Pub Date : 2024-05-27eCollection Date: 2024-01-01DOI: 10.1093/iob/obae018
W J Cooper, M R Conith, A J Conith
Surfperches and damselfishes are very closely related ovalentarians with large reproductive differences. Damselfishes are typical of most Ovalentaria in that they lay demersal eggs that hatch into small, free-feeding larvae. Surfperches are unusual among ovalentarians and most acanthomorphs in having prolonged internal development. They are born at an advanced stage, some as adults, and bypass the need to actively feed throughout an extended period of ontogeny. Damselfishes and surfperches possess the same modifications of the fifth branchial arch that allow them to perform advanced food processing within the pharynx. This condition (pharyngognathy) has large effects on the evolution of feeding mechanics and trophic ecology. Although the evolution of pharyngognaths has received considerable attention, the effects of different reproductive strategies on their diversification have not been examined. We compared head shape evolution in surfperches and damselfishes using geometric morphometrics, principal component analyses, and multiple phylogenetic-comparative techniques. We found that they have similar mean head shapes, that their primary axes of shape variation are comparable and distinguish benthic-feeding and pelagic-feeding forms in each case, and that, despite large differences in crown divergence times, their head shape disparities are not significantly different. Several lines of evidence suggest that evolution has been more constrained in damselfishes: Head shape is evolving faster in surfperches, more anatomical traits have undergone correlated evolution in damselfishes, there is significant phylogenetic signal in damselfish evolution (but not surfperches), and damselfishes exhibit significant allometry in head shape that is not present in surfperches.
{"title":"Surfperches versus Damselfishes: Trophic Evolution in Closely Related Pharyngognath Fishes with Highly Divergent Reproductive Strategies.","authors":"W J Cooper, M R Conith, A J Conith","doi":"10.1093/iob/obae018","DOIUrl":"https://doi.org/10.1093/iob/obae018","url":null,"abstract":"<p><p>Surfperches and damselfishes are very closely related ovalentarians with large reproductive differences. Damselfishes are typical of most Ovalentaria in that they lay demersal eggs that hatch into small, free-feeding larvae. Surfperches are unusual among ovalentarians and most acanthomorphs in having prolonged internal development. They are born at an advanced stage, some as adults, and bypass the need to actively feed throughout an extended period of ontogeny. Damselfishes and surfperches possess the same modifications of the fifth branchial arch that allow them to perform advanced food processing within the pharynx. This condition (pharyngognathy) has large effects on the evolution of feeding mechanics and trophic ecology. Although the evolution of pharyngognaths has received considerable attention, the effects of different reproductive strategies on their diversification have not been examined. We compared head shape evolution in surfperches and damselfishes using geometric morphometrics, principal component analyses, and multiple phylogenetic-comparative techniques. We found that they have similar mean head shapes, that their primary axes of shape variation are comparable and distinguish benthic-feeding and pelagic-feeding forms in each case, and that, despite large differences in crown divergence times, their head shape disparities are not significantly different. Several lines of evidence suggest that evolution has been more constrained in damselfishes: Head shape is evolving faster in surfperches, more anatomical traits have undergone correlated evolution in damselfishes, there is significant phylogenetic signal in damselfish evolution (but not surfperches), and damselfishes exhibit significant allometry in head shape that is not present in surfperches.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-25eCollection Date: 2024-01-01DOI: 10.1093/iob/obae016
W M Ballentine, K M Dorgan
Meiofauna (benthic invertebrates < 1 mm in size) facilitate sediment biogeochemical cycling, alter sediment microbial community structure, and serve as an important trophic link between benthic micro- and macrofauna, yet the behaviors that mechanistically link individuals to their ecological effects are largely unknown. Meiofauna are small and sediments are opaque, making observing the in situ activities of these animals challenging. We developed the Meioflume, a small, acrylic flow tunnel filled with grains of cryolite, a transparent sand analog, to simulate the in situ conditions experienced by meiofauna in an observable lab environment. The Meioflume has a working area (28.57 mm × 10.16 mm × 1 mm) that is small enough to quickly locate fauna and clearly observe behavior but large enough that animals are not tightly confined. When connected to a syringe press, the Meioflume can produce low velocity flows consistently and evenly across the width of its working area while retaining the contents. To demonstrate its functionality in observing the behavior of meiofauna, we placed individual meiofaunal animals (a protodrilid annelid, a harpacticoid copepod, and a platyhelminth flatworm) in Meioflumes and filmed their behavioral response to a sudden initiation of porewater flow. All animals were clearly visible within the flume and could be observed responding to the onset of flow. The design and construction of the Meioflume make it an accessible, affordable tool for researchers. This experimental system could be modified to address many questions in meiofaunal ecology, such as studying behavior in response to chemical cues, allowing us to observe meiofaunal behaviors to better understand their ecological effects.
