic homogenization vs. biotic differentiation); the extent to which the community composition changes in response to anthropogenic disturbances and the factors governing this process, therefore, require elucidation. Here, we used a compiled database of 760 bird species in China to quantify the multiple-site β-diversity and fitted distance decay in pairwise β-diversities between natural and urban assemblages to assess whether urbanization had driven biotic homogenization. We used generalized dissimilarity models (GDM) to elucidate the roles of spatial and environmental factors in avian community dissimilarities before and after urbanization. The multiple-site β-diversities among urban assemblages were markedly lower than those among natural assemblages, and the distance decays in pairwise similarities in natural assemblages were more rapid. These results were consistent among taxonomic, phylogenetic, and functional aspects, supporting a general biotic homogenization driven by urbanization. The GDM results indicated that geographical distance and temperature were the dominant predictors of avian community dissimilarity. However, the contribution of geographical distance and climatic factors decreased in explaining compositional dissimilarities in urban assemblages. Geographical and environmental distances accounted for much lower variations in compositional dissimilarities in urban than in natural assemblages, implying a potential risk of uncertainty in model predictions under further climate change and anthropogenic disturbances. Our study concludes that taxonomic, phylogenetic, and functional dimensions elucidate urbanization-driven biotic homogenization in China.
{"title":"Urbanization drives biotic homogenization of the avian community in China.","authors":"Jiewen Deng, Younan Zhu, Yuelong Luo, Yongjing Zhong, Jiahao Tu, Jiehua Yu, Jiekun He","doi":"10.1111/1749-4877.12815","DOIUrl":"https://doi.org/10.1111/1749-4877.12815","url":null,"abstract":"<p><p>Urbanization-driven biotic homogenization has been recorded in various ecosystems on local and global scales; however, it is largely unexplored in developing countries. Empirical studies on different taxa and bioregions show conflicting results (i.e. biotic homogenization vs. biotic differentiation); the extent to which the community composition changes in response to anthropogenic disturbances and the factors governing this process, therefore, require elucidation. Here, we used a compiled database of 760 bird species in China to quantify the multiple-site β-diversity and fitted distance decay in pairwise β-diversities between natural and urban assemblages to assess whether urbanization had driven biotic homogenization. We used generalized dissimilarity models (GDM) to elucidate the roles of spatial and environmental factors in avian community dissimilarities before and after urbanization. The multiple-site β-diversities among urban assemblages were markedly lower than those among natural assemblages, and the distance decays in pairwise similarities in natural assemblages were more rapid. These results were consistent among taxonomic, phylogenetic, and functional aspects, supporting a general biotic homogenization driven by urbanization. The GDM results indicated that geographical distance and temperature were the dominant predictors of avian community dissimilarity. However, the contribution of geographical distance and climatic factors decreased in explaining compositional dissimilarities in urban assemblages. Geographical and environmental distances accounted for much lower variations in compositional dissimilarities in urban than in natural assemblages, implying a potential risk of uncertainty in model predictions under further climate change and anthropogenic disturbances. Our study concludes that taxonomic, phylogenetic, and functional dimensions elucidate urbanization-driven biotic homogenization in China.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan WU, Yao WANG, Jie WANG, Yaqian ZHANG, Baoshuang HU, Jinyu GUO, Zhenfei ZHENG, Youbing ZHOU
Mining can significantly alter landscapes, impacting wildlife and ecosystem functionality. Natural recovery in open-pit mines is vital for habitat restoration and ecosystem re-establishment, although few empirical studies have examined this process. Here, we assessed temporal and spatial responses of small rodents at the community, population, and individual levels during natural mine recovery. We examined the abundance, reproductive potential, and individual health of small rodents at active mines and at former mine sites left to recover naturally for approx. 10 and 20 years. We also assessed the effects of disturbance on rodent recovery processes at three distances from the mine boundary. Rodent numbers peaked after 10–13 years of recovery and exhibited the strongest male bias in the sex ratio. The Chinese white-bellied rat (Niviventer confucianus) was the most abundant species, achieving its highest population abundance at sites abandoned for 10–13 years and thriving at locations closer to the mine boundary. Only Chevrier's field mouse exhibited morphological responses to the mine recovery category. Ectoparasite load was unaffected by mine or distance-disturbance categories. Both Chevrier's field mouse (Apodemus chevrieri) and the South China field mouse (Apodemus draco) were affected significantly by vegetation layer cover during recovery succession. Our study highlights the complexities of ecological succession, with a peak in abundance as pioneer communities transition toward a climax seral stage. Careful prior planning and active site management are necessary to optimize abandoned mine recovery. Efforts to accelerate mine recovery through technical restoration should promote conditions that initiate and perpetuate the establishment and succession of wildlife assemblages.