{"title":"The Meioflume: A New System for Observing the Interstitial Behavior of Meiofauna.","authors":"W M Ballentine, K M Dorgan","doi":"10.1093/iob/obae016","DOIUrl":"10.1093/iob/obae016","url":null,"abstract":"<p><p>Meiofauna (benthic invertebrates < 1 mm in size) facilitate sediment biogeochemical cycling, alter sediment microbial community structure, and serve as an important trophic link between benthic micro- and macrofauna, yet the behaviors that mechanistically link individuals to their ecological effects are largely unknown. Meiofauna are small and sediments are opaque, making observing the <i>in situ</i> activities of these animals challenging. We developed the Meioflume, a small, acrylic flow tunnel filled with grains of cryolite, a transparent sand analog, to simulate the <i>in situ</i> conditions experienced by meiofauna in an observable lab environment. The Meioflume has a working area (28.57 mm × 10.16 mm × 1 mm) that is small enough to quickly locate fauna and clearly observe behavior but large enough that animals are not tightly confined. When connected to a syringe press, the Meioflume can produce low velocity flows consistently and evenly across the width of its working area while retaining the contents. To demonstrate its functionality in observing the behavior of meiofauna, we placed individual meiofaunal animals (a protodrilid annelid, a harpacticoid copepod, and a platyhelminth flatworm) in Meioflumes and filmed their behavioral response to a sudden initiation of porewater flow. All animals were clearly visible within the flume and could be observed responding to the onset of flow. The design and construction of the Meioflume make it an accessible, affordable tool for researchers. This experimental system could be modified to address many questions in meiofaunal ecology, such as studying behavior in response to chemical cues, allowing us to observe meiofaunal behaviors to better understand their ecological effects.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Teeth reveal how organisms interact with their environment. Biologists have long looked at the diverse form and function of teeth to study the evolution of feeding, fighting, and development. The exponential rise in the quantity and accessibility of computed tomography (CT) data has enabled morphologists to study teeth at finer resolutions and larger macroevolutionary scales. Measuring tooth function is no easy task, in fact, much of our mechanical understanding is derived from dental shape. Categorical descriptors of tooth shape such as morphological homodonty and heterodonty, overlook nuances in function by reducing tooth diversity for comparative analysis. The functional homodonty method quantitatively assesses the functional diversity of whole dentitions from tooth shape. This method uses tooth surface area and position to calculate the transmission of stress and estimates a threshold for functionally homodont teeth through bootstrapping and clustering techniques. However, some vertebrates have hundreds or thousands of teeth and measuring the shape and function of every individual tooth can be a painstaking task. Here we present Dental Dynamics, a module for 3D slicer that allows for the fast and precise quantification of dentitions and jaws. The tool automates the calculation of several tooth traits classically used to describe form and function (i.e., aspect ratio, mechanical advantage, force, etc.). To demonstrate the usefulness of our module we used Dental Dynamics to quantify 745 teeth across 20 salamanders that exhibit diverse ecologies. We coupled these data with the functional homodonty method to investigate the hypothesis that arboreal Aneides salamanders have novel tooth functions. Dental Dynamics provides a new and fast way to measure teeth and increases the accessibility of the functional homodonty method. We hope Dental Dynamics will encourage further theoretical and methodological development for quantifying and studying teeth.
{"title":"Dental Dynamics: a fast new tool for quantifying tooth and jaw biomechanics in 3D Slicer","authors":"K. Cohen, A. R. Fitzpatrick, J. M. Huie","doi":"10.1093/iob/obae015","DOIUrl":"https://doi.org/10.1093/iob/obae015","url":null,"abstract":"\u0000 Teeth reveal how organisms interact with their environment. Biologists have long looked at the diverse form and function of teeth to study the evolution of feeding, fighting, and development. The exponential rise in the quantity and accessibility of computed tomography (CT) data has enabled morphologists to study teeth at finer resolutions and larger macroevolutionary scales. Measuring tooth function is no easy task, in fact, much of our mechanical understanding is derived from dental shape. Categorical descriptors of tooth shape such as morphological homodonty and heterodonty, overlook nuances in function by reducing tooth diversity for comparative analysis. The functional homodonty method quantitatively assesses the functional diversity of whole dentitions from tooth shape. This method uses tooth surface area and position to calculate the transmission of stress and estimates a threshold for functionally homodont teeth through bootstrapping and clustering techniques. However, some vertebrates have hundreds or thousands of teeth and measuring the shape and function of every individual tooth can be a painstaking task. Here we present Dental Dynamics, a module for 3D slicer that allows for the fast and precise quantification of dentitions and jaws. The tool automates the calculation of several tooth traits classically used to describe form and function (i.e., aspect ratio, mechanical advantage, force, etc.). To demonstrate the usefulness of our module we used Dental Dynamics to quantify 745 teeth across 20 salamanders that exhibit diverse ecologies. We coupled these data with the functional homodonty method to investigate the hypothesis that arboreal Aneides salamanders have novel tooth functions. Dental Dynamics provides a new and fast way to measure teeth and increases the accessibility of the functional homodonty method. We hope Dental Dynamics will encourage further theoretical and methodological development for quantifying and studying teeth.","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02eCollection Date: 2024-01-01DOI: 10.1093/iob/obae013
K M Gamel, S Pinti, H C Astley
Underwater walking was a crucial step in the evolutionary transition from water to land. Underwater walkers use fins and/or limbs to interact with the benthic substrate and produce propulsive forces. The dynamics of underwater walking remain poorly understood due to the lack of a sufficiently sensitive and waterproof system to measure substrate reaction forces (SRFs). Using an underwater force plate (described in our companion paper), we quantify SRFs during underwater walking in axolotls (Ambystoma mexicanum) and Spot prawn (Pandalus platyceros), synchronized with videography. The horizontal propulsive forces were greater than the braking forces in both species to overcome hydrodynamic drag. In axolotls, potential energy (PE) fluctuations were far smaller than kinetic energy (KE) fluctuations due to high buoyant support (97%), whereas the magnitudes were similar in the prawn due to lower buoyant support (93%). However, both species show minimal evidence of exchange between KE and PE, which, along with the effects of hydrodynamic drag, is incompatible with inverted pendulum dynamics. Our results show that, despite their evolutionary links, underwater walking has fundamentally different dynamics compared with terrestrial walking and emphasize the substantial consequences of differences in body plan in underwater walking.
水下行走是从水中向陆地进化过渡的关键一步。水下步行者利用鳍和/或肢与底栖基质相互作用,产生推进力。由于缺乏足够灵敏和防水的系统来测量底质反作用力(SRFs),人们对水下行走的动力学仍然知之甚少。我们利用水下测力板(详见我们的论文),对斧头鱼(Ambystoma mexicanum)和斑节对虾(Pandalus platyceros)水下行走时的SRF进行了量化,并同步进行了录像。两个物种的水平推进力都大于制动力,以克服水动力阻力。在斧头鱼中,由于高浮力支持(97%),势能(PE)波动远远小于动能(KE)波动,而在对虾中,由于较低的浮力支持(93%),势能(PE)波动的幅度与动能(KE)波动的幅度相似。然而,这两个物种在 KE 和 PE 之间交换的证据极少,再加上流体阻力的影响,这与倒立摆动力学不相容。我们的研究结果表明,尽管两者在进化上有联系,但水下行走的动力学与陆地行走有本质区别,并强调了身体计划的差异对水下行走的重大影响。
{"title":"Ground Reaction Forces and Energy Exchange During Underwater Walking.","authors":"K M Gamel, S Pinti, H C Astley","doi":"10.1093/iob/obae013","DOIUrl":"10.1093/iob/obae013","url":null,"abstract":"<p><p>Underwater walking was a crucial step in the evolutionary transition from water to land. Underwater walkers use fins and/or limbs to interact with the benthic substrate and produce propulsive forces. The dynamics of underwater walking remain poorly understood due to the lack of a sufficiently sensitive and waterproof system to measure substrate reaction forces (SRFs). Using an underwater force plate (described in our companion paper), we quantify SRFs during underwater walking in axolotls (<i>Ambystoma mexicanum</i>) and Spot prawn (<i>Pandalus platyceros</i>), synchronized with videography. The horizontal propulsive forces were greater than the braking forces in both species to overcome hydrodynamic drag. In axolotls, potential energy (PE) fluctuations were far smaller than kinetic energy (KE) fluctuations due to high buoyant support (97%), whereas the magnitudes were similar in the prawn due to lower buoyant support (93%). However, both species show minimal evidence of exchange between KE and PE, which, along with the effects of hydrodynamic drag, is incompatible with inverted pendulum dynamics. Our results show that, despite their evolutionary links, underwater walking has fundamentally different dynamics compared with terrestrial walking and emphasize the substantial consequences of differences in body plan in underwater walking.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02eCollection Date: 2024-01-01DOI: 10.1093/iob/obae014
G Jorgewich-Cohen, I Werneburg, M Jobbins, G S Ferreira, M D Taylor, D Bastiaans, M R Sánchez-Villagra
The hyoid apparatus of tetrapods is highly diverse in its morphology. It plays an important role in feeding, breathing, sound production, and various other behaviors. Among turtles, the diversity of the hyoid apparatus has been recurrently linked to their habitat. The ossification of the hyoid corpus is often the main trait used in correlations with "niche" occupancy, an ossified corpus being associated with aquatic environments and a cartilaginous corpus with terrestrial life. Most studies conducted so far have focused on species belonging to Testudinoidea, the clade that occupies the biggest diversity of habitats (i.e., terrestrial, semi-terrestrial, and aquatic animals), while other turtle lineages have been largely understudied. We assessed the adult anatomy of the hyoid apparatus of 92 turtle species from all "families", together with ossification sequences from embryological series of 11 species, some described for the first time here. Using nearly 40 different discrete anatomical characters, we discuss the evolutionary patterns and the biological significance of morphological transformations in the turtle hyoid elements. Morphological changes are strongly associated to feeding modes, with several instances of convergent evolution within and outside the Testudines clade, and are not as strongly connected to habitat as previously thought. Some of the hyoid character states we describe are diagnostic of specific turtle clades, thus providing phylogenetically relevant information.