{"title":"Recovery of small rodents from open-pit marble mining: effects on communities, populations, and individuals","authors":"Nan WU, Yao WANG, Jie WANG, Yaqian ZHANG, Baoshuang HU, Jinyu GUO, Zhenfei ZHENG, Youbing ZHOU","doi":"10.1111/1749-4877.12811","DOIUrl":"10.1111/1749-4877.12811","url":null,"abstract":"<p>Mining can significantly alter landscapes, impacting wildlife and ecosystem functionality. Natural recovery in open-pit mines is vital for habitat restoration and ecosystem re-establishment, although few empirical studies have examined this process. Here, we assessed temporal and spatial responses of small rodents at the community, population, and individual levels during natural mine recovery. We examined the abundance, reproductive potential, and individual health of small rodents at active mines and at former mine sites left to recover naturally for approx. 10 and 20 years. We also assessed the effects of disturbance on rodent recovery processes at three distances from the mine boundary. Rodent numbers peaked after 10–13 years of recovery and exhibited the strongest male bias in the sex ratio. The Chinese white-bellied rat (<i>Niviventer confucianus</i>) was the most abundant species, achieving its highest population abundance at sites abandoned for 10–13 years and thriving at locations closer to the mine boundary. Only Chevrier's field mouse exhibited morphological responses to the mine recovery category. Ectoparasite load was unaffected by mine or distance-disturbance categories. Both Chevrier's field mouse (<i>Apodemus chevrieri</i>) and the South China field mouse (<i>Apodemus draco</i>) were affected significantly by vegetation layer cover during recovery succession. Our study highlights the complexities of ecological succession, with a peak in abundance as pioneer communities transition toward a climax seral stage. Careful prior planning and active site management are necessary to optimize abandoned mine recovery. Efforts to accelerate mine recovery through technical restoration should promote conditions that initiate and perpetuate the establishment and succession of wildlife assemblages.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"19 4","pages":"728-742"},"PeriodicalIF":3.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In winter, many reptiles have a period of inactivity (“brumation”). During brumation there is no energetic intake, therefore there would be an advantage to reducing energetic expenditure. The size of energetically costly organs, a major determinant of metabolic rate, is known to be flexible in many tetrapods. Seasonal plasticity of organ size could serve as both an energy-saving mechanism and a source of nutrients for brumating reptiles. We studied a population of an invasive gecko, Tarentola annularis, to test for seasonal changes in activity, metabolic rate, and mass of various organs. The observed period of inactivity was December–February. Standard metabolic rates during the activity season were 1.85 times higher than in brumating individuals. This may be attributed to decreased organ mass during winter: heart mass decreased by 37%, stomach mass by 25%, and liver mass by 69%. Interestingly, testes mass increased by 100% during winter, likely in preparation for the breeding season, suggesting that males prioritize breeding over other functions upon return to activity. The size of the kidneys and lungs remained constant. Organ atrophy occurred only after geckos reduced their activity, so we hypothesize that organ mass changes in response to (rather than in anticipation of) cold winter temperatures and the associated fasting. Degradation of visceral organs can maintain energy demands in times of low supply, and catabolism of the protein from these organs can serve as a source of both energy and water during brumation. These findings bring us closer to a mechanistic understanding of reptiles’ physiological adaptations to environmental changes.
{"title":"Seasonal remodeling of visceral organs in the invasive desert gecko Tarentola annularis","authors":"Shahar DUBINER, Shai MEIRI, Eran LEVIN","doi":"10.1111/1749-4877.12814","DOIUrl":"10.1111/1749-4877.12814","url":null,"abstract":"<p>In winter, many reptiles have a period of inactivity (“brumation”). During brumation there is no energetic intake, therefore there would be an advantage to reducing energetic expenditure. The size of energetically costly organs, a major determinant of metabolic rate, is known to be flexible in many tetrapods. Seasonal plasticity of organ size could serve as both an energy-saving mechanism and a source of nutrients for brumating reptiles. We studied a population of an invasive gecko, <i>Tarentola annularis</i>, to test for seasonal changes in activity, metabolic rate, and mass of various organs. The observed period of inactivity was December–February. Standard metabolic rates during the activity season were 1.85 times higher than in brumating individuals. This may be attributed to decreased organ mass during winter: heart mass decreased by 37%, stomach mass by 25%, and liver mass by 69%. Interestingly, testes mass increased by 100% during winter, likely in preparation for the breeding season, suggesting that males prioritize breeding over other functions upon return to activity. The size of the kidneys and lungs remained constant. Organ atrophy occurred only after geckos reduced their activity, so we hypothesize that organ mass changes in response to (rather than in anticipation of) cold winter temperatures and the associated fasting. Degradation of visceral organs can maintain energy demands in times of low supply, and catabolism of the protein from these organs can serve as a source of both energy and water during brumation. These findings bring us closer to a mechanistic understanding of reptiles’ physiological adaptations to environmental changes.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":"19 6","pages":"1047-1056"},"PeriodicalIF":3.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1749-4877.12814","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}