{"title":"Morphological Diversity of Turtle Hyoid Apparatus is Linked to Feeding Behavior.","authors":"G Jorgewich-Cohen, I Werneburg, M Jobbins, G S Ferreira, M D Taylor, D Bastiaans, M R Sánchez-Villagra","doi":"10.1093/iob/obae014","DOIUrl":"10.1093/iob/obae014","url":null,"abstract":"<p><p>The hyoid apparatus of tetrapods is highly diverse in its morphology. It plays an important role in feeding, breathing, sound production, and various other behaviors. Among turtles, the diversity of the hyoid apparatus has been recurrently linked to their habitat. The ossification of the hyoid corpus is often the main trait used in correlations with \"niche\" occupancy, an ossified corpus being associated with aquatic environments and a cartilaginous corpus with terrestrial life. Most studies conducted so far have focused on species belonging to Testudinoidea, the clade that occupies the biggest diversity of habitats (i.e., terrestrial, semi-terrestrial, and aquatic animals), while other turtle lineages have been largely understudied. We assessed the adult anatomy of the hyoid apparatus of 92 turtle species from all \"families\", together with ossification sequences from embryological series of 11 species, some described for the first time here. Using nearly 40 different discrete anatomical characters, we discuss the evolutionary patterns and the biological significance of morphological transformations in the turtle hyoid elements. Morphological changes are strongly associated to feeding modes, with several instances of convergent evolution within and outside the Testudines clade, and are not as strongly connected to habitat as previously thought. Some of the hyoid character states we describe are diagnostic of specific turtle clades, thus providing phylogenetically relevant information.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. M. Shephard, S. R. Lagon, S. Jacobsen, K. Millar, C. C. Ledon-Rettig
Stressful experiences in early life can have phenotypic effects that persist into, or manifest during, adulthood. In vertebrates, such carryover effects can be driven by stress-induced secretion of glucocorticoid hormones, such as corticosterone, which can lead to developmental reprogramming of hypothalamic-pituitary-adrenal/interrenal axis activity and behavior. Nutritional stress in the form of early life nutrient restriction is well known to modify later life behaviors and stress activity through corticosterone-related mechanisms. However, it is not known whether corticosterone is also mechanistically involved in carryover effects induced by a different form of nutritional variation: the use of alternate or entirely novel types of dietary resources. The plains spadefoot (Spea bombifrons) presents an excellent system for testing this question, since larvae of this species have evolved to use two alternate diet types: an ancestral detritus-based diet and a more novel diet of live shrimp. While previous work has shown that feeding on the novel shrimp diet influences juvenile (i.e., post-metamorphic) behavior and corticosterone levels, it is unclear whether these diet-induced carryover effects are mediated by diet-induced corticosterone, itself. To test for the mechanistic role of corticosterone in diet-induced carryover effects, we experimentally treated S. bombifrons larvae with exogenous corticosterone and measured subsequent effects on juvenile behavior and corticosterone levels. We found that while shrimp-fed larvae had elevated corticosterone levels, treatment of larvae with corticosterone itself had effects on juvenile behavior that partially resembled those carryover effects induced by the shrimp diet, such as altered food seeking and higher locomotor activity. However, unlike carryover effects caused by the shrimp diet, larval corticosterone exposure did not affect juvenile corticosterone levels. Overall, our study shows that corticosterone-related mechanisms are likely involved in carryover effects induced by a novel diet, yet such diet-induced carryover effects are not driven by corticosterone alone.
生命早期的应激经历会对表型产生影响,这种影响会持续到成年期或在成年期表现出来。在脊椎动物中,压力诱导的糖皮质激素(如皮质酮)的分泌可导致下丘脑-垂体-肾上腺/肾上腺轴活动和行为的发育重编程,从而产生这种延续效应。众所周知,早期营养限制形式的营养压力会通过皮质酮相关机制改变日后的行为和压力活动。然而,皮质酮是否在机制上也参与了由不同形式的营养变化(使用替代或全新类型的食物资源)所诱导的延续效应,目前尚不清楚。平原锹形目(Spea bombifrons)为测试这一问题提供了一个极好的系统,因为该物种的幼虫在进化过程中使用了两种交替的食物类型:一种是祖先以碎屑为基础的食物,另一种是更新颖的活虾食物。虽然之前的研究表明,以新的虾为食会影响幼体(即变态后)的行为和皮质酮水平,但目前还不清楚这些饮食诱导的延续效应本身是否由饮食诱导的皮质酮介导。为了检验皮质酮在饮食诱导的携带效应中的机理作用,我们用外源性皮质酮实验处理 S. bombifrons 幼体,并测量其对幼体行为和皮质酮水平的后续影响。我们发现,虽然喂虾的幼体皮质酮水平升高,但用皮质酮处理幼体本身对幼体行为的影响与虾食诱导的携带效应部分相似,如改变寻食和提高运动活动。然而,与虾食引起的携带效应不同,幼体皮质酮暴露不会影响幼体的皮质酮水平。总之,我们的研究表明,与皮质酮相关的机制很可能参与了新食物诱导的携带效应,但这种食物诱导的携带效应并非仅由皮质酮驱动。
{"title":"Corticosterone Contributes to Diet-Induced Reprogramming of Post-Metamorphic Behavior in Spadefoot Toads","authors":"A. M. Shephard, S. R. Lagon, S. Jacobsen, K. Millar, C. C. Ledon-Rettig","doi":"10.1093/iob/obae012","DOIUrl":"https://doi.org/10.1093/iob/obae012","url":null,"abstract":"\u0000 Stressful experiences in early life can have phenotypic effects that persist into, or manifest during, adulthood. In vertebrates, such carryover effects can be driven by stress-induced secretion of glucocorticoid hormones, such as corticosterone, which can lead to developmental reprogramming of hypothalamic-pituitary-adrenal/interrenal axis activity and behavior. Nutritional stress in the form of early life nutrient restriction is well known to modify later life behaviors and stress activity through corticosterone-related mechanisms. However, it is not known whether corticosterone is also mechanistically involved in carryover effects induced by a different form of nutritional variation: the use of alternate or entirely novel types of dietary resources. The plains spadefoot (Spea bombifrons) presents an excellent system for testing this question, since larvae of this species have evolved to use two alternate diet types: an ancestral detritus-based diet and a more novel diet of live shrimp. While previous work has shown that feeding on the novel shrimp diet influences juvenile (i.e., post-metamorphic) behavior and corticosterone levels, it is unclear whether these diet-induced carryover effects are mediated by diet-induced corticosterone, itself. To test for the mechanistic role of corticosterone in diet-induced carryover effects, we experimentally treated S. bombifrons larvae with exogenous corticosterone and measured subsequent effects on juvenile behavior and corticosterone levels. We found that while shrimp-fed larvae had elevated corticosterone levels, treatment of larvae with corticosterone itself had effects on juvenile behavior that partially resembled those carryover effects induced by the shrimp diet, such as altered food seeking and higher locomotor activity. However, unlike carryover effects caused by the shrimp diet, larval corticosterone exposure did not affect juvenile corticosterone levels. Overall, our study shows that corticosterone-related mechanisms are likely involved in carryover effects induced by a novel diet, yet such diet-induced carryover effects are not driven by corticosterone alone.","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15eCollection Date: 2024-01-01DOI: 10.1093/iob/obae011
J W Peters, K K Duclos, M V H Wilson, T C Grande
Zeiformes (dories, tinselfishes, and oreos) are primarily benthopelagic acanthomorph fishes, distributed between 50 and 1000 m depth on continental slopes and on flanks of oceanic islands and seamounts. Among the interesting morphological adaptations of zeiform fishes are their unique and highly protrusible jaws involving premaxillae with long ascending processes and a four-bar linkage, including mobile palatines that pivot on their posterior articulation. This adaptation for increased jaw protrusion has enabled zeiform fishes to capture elusive prey more efficiently and is arguably a major factor in their morphological diversity and evolutionary success. This study examines the evolution of zeiform jaw morphologies using 3D landmark-based multivariate morphometrics as well as phylomorphospace analysis. Results show that the descendants of the zeiform ancestor branched rapidly early in their history, retaining conservative jaw morphologies during this early branching, but subsequently strongly diverged in many of the resulting lineages. Results from this study are compared with earlier research based on overall body form, demonstrating that morphological variation within Zeiformes arose along at least two distinct trajectories: body form and jaw morphology. Variation among genera in body form is not associated with variation among the same genera in jaw morphology, and vice versa. Hypotheses to explain the apparent decoupling of body shape and jaw morphology are addressed along with avenues for further study to better understand the morphological evolution of these iconic fishes.
{"title":"Morphological Diversity and Evolution of Jaw Morphologies in Zeiform Fishes (Teleostei, Paracanthopterygii).","authors":"J W Peters, K K Duclos, M V H Wilson, T C Grande","doi":"10.1093/iob/obae011","DOIUrl":"10.1093/iob/obae011","url":null,"abstract":"<p><p>Zeiformes (dories, tinselfishes, and oreos) are primarily benthopelagic acanthomorph fishes, distributed between 50 and 1000 m depth on continental slopes and on flanks of oceanic islands and seamounts. Among the interesting morphological adaptations of zeiform fishes are their unique and highly protrusible jaws involving premaxillae with long ascending processes and a four-bar linkage, including mobile palatines that pivot on their posterior articulation. This adaptation for increased jaw protrusion has enabled zeiform fishes to capture elusive prey more efficiently and is arguably a major factor in their morphological diversity and evolutionary success. This study examines the evolution of zeiform jaw morphologies using 3D landmark-based multivariate morphometrics as well as phylomorphospace analysis. Results show that the descendants of the zeiform ancestor branched rapidly early in their history, retaining conservative jaw morphologies during this early branching, but subsequently strongly diverged in many of the resulting lineages. Results from this study are compared with earlier research based on overall body form, demonstrating that morphological variation within Zeiformes arose along at least two distinct trajectories: body form and jaw morphology. Variation among genera in body form is not associated with variation among the same genera in jaw morphology, and vice versa. Hypotheses to explain the apparent decoupling of body shape and jaw morphology are addressed along with avenues for further study to better understand the morphological evolution of these iconic fishes.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. W. Burroughs, J. F. Parham, B. L. Stuart, P. D. Smits, K. D. Angielczyk
As the discovery of cryptic species has increased in frequency, there has been interest in whether geometric morphometric data can detect fine-scale patterns of variation that can be used to morphologically diagnose such species. We used a combination of geometric morphometric data and an ensemble of five supervised machine learning methods to investigate whether plastron shape can differentiate two putative cryptic turtle species, Actinemys marmorata and Actinemys pallida. Actinemys has been the focus of considerable research due to its biogeographic distribution and conservation status. Despite this work, reliable morphological diagnoses for its two species are still lacking. We validated our approach on two datasets, one consisting of eight morphologically disparate emydid species, the other consisting of two subspecies of Trachemys (T. scripta scripta, T. scripta elegans). The validation tests returned near-perfect classification rates, demonstrating that plastron shape is an effective means for distinguishing taxonomic groups of emydids via machine learning methods. By contrast the same methods did not return high classification rates for a set of alternative phylogeographic and morphological binning schemes in Actinemys. All classification hypotheses performed poorly relative to the validation datasets and no single hypothesis was unequivocally supported for Actinemys. Two hypotheses had machine learning performance that was marginally better than our remaining hypotheses. In both cases, those hypotheses favored a two-species split between A. marmorata and A. pallida specimens, lending tentative morphological support to the hypothesis of two Actinemys species. However, the machine learning results also underscore that Actinemys as a whole has lower levels of plastral variation than other turtles within Emydidae, but the reason for this morphological conservatism is unclear.
随着隐性物种的发现越来越频繁,人们开始关注几何形态计量数据是否能够检测到可用于对此类物种进行形态诊断的精细变异模式。我们结合使用了几何形态计量数据和五种有监督的机器学习方法来研究胸甲的形状是否能区分两种可能的隐龟物种:Actinemys marmorata 和 Actinemys pallida。由于其生物地理分布和保护状况,Actinemys 一直是大量研究的焦点。尽管开展了这些工作,但对这两个物种仍然缺乏可靠的形态学诊断。我们在两个数据集上验证了我们的方法,一个数据集包括八个形态各异的蝾螈物种,另一个数据集包括两个蝾螈亚种(T. scripta scripta、T. scripta elegans)。验证测试的分类率接近完美,这表明通过机器学习方法,胸甲形状是区分蝾螈分类群的有效手段。相比之下,同样的方法在对 Actinemys 的一组备选系统地理学和形态学分选方案进行分类时并没有得到很高的分类率。与验证数据集相比,所有的分类假说都表现不佳,没有一个假说能明确地支持 Actinemys 的分类。有两个假说的机器学习表现略好于其余假说。在这两种情况下,这些假说都倾向于将 A. marmorata 和 A. pallida 标本分成两个物种,从而为两个 Actinemys 物种的假说提供了初步的形态学支持。然而,机器学习的结果也强调了Actinemys作为一个整体,其犁板变异水平低于Emydidae中的其他龟类,但这种形态上的保守性的原因尚不清楚。
{"title":"Morphological Species Delimitation in the Western Pond Turtle (Actinemys): Can Machine Learning Methods Aid in Cryptic Species Identification?","authors":"R. W. Burroughs, J. F. Parham, B. L. Stuart, P. D. Smits, K. D. Angielczyk","doi":"10.1093/iob/obae010","DOIUrl":"https://doi.org/10.1093/iob/obae010","url":null,"abstract":"\u0000 As the discovery of cryptic species has increased in frequency, there has been interest in whether geometric morphometric data can detect fine-scale patterns of variation that can be used to morphologically diagnose such species. We used a combination of geometric morphometric data and an ensemble of five supervised machine learning methods to investigate whether plastron shape can differentiate two putative cryptic turtle species, Actinemys marmorata and Actinemys pallida. Actinemys has been the focus of considerable research due to its biogeographic distribution and conservation status. Despite this work, reliable morphological diagnoses for its two species are still lacking. We validated our approach on two datasets, one consisting of eight morphologically disparate emydid species, the other consisting of two subspecies of Trachemys (T. scripta scripta, T. scripta elegans). The validation tests returned near-perfect classification rates, demonstrating that plastron shape is an effective means for distinguishing taxonomic groups of emydids via machine learning methods. By contrast the same methods did not return high classification rates for a set of alternative phylogeographic and morphological binning schemes in Actinemys. All classification hypotheses performed poorly relative to the validation datasets and no single hypothesis was unequivocally supported for Actinemys. Two hypotheses had machine learning performance that was marginally better than our remaining hypotheses. In both cases, those hypotheses favored a two-species split between A. marmorata and A. pallida specimens, lending tentative morphological support to the hypothesis of two Actinemys species. However, the machine learning results also underscore that Actinemys as a whole has lower levels of plastral variation than other turtles within Emydidae, but the reason for this morphological conservatism is unclear.","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140753923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. D. Lagorio, F. R. McGechie, M. G. Fields, J. Fortner, E. Mackereth, C Perez, A. T. Wilken, M. Leal, C. V. Ward, K. M. Middleton, C. M. Holliday
High-resolution imaging, 3D modeling, and quantitative analyses are equipping evolutionary biologists with new approaches to understanding the variation and evolution of the musculoskeletal system. However, challenges with interpreting DiceCT data and higher order use of modeled muscles have not yet been fully explored, and the error in and accuracy of some digital methods remain unclear. West Indian Anolis lizards are a model clade for exploring patterns in functional adaptation, ecomorphology, and sexual size dimorphism in vertebrates. These lizards possess numerous jaw muscles with potentially different anatomies that sculpt the adductor chamber of the skull. Here we test approaches to quantifying the musculoskeletal shape of the heads of two species of Anolis: A. pulchellus and A. sagrei. We employ comparative approaches such as DiceCT segmentation of jaw muscles, 3D surface-attachment mapping, and 3D landmarking with the aim of exploring muscle volumes, 3D muscle fiber architecture, and sexual dimorphism of the skull. We then compare sources of measurement error in these 3D analyses while also presenting new 3D musculoskeletal data from the Anolis feeding apparatus. These findings demonstrate the accessibility and repeatability of these emerging techniques as well as provide details regarding the musculoskeletal anatomy of the heads of A. pulchellus and A. sagrei which show potential for further research of comparative biomechanics and evolution in the clade.
高分辨率成像、三维建模和定量分析为进化生物学家提供了了解肌肉骨骼系统变异和进化的新方法。然而,解读 DiceCT 数据和高阶使用建模肌肉所面临的挑战尚未得到充分探讨,一些数字方法的误差和准确性仍不清楚。西印度阿诺利斯蜥蜴是探索脊椎动物功能适应、异形和性别大小二态模式的一个模式支系。这些蜥蜴拥有许多下颌肌肉,其解剖结构可能各不相同,这些肌肉雕刻着头骨的内收腔。在这里,我们测试了量化两种巨蜥头部肌肉骨骼形状的方法:pulchellus 和 A. sagrei。我们采用了 DiceCT 下颚肌肉分割、三维表面附着映射和三维标记等比较方法,旨在探索头骨的肌肉体积、三维肌肉纤维结构和性双态性。然后,我们比较了这些三维分析中测量误差的来源,同时还展示了来自食蚁兽进食装置的新三维肌肉骨骼数据。这些发现证明了这些新兴技术的易用性和可重复性,并提供了有关 A. pulchellus 和 A. sagrei 头部肌肉骨骼解剖学的详细信息,为进一步研究该支系的比较生物力学和进化提供了可能。
{"title":"Computational approaches and observer variation in the 3D musculoskeletal modeling of the heads of Anolis","authors":"A. D. Lagorio, F. R. McGechie, M. G. Fields, J. Fortner, E. Mackereth, C Perez, A. T. Wilken, M. Leal, C. V. Ward, K. M. Middleton, C. M. Holliday","doi":"10.1093/iob/obae009","DOIUrl":"https://doi.org/10.1093/iob/obae009","url":null,"abstract":"\u0000 High-resolution imaging, 3D modeling, and quantitative analyses are equipping evolutionary biologists with new approaches to understanding the variation and evolution of the musculoskeletal system. However, challenges with interpreting DiceCT data and higher order use of modeled muscles have not yet been fully explored, and the error in and accuracy of some digital methods remain unclear. West Indian Anolis lizards are a model clade for exploring patterns in functional adaptation, ecomorphology, and sexual size dimorphism in vertebrates. These lizards possess numerous jaw muscles with potentially different anatomies that sculpt the adductor chamber of the skull. Here we test approaches to quantifying the musculoskeletal shape of the heads of two species of Anolis: A. pulchellus and A. sagrei. We employ comparative approaches such as DiceCT segmentation of jaw muscles, 3D surface-attachment mapping, and 3D landmarking with the aim of exploring muscle volumes, 3D muscle fiber architecture, and sexual dimorphism of the skull. We then compare sources of measurement error in these 3D analyses while also presenting new 3D musculoskeletal data from the Anolis feeding apparatus. These findings demonstrate the accessibility and repeatability of these emerging techniques as well as provide details regarding the musculoskeletal anatomy of the heads of A. pulchellus and A. sagrei which show potential for further research of comparative biomechanics and evolution in the clade.","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140216760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arboreal embryos of phyllomedusine treefrogs hatch prematurely to escape snake predation, cued by vibrations in their egg clutches during attacks. However, escape success varies between species, from ∼77% in Agalychnis callidryas to just ∼9% in A. spurrelli at 1 day premature. Both species begin responding to snake attacks at similar developmental stages, when vestibular mechanosensory function begins, suggesting that sensory ability does not limit the hatching response in A. spurrelli. Agalychnis callidryas clutches are thick and gelatinous, while A. spurrelli clutches are thinner and stiffer. We hypothesized that this structural difference alters the egg motion excited by attacks. Since vibrations excited by snakes must propagate through clutches to reach embryos, we hypothesized that the species difference in attack-induced hatching may reflect effects of clutch biomechanics on the cues available to embryos. Mechanics predicts that thinner, stiffer structures have higher free vibration frequencies, greater spatial attenuation, and faster vibration damping than thicker, more flexible structures. We assessed clutch biomechanics by embedding small accelerometers in clutches of both species and recording vibrations during standardized excitation tests at two distances from the accelerometer. Analyses of recorded vibrations showed that A. spurrelli clutches have higher free vibration frequencies and greater vibration damping than A. callidryas clutches. Higher frequencies elicit less hatching in A. callidryas, and greater damping could reduce the amount of vibration embryos can perceive. To directly test if clutch structure affects escape success in snake attacks, we transplanted A. spurrelli eggs into A. callidryas clutches and compared their escape rates with untransplanted, age-matched conspecific controls. We also performed reciprocal transplantation of eggs between pairs of A. callidryas clutches as a method control. Transplanting A. spurrelli embryos into A. callidryas clutches nearly tripled their escape success (44%) compared to conspecific controls (15%), whereas transplanting A. callidryas embryos into different A. callidryas clutches only increased escape success by 10%. At hatching competence, A. callidryas eggs are no longer jelly-encapsulated, while A. spurrelli eggs retain their jelly coat. Therefore, we compared the hatching response and latency of A. spurrelli in de-jellied eggs and their control, jelly-encapsulated siblings using manual egg-jiggling to simulate predation cues. Embryos in de-jellied eggs were more likely to hatch and hatched faster than control siblings. Together, our results suggest that the properties of parentally produced egg-clutch structures, including their vibration biomechanics, constrain the information available to A. spurrelli embryos and contribute to interspecific differences in hatching responses to predator attacks.
树蛙的树栖胚胎会过早孵化,以躲避蛇的捕食。然而,不同物种的逃生成功率不同,早产1天的Agalychnis callidryas的成功率为77%,而A. spurrelli的成功率仅为9%。这两个物种在相似的发育阶段就开始对蛇的攻击做出反应,此时前庭机械感觉功能开始起作用,这表明感觉能力并不限制马刺鱼的孵化反应。Agalychnis callidryas的胎衣厚而呈胶状,而A. spurrelli的胎衣薄而坚硬。我们推测,这种结构上的差异会改变攻击所激发的卵的运动。由于蛇激发的振动必须通过卵巢传播才能到达胚胎,我们假设攻击诱导孵化的物种差异可能反映了卵巢生物力学对胚胎可用线索的影响。根据力学预测,与更厚、更灵活的结构相比,更薄、更硬的结构具有更高的自由振动频率、更大的空间衰减和更快的振动阻尼。我们将小型加速度计嵌入两个物种的卵巢中,在离加速度计两个距离处进行标准化激励测试时记录振动,以此评估卵巢的生物力学。对记录到的振动进行分析表明,马刺秧鸡卵巢的自由振动频率比马刺秧鸡卵巢高,振动阻尼也比马刺秧鸡卵巢大。较高的频率会减少马氏杓鹬的孵化率,而较大的阻尼会减少胚胎可感知的振动量。为了直接检验蛇攻击中的卵窝结构是否会影响逃生成功率,我们将马刺蓟马卵移植到马刺蓟马卵窝中,并将它们的逃生率与未移植的、年龄匹配的同种对照组进行比较。作为对照方法,我们还在一对 A. callidryas 卵之间进行了卵的相互移植。与同种对照组(15%)相比,将 A. spurrelli 胚胎移植到 A. callidryas 卵中的逃逸成功率(44%)提高了近三倍,而将 A. callidryas 胚胎移植到不同的 A. callidryas 卵中的逃逸成功率仅提高了 10%。在孵化能力方面,A. callidryas卵不再被胶冻包裹,而A. spurrelli卵则保留了胶冻外衣。因此,我们使用人工抖动卵子来模拟捕食线索,比较了去胶冻卵中的马氏刺蓟马和对照组胶冻包裹卵中的马氏刺蓟马的孵化反应和潜伏期。去胶冻卵中的胚胎比对照卵中的胚胎更容易孵化,孵化速度也更快。总之,我们的研究结果表明,亲本生产的卵离合器结构的特性(包括其振动生物力学)限制了马刺秧鸡胚胎可获得的信息,并导致了对捕食者攻击的孵化反应的种间差异。
{"title":"Egg-clutch Biomechanics Affect Escape-Hatching Behavior And Performance","authors":"B. A. Güell, J. G. McDaniel, K. Warkentin","doi":"10.1093/iob/obae006","DOIUrl":"https://doi.org/10.1093/iob/obae006","url":null,"abstract":"\u0000 Arboreal embryos of phyllomedusine treefrogs hatch prematurely to escape snake predation, cued by vibrations in their egg clutches during attacks. However, escape success varies between species, from ∼77% in Agalychnis callidryas to just ∼9% in A. spurrelli at 1 day premature. Both species begin responding to snake attacks at similar developmental stages, when vestibular mechanosensory function begins, suggesting that sensory ability does not limit the hatching response in A. spurrelli. Agalychnis callidryas clutches are thick and gelatinous, while A. spurrelli clutches are thinner and stiffer. We hypothesized that this structural difference alters the egg motion excited by attacks. Since vibrations excited by snakes must propagate through clutches to reach embryos, we hypothesized that the species difference in attack-induced hatching may reflect effects of clutch biomechanics on the cues available to embryos. Mechanics predicts that thinner, stiffer structures have higher free vibration frequencies, greater spatial attenuation, and faster vibration damping than thicker, more flexible structures. We assessed clutch biomechanics by embedding small accelerometers in clutches of both species and recording vibrations during standardized excitation tests at two distances from the accelerometer. Analyses of recorded vibrations showed that A. spurrelli clutches have higher free vibration frequencies and greater vibration damping than A. callidryas clutches. Higher frequencies elicit less hatching in A. callidryas, and greater damping could reduce the amount of vibration embryos can perceive. To directly test if clutch structure affects escape success in snake attacks, we transplanted A. spurrelli eggs into A. callidryas clutches and compared their escape rates with untransplanted, age-matched conspecific controls. We also performed reciprocal transplantation of eggs between pairs of A. callidryas clutches as a method control. Transplanting A. spurrelli embryos into A. callidryas clutches nearly tripled their escape success (44%) compared to conspecific controls (15%), whereas transplanting A. callidryas embryos into different A. callidryas clutches only increased escape success by 10%. At hatching competence, A. callidryas eggs are no longer jelly-encapsulated, while A. spurrelli eggs retain their jelly coat. Therefore, we compared the hatching response and latency of A. spurrelli in de-jellied eggs and their control, jelly-encapsulated siblings using manual egg-jiggling to simulate predation cues. Embryos in de-jellied eggs were more likely to hatch and hatched faster than control siblings. Together, our results suggest that the properties of parentally produced egg-clutch structures, including their vibration biomechanics, constrain the information available to A. spurrelli embryos and contribute to interspecific differences in hatching responses to predator attacks.","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140247846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}